Supporting Information for

Metal-free Direct Amination/aromatisation of 2-Cyclohexenones to Iodo-*N*-Arylanilines and *N*-Arylanilines promoted by iodine †

M. Teresa Barros,^a Suvendu S. Dey,^a Christopher D. Maycock,^{b,c*} Paula Rodrigues^b

^a Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica,

^b Instituto de Tecnologia Química e Biologia, Universidade Nova de Lisboa, 2780-157

Oeiras, Portugal.

^c Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa Portugal.

Contents:

Table SA	2S
Scheme SB	38
Experimental Procedures.	38
General Experimental procedure for the synthesis of mono-iodo-N-arylanili	nes4S
Spectral Data of compounds 1, 1a-r	4S-11S
General Experimental procedure for the synthesis of <i>N</i> -arylanilines	
Spectral Data of compounds 2, 2a-o	13S-18S
Spectral Data of compounds 3, 4, 7, 8, 9, 10	18S-21S
References	218
NMR pictures of all <i>N</i> -aryl compounds	22S-64S

Table SA Optimization of aromatization of 2-cyclohexenone^a

o	+ Br F I	B		+ ()	H Br	F
Entry	Reagent (mol%) T	emp (°C)	Solvent	Time (h)	1:2	Yield (%) ^b
1	I ₂ (110) + <i>p</i> -TsOH (10)	90	DMSO	1	25:75 ^c	78
2	I ₂ (110) + <i>p</i> -TsOH (10)	90	DMSO	4	100:00	89
3	I ₂ (50) + <i>p</i> -TsOH (10)	90	DMSO	1	00:100	91
4	I ₂ (30) + <i>p</i> -TsOH (10)	90	DMSO	5	00:100	45
5	I ₂ (50) + <i>p</i> -TsOH (10)	50	DMSO	1.5	00:100	79
6	I ₂ (50) + <i>p</i> -TsOH (10)	rt	DMSO	12	00:100	40
7	l ₂ (110)	90	DMSO	4	100:00	79
8	I ₂ (110) + <i>p</i> -TsOH (10)	75	EtOH	12	00:100	55
9	I ₂ (110) + <i>p</i> -TsOH (10)	65	THF	12	00:100	45
10	l ₂ (110) + <i>p</i> -TsOH (10)	80	CH₃CN	12	00:100	72
11	NIS (110) + <i>p</i> -TsOH (10)) 75	EtOH	12	00:100	69
12	NIS (110) + <i>p</i> -TsOH (10) 65	THF	12	00:100	56
13	NIS (110) + <i>p</i> -TsOH (10) 40	CH ₂ Cl ₂	12	00:100	49
14	NIS (110) + <i>p</i> -TsOH (10)) 90	DMSO	18	10:90 ^c	77
15	NIS (220) + <i>p</i> -TsOH (10)) 90	DMSO	18	100:00	75

^aMixture of 0.33 mmol of 2-cylchexenone, 0.25 mmol of amine in 0.5 ml of solvent was studied; ^bIsolated Yield; ^cIsolated ratio, separated by preparative TLC.

Experimental Procedures:

All chemicals used were of reagent grade. All solvents were freshly distilled before use. Flash chromatography was performed on Kieselgel 60, particle size 0.032-0.063 mm. NMR spectra were obtained at 400 MHz (¹H NMR) and 100 MHz (¹³C NMR) using CDCl₃ as solvent unless noted otherwise. Chemical shifts are reported in ppm relative to TMS. Infrared (IR) spectra were obtained using a Perkin-Elmer 1600 FT-IR spectrophotometer and are in cm⁻¹; *para*-toluenesulfonic acid monohydrate = *p*-TsOH; trace amounts of solvents such as CH₂Cl₂, EtOAc, H₂O (from CDCl₃) are found to be present in a few ¹H-NMR-spectra.

2-Cyclohexen-1-one and 3-methyl-2-cyclohexen-1-one were purchased commercially. Syntheses of 6-Carbethoxy-5-methyl-2-cyclohexen-1-one¹, 4-methyl-2-cyclohexen-1one², 4-phenyl-2-cyclohexen-1-one², 4-*tert*-butyl-2-cyclohexen-1-one², 4-Carbethoxy-3methyl-5-phenyl-2-cyclohexen-1-one³ and 4-Carbethoxy-5-(4-chlorophenyl)-3-methyl-2cyclohexen-1-one³ were carried following literature procedures.

General Experimental procedure for the synthesis of mono-iodo-*N*-phenylanilines:

In a screw capped vessel, a solution of 2-cyclohexenones (0.33 mmol), amines (0.25 mmol), iodine (70 mg, 110 mol%) and *p*-TsOH (4.7 mg, 10 mol%) in 0.50 ml of DMSO was heated at 90 °C for the required time to complete the reaction (TLC). After cooling, 40 ml of dichloromethane was added. The solution was washed with 20 ml of 20% sodium thiosulfate followed by 10 ml of brine. The organic extract was dried over sodium sulfate. Evaporation of the organic layer and purification through a short silica gel column (eluted with hexanes/ethyl acetate) afforded the titled products.

2-Bromo-4-fluoro-*N***-(4-iodophenyl)aniline (1):** Brownish white solid (87 mg, 89%), m.p. = 75 °C; IR (v_{max}): 3390, 3058, 3016, 1583, 1502, 1466, 1315, 1023, 806, 749, 665; ¹H NMR: δ 7.55 (m, 2H), 7.31 (dd, J = 7.9, 2.9 Hz, 1H), 7.19 (dd, J = 9.0, 5.2 Hz, 1H), 6.95 (ddd, J = 9.0, 7.9, 2.9 Hz, 1H), 6.80 (m, 2H), 5.79 (s, 1H); ¹³C NMR: δ 157.1 (d, J_{C-F} = 253.5 Hz), 142.3, 138.3 (2C), 136.9 (d, J_{C-F} = 2.7 Hz), 120.4 (2C), 120.1 (d, J_{C-F} = 25.4 Hz), 118.7 (d, J = 11.1 Hz), 115.2 (d, J_{C-F} = 22.3 Hz), 113.8 (d, J_{C-F} = 9.3 Hz), 83.9. HRMS (ESI-FIA-TOF) Calcd. for C₁₂H₉BrFIN [M+H]⁺ requires m/z = 391.8947; Found: m/z = 391.8942.

