Supplementary Information

Contents

1. General S-2
2. Preparationof 5a S-2
3. Radical reaction of 5 a : General procedure for the redical cyclization reaction S-3
4. Preparation of5b S-4
5. Preparation of 5 c S-5
6. Radical reaction of 5 c S-7
7. Preparation of 5 d S-7
8. Radical reaction of 5 d S-8
9. Preparation of 5 e S-8
10. Radical reaction of 5 e S-9
11. Preparation of $5 f$ S-9
12. Radical reaction of $\mathbf{5 f}$ S-10
13. Preparatio of radical precursor 13 S-11
14. Radical cyclization of 13: Transformation to [4-Benzyloxymethyl-3-(tert-butyldimethylsiloxy)-2,2-difluorocyclobutyl]-acetic acid methyl ester (14) (Table 2, entry5) S-14
15. Synthesis of 4 S-15
16. Table SI-1 S-18
17. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S-19

1. General

NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$) spectra were recorded with a Jeol JNMAL-400 or Jeol JNM ECA-500 instruments (${ }^{1} \mathrm{H}, 500$ or $\left.400 \mathrm{MHz},{ }^{13} \mathrm{C} .125 \mathrm{MHz},{ }^{19} \mathrm{~F} .470 \mathrm{MHz}\right)$. Chemical sifts are reported relative to $\mathrm{Me}_{4} \mathrm{Si}$, except for fluorine-containing compounds where CFCl_{3} was used as an internal standard. Mass spectra (MS) were taken in FAB mode with m-nitrobenzyl alcohol as a matrix. Column chromatography was carried out on silica gel (Micro Bead Silica Gel PSQ 100B, Fuji Silysia Chemical Ltd.) or neutral silica gel (Silica Gel 60N, Kanto Chemical Co., Inc.). Thin-layer chromatography (TLC) was performed on precoated silica gel plate F_{254}. THF was distilled from benzophenone ketyl.

2. Preparation of 5a

4-Bromo-3-(tert-butyldiphenylsilanyloxy)-4,4-difluoro-butyric acid ethyl ester (S2)
To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(27 \mathrm{~mL})$ solution of $\mathbf{S 1}^{1}(4.56 \mathrm{~g}, 18.4 \mathrm{mmol})$ was added imidazole ($2.13 \mathrm{~g}, 31.3 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 20 min stirring of the resulting mixture, $\operatorname{TBDPSCl}(4.79 \mathrm{~mL}, 18.4 \mathrm{mmol})$ was dropwise added, then allowed to rt for 24 h . The mixture was partitioned between aq. saturated NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=10 / 1$) of the organic layer gave $\mathbf{S 2}$ (7.77 $\mathrm{g}, 87 \%)$ as an oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.67-2.76(\mathrm{~m}$, 2 H), 3.83-3.90 (m, 2H), 4.35-4.41 (m, 1H), 7.25-7.48 (m, 6H), 7.61-7.63 (m, 2H), 6.69-7.75 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,19.4,26.9,38.9,61.0,74.2\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=28.6\right.$ and 22.4 Hz), 124.5 $\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=312.3\right.$ and 308.7 Hz), 127.5, 127.6, 129.8, 130.1, 131.5, 132.8, 135.8, 136.3, 169.1. HRFAB-MS $(\mathrm{m} / \mathrm{z}) 485.0959\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BrF}_{2} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}+\mathrm{H}\right) 485.0959$.

6-Bromo-5-(tert-butyldiphenylsilanyloxy)-6,6-difluoro-hex-2-enoic acid methyl ester (S3)

To a stirred solution $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ of $\mathbf{S 2}(3.8 \mathrm{~g}, 7.83 \mathrm{mmol})$ was dropwise added DIBAL-H (1.0 mol.L in toluene, $15.7 \mathrm{~mL}, 15.7 \mathrm{mmol}$) over 3 min at $-80^{\circ} \mathrm{C}$. The resulting mixture was stirred further 30 min at same temperature. To the mixture was added aq. saturated Rochelle salt (ca. 100 mL) then allowed to warm to rt. The mixture was filtrated through a celite pad, the filtrate was partitioned between brine and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting organic layer was dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$ then evaporated all of volatiles. The residue was treated with $\mathrm{MeCN}(150 \mathrm{~mL})$ and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(7.85 \mathrm{~g}, 23.5 \mathrm{mmol})$. The mixture was stirred further 14 h at rt . The mixture was partitioned between brine and AcOEt. Column chromatography on silica gel (hexane/AcOEt $=10 / 1$) of the organic layer gave $\mathbf{S 3}(2.77 \mathrm{~g}$, 71%) as an oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 2.48-2.58(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.89$ $(\mathrm{m} 1 \mathrm{H}), 5.67(\mathrm{dt}, J=15.6$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dt}, J=15.6$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 6 \mathrm{H})$, 7.66-7.68 (m, 4H) ; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.5,26.8,36.1,51.4,76.4\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=26.4\right.$ and 21.5 Hz), 124.2, 124.7 (dd, $J_{\mathrm{C}, \mathrm{F}}=312.3$, and 308.8 Hz), 127.7, 127.8, 130.1, 130.2, 131.7, 132.4, 136.0, 136.1, 142.3, 166.1. HRFAB-MS $(\mathrm{m} / \mathrm{z}) 497.0983\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrF}_{2} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}+\mathrm{H}\right) 497.0959$.

Benzoic acid 1-(bromodifluoromethyl)-4-methoxycarbonyl-but-3-enyl ester (5a)

To a THF (30 mL) solution of $\mathbf{S 3}(1.39 \mathrm{~g}, 2.79 \mathrm{mmol})$ was added $\mathrm{AcOH}(176 \mu \mathrm{~L}, 