2-Chloro-*N***-(4-iodophenyl)-5-(trifluoromethyl)aniline (1a):** White solid (84 mg, 85%), m.p. = 82 °C; IR (υ_{max}): 3401, 3063, 3024, 1597, 1502, 1484, 1460, 1440, 1315, 1221, 1055, 1012, 808, 749, 678; ¹H NMR: δ 7.66 (m, 2H), 7.46 (d, J = 8.2 Hz, 1H), 7.40 (d, J = 1.8 Hz, 1H), 7.05 (dd, J = 8.2 Hz, 1.8 Hz, 1H), 6.94 (m, 2H), 6.17 (s, 1H); ¹³C NMR: δ 140.4, 140.2, 138.7 (2C), 130.3, 130.1 (q, J_{C-F} = 32.4 Hz), 126.7 (q, J_{C-F} = 271.3 Hz), 124.6 (broad), 122.7 (2C), 116.9 (q, J_{C-F} = 3.8 Hz), 111.5 (q, J_{C-F} = 3.9 Hz), 86.4. Anal. Calcd for C₁₃H₈ClF₃IN: C, 39.27; H, 2.03; N, 3.52. Found: C, 39.31; H, 1.82; N, 3.63.

2-Chloro-*N***-(4-iodophenyl)-4-methylaniline (1b):** Brownish white solid (78 mg, 91%), m.p. = 73 °C; IR (v_{max}): 3401, 3052, 3017, 1587, 1501, 1489, 1469, 1443, 1317, 1222, 1051, 1038, 1002, 809, 745, 682; ¹H NMR: δ 7.53 (d, J = 8.6 Hz, 2H), 7.19 (s, 1H), 7.16 (d, J = 8.2 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.83 (d, J = 8.6 Hz, 2H), 5.88 (s, 1H), 2.27 (s, 3H); ¹³C NMR: δ 142.3, 138.1 (2C), 136.5, 131.7, 130.2, 128.0, 122.9, 120.3 (2C), 117.5, 83.3, 20.4. Anal. Calcd for C₁₃H₁₁CIIN: C, 45.44; H, 3.23; N, 4.08. Found: C, 45.64; H, 3.05; N, 4.18.

4-Iodo-*N***-p-tolylaniline** (**1c**): White solid (17 mg, 22%), m.p. = 99 °C; IR (υ_{max}): 3390, 3024, 2914, 2856, 1604, 1578, 1535, 1507, 1482, 1320, 1269, 1176, 1109, 1060, 999, 854, 709, 563; ¹H NMR: δ 7.47 (m, 2H), 7.09 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 6.75 (m, 2H), 5.58 (broad s, 1H), 2.30 (s, 3H); ¹³C NMR: δ 143.9, 139.4, 138.0 (2C), 131.9, 129.9 (2C), 119.7 (2C), 118.4 (2C), 81.2, 20.7. Anal. Calcd for C₁₃H₁₂IN: C, 50.51; H, 3.91; N, 4.53. Found: C, 50.52; H, 3.95; N, 4.56.

5-Chloro-2-iodo-*N***-(4-iodophenyl)aniline (1d):** White solid (103 mg, 91%), m.p. = 117 ^oC; IR (υ_{max}): 3401, 3062, 3027, 1587, 1502, 1484, 1459, 1440, 1315, 1221, 1055, 1031, 1012, 808, 749, 678; ¹H NMR: δ 7.68 – 7.59 (m, 3H), 7.08 (d, J = 2.4 Hz, 1H), 6.90 (m, 2H), 6.63 (dd, J = 8.5, 2.4 Hz, 1H), 5.87 (s, 1H); ¹³C NMR: δ 144.5, 140.8, 140.1, 138.5 (2C), 135.3, 122.5 (2C), 122.1, 115.2, 85.9, 85.4. Anal. Calcd for C₁₂H₈ClI₂N: C, 31.64; H, 1.77; N, 3.08. Found: C, 31.74; H, 1.62; N, 3.23.

2,4-Dichloro-*N***-(4-iodophenyl)aniline (1e):** White solid (84 mg, 92%), m.p. = 88 °C; IR (v_{max}): 3405, 3048, 1592, 1504, 1467, 1390, 1315, 1220, 1099, 1049, 808, 773, 740, 694, 549; ¹H NMR: δ 7.59 (m, 2H), 7.36 (d, J = 2.2 Hz, 1H), 7.15 (d, J = 8.8 Hz, 1H), 7.10 (dd, J = 8.8, 2.2 Hz, 1H), 6.88 (m, 2H), 5.95 (broad s, 1H); ¹³C NMR: δ 141.1, 138.4 (2C), 138.3, 129.5, 127.6, 125.1, 122.5, 121.8 (2C), 116.7, 85.1. Anal. Calcd for C₁₂H₈Cl₂IN: C, 39.59; H, 2.22; N, 3.85. Found: C, 39.77; H, 2.06; N, 4.00.

Ethyl 3-(4-iodophenylamino)benzoate (1f): Grey solid (68 mg, 75%), m.p. = 78 °C; IR (ν_{max}): 3368, 2977, 2931, 1716, 1683, 15181, 1506, 1484, 1465, 1299, 1251, 1228, 1174, 1112, 1078, 1002, 813, 775, 698, 543; ¹H NMR: δ 7.71 (s, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.54 (m, 2H), 7.33 (t, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 6.84 (m, 2H), 5.82 (s, 1H), 4.36 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 166.5, 142.6, 142.5, 138.4 (2C), 132.1, 129.6, 122.6, 122.1, 119.8 (2C), 118.9, 83.1, 61.1, 14.3. Anal. Calcd for C₁₅H₁₄INO₂: C, 49.07; H, 3.84; N, 3.81. Found: C, 49.16; H, 3.62; N, 3.88.

2-Chloro-*N***-(4-iodophenyl)pyridin-3-amine (1g):** Yellow solid (58 mg, 70%), m.p. = 110 °C; IR (v_{max}): 3359, 3248, 3060, 1567, 1492, 1417, 1313, 1263, 1070, 1006, 809, 734; ¹H NMR: δ 7.92 (dd, J = 4.6, 1.6 Hz, 1H), 7.66 (m, 2H), 7.51 (dd, J = 8.1, 1.6 Hz, 1H), 7.14 (dd, J = 8.1, 4.6 Hz, 1H), 6.95 (m, J = 8.8 Hz, 2H), 6.13 (broad s, 1H); ¹³C NMR: δ 139.9, 139.8, 138.6 (2C), 136.9, 123.2, 122.5 (2C), 121.9, 86.3. Anal. Calcd for C₁₁H₈CIIN₂: C, 39.97; H, 2.44; N, 8.47. Found: C, 39.88; H, 2.32; N, 8.63.

2,4-Dichloro-*N***-(4-iodo-3-methylphenyl)aniline (1h):** Yellow viscous liquid (76 mg, 80%); IR (ν_{max}): 3405, 3047, 1592, 1510, 1467, 1390, 1314, 1225, 1099, 1051, 808, 777, 742, 695, 546; ¹H NMR: δ 7.69 (d, J = 8.4 Hz, 1H), 7.36 (d, J = 2.3 Hz, 1H), 7.15 (d, J = 8.8 Hz, 1H), 7.09 (dd, J = 8.8, 2.3 Hz, 1H), 7.00 (d, J = 2.6 Hz, 1H), 6.68 (dd, J = 8.4, 2.6 Hz, 1H), 5.95 (s, 1H), 2.39 (s, 3H); ¹³C NMR: δ 142.6, 141.5, 139.6, 138.5, 129.4, 127.6, 124.8, 122.3, 121.2, 119.0, 116.7, 92.2, 28.1. Anal. Calcd for C₁₃H₁₀Cl₂IN: C, 41.30; H, 2.67; N, 3.71. Found: C, 41.54; H, 2.60; N, 3.73.

2-Bromo-*N***-(4-iodo-3-methylphenyl)-4-methylaniline (1i):** Yellow viscous liquid (85 mg, 85%); IR (υ_{max}): 3390, 3060, 3011, 1583, 1502, 1453, 1318, 1022, 806, 747, 669; ¹H NMR: δ 7.63 (d, J = 8.4 Hz, 1H), 7.36 (d, J = 0.9 Hz, 1H), 7.15 (d, J = 8.2 Hz, 1H), 7.00 (dd, J = 8.2, 0.9 Hz, 1H), 6.96 (d, J = 2.7 Hz, 1H), 6.63 (dd, J = 8.4, 2.7 Hz, 1H), 5.83 (s,

1H), 2.37 (s, 3H), 2.27 (s, 3H); ¹³C NMR: δ 142.9, 142.3, 139.4, 137.9, 133.4, 132.0, 128.8, 119.9, 117.8, 117.7, 113.6, 90.5, 28.2, 20.4. HRMS (ESI-FIA-TOF) Calcd. for C₁₄H₁₄BrIN [M+H]⁺ requires m/z = 401.9354; Found: m/z = 401.9349.

4-Iodo-*N*-(**4-iodophenyl**)-**3-methylaniline** (**1j**): Brown viscous liquid (26 mg, 24%); IR (ν_{max}): 3389, 3021, 2914, 2856, 1604, 1577, 1535, 1511, 1482, 1320, 1266, 1178, 1109, 1065, 999, 854, 709, 567; ¹H NMR: δ 7.63 (d, J = 8.5 Hz, 1H), 7.53 (m, 2H), 6.94 (d, J = 2.7 Hz, 1H), 6.80 (d, m, 2H), 6.61 (dd, J = 8.5, 2.7 Hz, 1H), 5.61 (s, 1H), 2.36 (s, 3H); ¹³C NMR: δ 142.7, 142.4, 142.3, 139.5, 138.2 (2C), 119.9 (2C), 119.4, 117.4, 90.4, 82.9, 28.2. Anal. Calcd for C₁₃H₁₁I₂N: C, 35.89; H, 2.55; N, 3.22. Found: C, 35.82; H, 2.40; N, 3.06.

2-Bromo-*N***-(2-iodo-4-methylphenyl)-4-methylaniline (1k):** White solid (75 mg, 75%), m.p. = 53 °C; IR (υ_{max}): 3402, 3071, 3021, 1573, 1502, 1446, 1325, 1022, 811, 748, 665; ¹H NMR: δ 7.65 (s, 1H), 7.38 (s, 1H), 7.14 – 6.93 (m, 4H), 6.05 (s, 1H), 2.27 (s, 3H), 2.26 (s, 3H); ¹³C NMR: δ 140.6, 139.8, 138.4, 133.3, 133.2, 131.8, 129.7, 128.7, 118.4, 117.5, 113.6, 91.3, 20.3, 20.1. Anal. Calcd for C₁₄H₁₃BrIN: C, 41.82; H, 3.26; N, 3.48. Found: C, 42.09; H, 3.40; N, 3.58.

3-Chloro-4-iodo-*N***-p-tolylaniline (11):** Brown gummy solid (36 mg, 42%); IR (υ_{max}): 3400, 3050, 2898, 1587, 1510, 1481, 1469, 1443, 1317, 1222, 1051, 1028, 809, 745, 682; ¹H NMR: δ 7.59 (d, J = 8.7 Hz, 1H), 7.13 (d, J = 8.2 Hz, 2H), 7.09 (d, J = 2.6 Hz, 1H), 7.00 (d, J = 8.2 Hz, 2H), 6.59 (dd, J = 8.7, 2.6 Hz, 1H), 2.32 (s, 3H); ¹³C NMR: δ 145.8, 140.2, 138.9, 138.4, 132.9, 130.1 (2C), 120.6 (2C), 116.2, 116.0, 84.0, 20.8. Anal. Calcd for C₁₃H₁₁CIIN: C, 45.44; H, 3.23; N, 4.08. Found: C, 45.35; H, 3.34; N, 3.92.

N-(2-Chloro-4-methylphenyl)-3-iodobiphenyl-4-amine (1m): White solid (76 mg, 73%), m.p. = 49 °C; IR (v_{max}): 3401, 3052, 3018, 1601, 1587, 1501, 1489, 1469, 1443, 1317, 1222, 1051, 1038, 1002, 809, 745, 682; ¹H NMR: δ 8.05 (d, J = 2.1 Hz, 1H), 7.52 (m, 2H), 7.45 (dd, J = 8.5, 2.1 Hz, 1H), 7.41 (m, 2H), 7.31 (m, 1H), 7.25 (d, J = 1.8 Hz, 1H), 7.21 (d, J = 8.2 Hz, 1H), 7.19 (d, J = 8.5 Hz, 1H). 7.01 (dd, J = 8.2, 1.8 Hz, 1H), 6.23 (broad s, 1H), 2.31 (s, 3H); ¹³C NMR: δ 142.4, 139.3, 137.9, 136.3, 135.7, 132.6, 130.4, 128.8 (2C), 128.1, 127.7, 127.1, 126.6 (2C), 124.2, 119.1, 116.6, 90.2, 20.5. Anal. Calcd for C₁₃H₁₁ClIN: C, 54.37; H, 3.60; N, 3.34. Found: C, 54.35; H, 3.61; N, 3.18.

N-(2,4-Dichlorophenyl)-3-iodobiphenyl-4-amine (1n): White solid (77 mg, 70%), m.p. = 92 °C; IR (υ_{max}): 3400, 3052, 3017, 1591, 1587, 1501, 1489, 1469, 1443, 1317, 1222, 1051, 1038, 1002, 809, 748, 680; ¹H NMR: δ 8.08 (d, J = 1.9 Hz, 1H), 7.53 (d, J = 7.6

Hz, 2H), 7.50 (dd, J = 8.2, 1.9 Hz, 1H), 7.47 – 7.38 (m, 3H), 7.34 (t, J = 7.6 Hz, 1H), 7.26 (d, J = 8.2 Hz, 1H), 7.17 (d, J = 8.7 Hz, 1H), 7.13 (dd, J = 8.7, 2.0 Hz, 1H), 6.28 (s, 1H); ¹³C NMR: δ 141.2, 139.0, 138.2, 138.1, 137.2, 129.6, 128.9 (2C), 127.8, 127.6, 127.4, 126.6 (2C), 125.8, 123.5, 118.5, 117.8, 91.9. Anal. Calcd for C₁₈H₁₂Cl₂IN: C, 49.12; H, 2.75; N, 3.18. Found: C, 49.17; H, 2.66; N, 2.93.

Ethyl-5-(2-iodo-4-methylphenylamino)-3-methylbiphenyl-2-carboxylate (10): Yellow viscous liquid (61 mg, 52%); (ν_{max}): 3407, 3357, 3060, 2980, 2933, 1718, 1512, 1494, 1455, 1294 1176, 1129, 1046, 867, 770, 741, 695, 548; ¹H NMR: δ 7.64 (d, J = 1.4 Hz, 1H), 7.39 -7.28 (m, 5H), 7.24 (d, J = 8.2 Hz, 1H), 7.08 (dd, J = 8.2, 1.4 Hz, 1H), 6.82 (d, J = 2.0 Hz, 1H), 6.80 (d, J = 2.0 Hz, 1H), 3.99 (q, J = 7.2 Hz, 2H), 2.38 (s, 3H), 2.27 (s, 3H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR: δ 169.6, 144.1, 142.5, 141.4, 139.9, 139.8, 137.9, 133.8, 129.9, 128.1 (4C), 127.2, 125.6, 119.4, 117.2, 115.5, 91.8, 60.6, 20.2 (2C), 13.6. Anal. Calcd for C₂₃H₂₂INO₂: C, 58.61; H, 4.70; N, 2.97. Found: C, 58.27; H, 4.75; N, 2,89.

Ethyl-5-(4-iodophenylamino)-3-methylbiphenyl-2-carboxylate (**1p**): White solid (67 mg, 59%), m.p. = 144 °C; IR (υ_{max}): 3407, 3357, 3060, 2983, 2933, 1716, 1519, 1506, 1494, 1455, 1298 1176, 1128, 1043, 867, 773, 738, 694, 546; ¹H NMR: δ 7.55 (d, J = 8.6 Hz, 2H), 7,38 – 7.28 (m, 5H), 6.93 – 6.77 (m, 4H), 3.99 (q, J = 7.2 Hz, 2H), 2.37 (s, 3H),

0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR: δ 169.6, 143.5, 142.5, 141.8, 141.2, 138.2 (2C), 137.9, 128.2 (2C), 128.0 (2C), 127.3, 125.7, 120.7 (2C), 117.3, 115.6, 83.6, 60.7, 20.1, 13.6. Anal. Calcd for C₂₂H₂₀INO₂: C, 57.78; H, 4.41; N, 3.06. Found: C, 57.84; H, 4.45; N, 3.23.

Ethyl-2-(4-iodophenylamino)-6-methylbenzoate (**1q**): Yellow liquid (64 mg, 67%); IR (ν_{max}): 3366, 2979, 2931, 1716, 1683, 1519, 1506, 1494, 1465, 1297, 1251, 1228, 1174, 1112, 1078, 1002, 813, 775, 701, 549; ¹H NMR: δ 7.54 (m, 2H), 7.18 – 7.11 (m, 2H), 6.88 (m, 2H), 6.73 (dd, J = 6.7, 1.2 Hz, 1H), 4.38 (q, J = 7.2 Hz, 2H), 2.45 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H); ¹³C NMR: δ 169.2, 143.8, 142.0, 139.5, 138.1 (2C), 131.4, 123.0, 121.6 (2C), 119.1, 114.4, 83.7, 61.1, 22.4, 14.2. Anal. Calcd for C₁₆H₁₆INO₂: C, 50.41; H, 4.23; N, 3.67. Found: C, 50.70; H, 4.36; N, 3.72.

Ethyl-3-iodo-6-(4-iodophenylamino)-2-methylbenzoate (**1r**): White solid (17 mg, 17%), m.p. = 104 °C; IR (v_{max}): 3366, 2979, 2931, 1716, 1683, 1519, 1506, 1494, 1465, 1297, 1251, 1228, 1174, 1112, 1078, 1002, 813, 775, 701, 549; ¹H NMR: δ 7.68 (d, J = 8.8 Hz, 1H), 7.55 (m, 2H), 6.87 (d, J = 8.8 Hz, 1H), 6.83 (m, 2H), 4.39 (q, J = 7.2 Hz, 2H), 2.48 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C NMR: δ 168.5, 142.4, 141.5, 141.3, 140.4, 138.2(2C), 122.5, 121.4 (2C), 116.4, 91.4, 84.2, 61.7, 27.4, 14.1. Anal. Calcd for C₁₆H₁₅I₂NO₂: C, 37.90; H, 2.98; N, 2.76. Found: C, 38.08; H, 2.95; N, 2.94.

General Experimental procedure for the synthesis of *N*-phenylanilines:

In a screw capped vessel, a solution of 2-cyclohexenones (0.33 mmol), amines (0.25 mmol), iodine (32 mg, 50 mol%) and *p*-TsOH (4.7 mg, 10 mol%) in 0.50 ml of DMSO was heated at 90 $^{\circ}$ C for the required time to complete the reaction (TLC). After cooling, 30 ml of dichloromethane was added. The solution was washed with 10 ml of 20% sodium thiosulfate followed by 10 ml of brine. The organic extract was dried over sodium sulfate. Evaporation of organic layer and purification through short silica gel column chromatography (eluted with hexanes/ethylacetate) afforded the titled products.

2-Bromo-4-fluoro-*N***-phenylaniline** (2)⁴: (61 mg, 91%); ¹H NMR: δ 7.35 – 7.25 (m, 3H), 7.21 (dd, J = 9.0, 5.2 Hz, 1H), 7.06 (dd, J = 7.7, 0.8 Hz, 2H), 7.01 (td, J = 7.4, 0.8 Hz, 1H), 6.92 (m, 1H), 5.85 (broad s, 1H); ¹³C NMR: δ 156.5 (d, J_{C-F} = 241.6 Hz), 142.2, 137.9 (d, J_{C-F} = 2.8 Hz), 129.5 (2C), 122.3, 119.9 (J_{C-F} = 25.3 Hz), 119.3 (2C), 117.6 (d, J_{C-F} = 7.8 Hz), 115.0 (d, J_{C-F} = 21.9 Hz), 112.7 (d, J_{C-F} = 10.7 Hz).

2-Chloro-N-phenyl-5-(trifluoromethyl)aniline (**2a**)⁵: (59 mg, 87%); ¹H NMR: δ 7.47 – 7.41 (m, 2H), 7.43 (s, 1H), 7.31 (t, J = 7.7 Hz, 2H), 7.18 (d, J = 7.7 Hz, 2H), 7.13 (t, J = 7.7 Hz, 1H), 7.01 (d, J = 8.2 Hz, 1H), 6.24 (s, 1H); ¹³C NMR: δ 141.2, 140.2, 130.0 (q, J_{C-F} = 32.5 Hz), 130.1, 129.8 (2C), 124.0, 123.8 (q, J_{C-F} = 271.1 Hz), 121.4 (2C), 116.2 (q, J_{C-F} = 3.7 Hz), 110.9 (q, J_{C-F} = 3.7 Hz).

2-Bromo-N-phenylaniline (**2b**)⁶: (56 mg, 91%); ¹H NMR: δ 7.52 (dd, J = 7.6, 1.5 Hz, 1H), 7.31 (dd, J = 7.5, 7.4 Hz, 2H), 7.24 (dd, J = 8.2, 1.5 Hz, 1H), 7.19 – 7.11 (m, 3H), 7.03 (t, J = 7.4 Hz, 1H), 6.73 (ddd, J = 8.6, 8.2, 1.5 Hz, 1H), 6.08 (broad s, 1H); ¹³C NMR: δ 141.6, 141.4, 132.9, 129.4 (2C), 128.1, 122.7, 120.9, 120.3 (2C), 115.8, 112.2.

5-Chloro-2-iodo-*N***-phenylaniline (2c):** Yellow viscous liquid (72 mg, 88%); IR (υ_{max}): 3401, 3062, 3027, 1587, 1502, 1484, 1459, 1440, 1315, 1220, 1051, 1035, 1002, 809, 746, 688; ¹H NMR: δ 7.62 (d, J = 8.4 Hz, 1H), 7.34 (m, 2H), 7.17 – 7.04 (m, 4H), 6.57 (dd, J = 8.4, 2.4 Hz, 1H), 5.92 (broad s, 1H); ¹³C NMR: δ 145.4, 140.8, 139.9, 135.3, 129.7 (2C), 123.7, 121.3, 121.2 (2C), 114.5, 84.6. Anal. Calcd for C₁₂H₉ClIN: C, 43.73; H, 2.75; N, 4.25. Found: C, 43.52; H, 2.78; N, 4.20.

Ethyl 2-(phenylamino)benzoate (2d): Colourless liquid (54 mg, 89%); IR (v_{max}): 3337, 2981, 2911, 1703, 1678, 1590, 1529, 1339, 1279, 1174, 758, 695; ¹H NMR: δ 9.50 (broad s, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.42 – 7.21 (m, 6H), 7.08 (t, J = 7.3 Hz, 1H), 6.73 (t, J = 8.0 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 168.5, 147.9, 140.8, 133.9, 131.6, 129.3 (2C), 123.5, 122.4 (2C), 117.1, 114.1, 112.3, 60.6, 14.3. Anal. Calcd for C₁₅H₁₅NO₂: C, 74.67; H, 6.27; N, 5.81. Found: C, 74.65; H, 6.20; N, 5.72.

N-(2-Chloro-4-methylphenyl)biphenyl-4-amine (2e): Pale yellow solid (107 mg, 73%), mp = 81 °C; IR (v_{max}): 3407, 3056, 2919, 2856, 1606, 1523, 1409, 840, 740; ¹H NMR: δ 7.56 (d, J = 7.4 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.25 (d, J = 8.3 Hz, 1H), 7.20 (s, 1H), 7.15 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8.3 Hz, 1H), 6.01 (br s, 1H), 2.28 (s, 3H); ¹³C NMR: δ 141.8, 140.8, 137.2, 134.7, 131.1, 130.2, 128.8 (2C), 128.1, 128.0 (2C), 126.8, 126.6 (2C), 122.4, 119.0 (2C), 117.1, 20.4. Anal. Calcd for C₁₉H₁₆ClN: C, 77.68; H, 5.49; N, 4.77. Found: C, 77.50; H, 5.48; N, 4.69.

2-Iodo-*N*-*p*-tolylaniline (2f): Yellow liquid (59 mg, 76%); IR (υ_{max}): 3380, 3023, 291, 2861, 1587, 1513, 1450, 1309, 1008, 808, 744, 534; ¹H NMR: δ 7.74 (d, J = 7.9 Hz, 1H), 7.20 – 7.01 (m, 6H), 6.57 (t, J = 7.4 Hz, 1H), 2.33 (s, 3H); ¹³C NMR: δ 144.6, 139.4, 139.2, 129.9 (2C), 129.0, 121.2, 121.2 (2C), 114.9, 87.8, 20.8. Anal. Calcd for C₁₃H₁₂IN: C, 50.51; H, 3.91; N, 4.53. Found: C, 50.41; H, 3.90; N, 4.43.

2,4-Dichloro-*N***-p-tolylaniline (2g):** Colourless Liquid (47 mg, 75%); IR (υ_{max}): 3405, 3048, 1592, 1504, 1467, 1390, 1315, 1099, 1049, 808, 773, 740, 694, 549; ¹H NMR: δ 7.33 (s, 1H), 7.14 (d, J = 8.2 Hz, 2H), 7.06 – 7.01 (m, 4H), 5.96 (broad s, 1H), 2.33 (s, 3H); ¹³C NMR: δ 140.0, 138.2, 133.2, 130.1 (2C), 129.1, 127.5, 123.4, 121.6 (2C), 121.0,

115.2, 20.8. Anal. Calcd for C₁₃H₁₁C₁₂N: C, 61.93; H, 4.40; N, 5.56. Found: C, 61.78; H, 4.41; N, 5.45.

2-Bromo-*N***-**(**4-tert-butylphenyl**)**-4-fluoroaniline** (**2h**)**:** White solid (60 mg, 75%), m.p. = 95 °C; ¹H NMR: δ 7.32 (d, J = 8.5 Hz, 2H), 7.27 (dd, J = 7.9, 2.8 Hz, 1H), 7.16 (dd, J = 9.0, 5.2 Hz, 1H), 7.02 (d, J = 8.5 Hz, 2H), 6.89 (m, 1H), 1.31 (s, 9H); ¹³C NMR: δ 156.1 (d, J_{C-F} = 241.0 Hz), 145.6, 139.4, 138.4 (d, J_{C-F} = 2.4 Hz), 126.3 (2C), 119.7 (d, J_{C-F} = 25.5 Hz), 119.6 (2C), 116.7 (d, J_{C-F} = 8.0 Hz), 114.9 (d, J_{C-F} = 11.8 Hz), 111.8 (d, J_{C-F} = 10.9Hz), 34.3, 31.4 (2C). Anal. Calcd for C₁₆H₁₇BrFN: C, 59.64; H, 5.32; N, 4.35. Found: C, 59.52; H, 5.35; N, 4.41.

N-(4-Tert-butylphenyl)-2,4-dichloroaniline (2i): Colourless liquid (58 mg, 79%); IR (v_{max}): 3405, 3048, 1597, 1508, 1466, 1390, 1325, 1097, 1049, 818, 777, 741, 694; ¹H NMR: δ 7.37 – 7.31 (m, 3H), 7.14 – 7.02 (m, 4H), 5.96 (broad, 1H), 1.32 (s, 9H); ¹³C NMR: δ 146.4, 139.7, 138.2, 129.2, 127.5, 126.4 (2C), 123.5, 121.1, 120.8 (2C), 115.5, 34.3, 31.4 (3C). Anal. Calcd for C₁₆H₁₇C₁₂N: C, 65.32; H, 5.82; N, 4.76. Found: C, 65.43; H, 5.96; N, 4.80.

N-(2,4-Dichlorophenyl)biphenyl-4-amine (2j): White solid (58 mg, 74%), m.p. = 80 $^{\circ}$ C; ¹H NMR: δ 7.61 – 7.54 (m, 4H), 7.43 (m, 2H), 7.37 (d, J = 2.4 Hz, 1H), 7.33 (m, J = 7.6 Hz, 1H), 7.23 (d, J = 8.8 Hz, 1H), 7.19 (m, 2H), 7.11 (dd, J = 8.8, 2.4 Hz, 1H), 6.10 (broad s, 1H); ¹³C NMR: δ 140.5, 140.4, 139.0, 135.9, 129.3, 128.8 (2C), 128.2 (2C), 127.6, 126.9, 126.7 (2C), 124.4, 121.9, 120.4 (2C), 116.3. HRMS (ESI-FIA-TOF) Calcd. for C₁₈H₁₄Cl₂N [M+H]⁺ requires m/z = 314.0503; Found: m/z = 314.0503.

Ethyl-5-(2-chloro-4-methylphenylamino)-3-methylbiphenyl-2-carboxylate (2k): White solid (81 mg, 86%), m.p. = 95 °C; IR (ν_{max}): 3359, 2981, 2901, 1721, 1589, 1510, 1376, 1355, 1085, 1014, 833, 746, 547; ¹H NMR: δ 7.39 – 7.31 (m, 5H), 7.29 (d, J = 8.2 Hz, 1H), 6.99 (dd, J = 8.2, 1.4 Hz, 1H), 6.87 (two d, J = 2.0 Hz, 2H), 3.99 (q, J = 7.2 Hz, 2H), 2.39 (s, 3H), 2.28 (s, 3H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR: δ 169.6, 143.6, 142.5, 141.4, 137.9, 136.1, 132.2, 130.3, 128.1 (3C), 128.1 (2C), 127.3, 125.9, 123.6, 118.8, 117.7, 115.9, 60.7, 20.5, 20.2, 13.6. Anal. Calcd for C₂₃H₂₂ClNO₂: C, 72.72; H, 5.84; N, 3.69. Found: C, 72.54; H,5.88; N,3.52.

Ethyl-5-{2-chloro-4-(trifluoromethyl)phenylamino}-3-methylbiphenyl-2-carboxylate (**2l):** Yellow viscous liquid (86 mg, 79%); IR (υ_{max}): 3407, 3357, 3060, 2983, 2933, 1714, 1594, 1523, 1436, 1332, 1268, 1170, 1128, 1081, 863, 771, 738, 701, 647; ¹H NMR: δ 7.60 (d, J = 1.5 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.41 – 7.31 (m, 5H), 7.07 (dd, J = 8.2, 1.5 Hz, 1H), 7.00 (d, J = 2.4 Hz, 1H), 6.99 (d, J = 2.4 Hz, 1H), 6.28 (s, 1H), 4.04 (q, J = 7.8 Hz, 2H), 2.42 (s, 3H), 0.94 (t, J = 7.8 Hz, 3H); ¹³C NMR: δ 169.3, 142.6, 141.3, 140.7, 140.1, 138.1, 130.3, 130.1 (q, J_{C-F} = 32.7 Hz), 128.3 (2C), 128.2, 128.1 (2C), 127.6, 125.1 (broad), 124.0 (q, J_{C-F} = 270.5 Hz), 120.2, 118.6, 117.2 (q, J_{C-F} = 3.9 Hz), 112.6 (q, J_{C-F} = 3.9 Hz), 60.9, 20.0, 13.6. Anal. Calcd for C₂₃H₁₉ClF₃NO₂: C, 63.67; H, 4.41; N, 3.23. Found: C, 63.78; H, 4.44; N, 3.05.

Ethyl-3-methyl-5-(phenylamino)biphenyl-2-carboxylate (**2m**): White solid (54 mg, 65%), m.p. = 125 °C; IR (v_{max}): 3360, 2977, 2931, 2902, 1716, 1581, 1506, 1465, 1299, 1251, 1228, 1112, 1078, 813, 775; ¹H NMR: δ 7.40 – 7.26 (m, 7H), 7.16 (d, J = 7.7 Hz, 2H), 7.00 (t, J = 7.7 Hz, 1H), 6.87 (s, 2H), 3.99 (q, J = 7.1 Hz, 2H), 2.38 (s, 3H), 0.89 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 169.6, 144.1, 142.5, 141.6, 141.5, 137.9, 129.5 (2C), 128.2 (2C), 128.1 (2C), 127.2, 125.5, 122.4, 119.5 (2C), 117.0, 115.3, 60.7, 20.2, 13.6. Anal. Calcd for C₂₂H₂₁NO₂: C, 79.73; H, 6.39; N, 4.23. Found: C, 79.59; H, 6.18; N, 4.30.

Ethyl-5-(2-bromo-4-methylphenylamino)-4'-chloro-3-methylbiphenyl-2-carboxylate (2n): Yellow viscous liquid (99 mg, 87%); IR (υ_{max}): 3359, 2981, 2821, 1720, 1579, 1509, 1376, 1353, 1085, 1014, 831, 736, 547; ¹H NMR: δ 7.39 (d, J = 1.5 Hz, 1H), 7.33 (m, 2H), 7.29 – 7.23 (m, 3H), 7.04 (dd, J = 8.3, 1.5 Hz, 1H), 6.87 (d, J = 2.1 Hz, 1H), 6.79 (d, J = 2.1 Hz, 1H), 4.03 (q, J = 7.2 Hz, 2H), 2.37 (s, 3H), 2.28 (s, 3H), 0.97 (t, J =

7.2 Hz, 3H); ¹³C NMR: δ 169.3, 143.9, 141.2, 139.8, 138.1, 137.1, 133.5, 133.4, 133.0, 129.5 (2C), 128.9, 128.3 (2C), 125.7, 119.3, 117.8, 115.6, 114.7, 60.8, 20.4, 20.2, 13.7. HRMS (ESI-FIA-TOF) Calcd. for C₂₃H₂₂BrClNO₂ [M+H]⁺ requires m/z = 458.0522; Found: m/z = 458.0516.

Ethyl-4'-chloro-5-(2,4-dichlorophenylamino)-3-methylbiphenyl-2-carboxylate (20): Yellow viscous liquid (90 mg, 83%); IR (ν_{max}): 3407, 3357, 3060, 2983, 2933, 1716, 1590, 1523, 1437, 1332, 1269, 1176, 1128, 1043, 867, 773, 738, 694, 647; ¹H NMR: δ 7.38 (d, J = 2.4 Hz, 1H), 7.34 (m, 2H), 7.30 – 7.24 (m, 3H), 7.13 (dd, J = 8.6, 2.4 Hz, 1H), 6.92 (d, J = 2.0 Hz, 1H), 6.85 (d, J = 2.0 Hz, 1H), 4.05 (q, J = 7.2 Hz, 2H), 2.39 (s, 3H), 0.99 (t, J = 7.2 Hz, 3H); ¹³C NMR: δ 169.2, 142.5, 141.2, 139.4, 138.2, 137.8, 133.6, 129.6, 129.5 (2C), 128.4 (2C), 127.7, 126.9, 125.8, 123.4, 119.1, 118.0, 116.9, 60.9, 20.1, 13.7. Anal. Calcd for C₂₂H₁₈C₁₃NO₂: C, 60.78; H, 4.17; N, 3.22. Found: C, 60.62; H,4.18; N,3.30.

Ethyl-2-amino-3,5-diiodobenzoate (3): Yellow solid (72 mg, 69%), m.p. = 102 °C; ¹H NMR: δ 8.15 (d, J = 2.4 Hz, 1H), 8.02 (d, J = 2.4 Hz, 1H), 6.44 (broad s, 1H), 4.34 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 166.2, 150.5, 149.2, 139.9, 112.9, 87.1, 75.7, 61.2, 14.3. Anal. Calcd for C₉H₉I₂NO₂: C, 25.92; H, 2.18; N, 3.36. Found: C, 25.95; H, 2.07; N, 3.44.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Ethyl-5-iodo-2-(phenylamino)benzoate (**4**): Yellow gummy solid (14 mg, 15%); IR (v_{max}): 3364, 2980, 2930, 1714, 1684, 1519, 1501, 1498, 1465, 1292, 1250, 1228, 1176, 1111, 1075, 1008, 813, 775, 701, 551; ¹H NMR: δ 9.48 (s, 1H), 8.23 (d, J = 3.5 Hz, 1H), 7.51 (dd, J = 8.8, 3.5 Hz, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.21 (d, J = 7.6 Hz, 2H), 7.12 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 8.8 Hz, 1H), 4.36 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H); ¹³C NMR: δ 167.3, 147.6, 142.2, 140.1, 139.8, 129.5 (2C), 124.2, 122.9 (2C), 116.2, 114.2, 76.9, 61.0, 14.3. Anal. Calcd for C₁₅H₁₄INO₂: C, 49.07; H, 3.84; N, 3.81. Found: C, 49.05; H, 3.67; N, 3.76.

2-Chloro-N-phenylpyridin-3-amine (**7**)⁷. White solid (84 mg, 82%): mp = 71-75 °C; ¹H NMR: δ 7.87 (dd, J = 4.4, 1.6 Hz, 1H), 7.49 (dd, J = 8.0, 1.6 Hz, 1H), 7.36 (t, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.14 – 7.06 (m, 2H), 6.14 (br s, 1H); ¹³C NMR: δ 140.0, 139.1, 138.5, 137.7, 129.7 (2C), 123.9, 123.1, 121.2, 121.1 (2C).

2-(4-Bromophenylthio)pyridin-3-amine (8): Brownish white solid - crude; ¹H NMR: δ 8.02 (dd, J = 4.4, 1.6 Hz, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 7.14 –

7.06 (m, 2H), 4.11 (broad s, 1H); ¹³C NMR: δ 144.1, 140.4, 138.3, 133.2, 132.2 (2C), 131.0 (2C), 124.5, 122.3, 120.7.

2-(4-Bromophenylthio)-*N*-**phenylpyridin-3-amine (9):** Yellowish white solid (59 mg, 67%), m.p. = 77-80 °C; IR (υ_{max}): 3359, 3248, 3060, 1567, 1493, 1313, 1070, 1006, 809, 734; ¹H NMR: δ 8.07 (dd, J = 4.5, 1.4 Hz, 1H), 7.49 (dd, J = 8.2, 1.4 Hz, 1H), 7.42 (m, 2H), 7.32 (m, 2H), 7.24 (m, 2H), 7.13 – 7.03 (m, 4H), 6.35 (s, 1H); ¹³C NMR: δ 142.2, 141.3, 141.2, 140.6, 132.3 (2C), 132.1 (2C), 129.6 (2C), 123.6, 123.4, 121.8, 121.4, 120.6 (2C). Anal. Calcd for C₁₇H₁₃BrN₂S: C, 57.15; H, 3.67; N, 7.84. Found: C, 57.38; H, 3.71; N, 7.96.

2-(4-Bromophenylthio)-*N*-(**4-iodophenyl**)**pyridin-3-amine (10):** Yellow gummy solid (67 mg, 56%); IR (v_{max}): 3359, 3248, 3060, 1567, 1493, 1313, 1070, 1006, 809, 734; ¹H NMR: δ 8.07 (dd, J = 4.6, 1.5 Hz, 1H), 7.59 (d, J = 8.7, 2H), 7.42 (m, 2H), 7.49 (dd, J = 8.2, 1.5 Hz, 1H), 7.43 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 7.12 (dd, J = 8.2, 4.6 Hz, 1H), 6.82 (d, J = 8.7, 2H), 6.26 (broad s, 1H); ¹³C NMR: δ 143.3, 141.7, 140.6, 140.1, 138.5 (2C), 132.7 (2C), 132.4 (2C), 131.5, 123.5, 122.9, 121.9, 121.8 (2C), 85.6.

Anal. Calcd for C₁₇H₁₂BrIN₂S: C, 42.26; H, 2.50; N, 5.80. Found: C,42.22; H,2.44; N, 5.68.

References:

- B.-D. Chong, Y.-I. Ji, S.-S. Oh, J.-D. Yang, W. Baik and S. Koo, J. Org. Chem., 1997, 62, 9323.
- 2. M. Uyanik, M. Akakura and K. Ishihara, J. Am. Chem. Soc., 2009, 131, 251.
- D. B. Ramachary, K. Ramakumar and V. V. Narayana, J. Org. Chem., 2007, 72, 1458.
- N. Barbero, M. Carril, R. SanMartin and E. Dominguez, *Tetrahedron*, 2008, 64, 7283.
- 5. L.-C. Campeau, P. Thansandote and K. Fagnou, Org. Lett., 2005, 7, 1857.
- M. E. Buden, V. A. Vaillard, E. M. Sandra and R. A. Rossi, J. Org. Chem., 2009, 74, 4490.
- 7. J. T. Kuethe, A. Wong and I. W. Davies, J. Org. Chem., 2004, 69, 7752.

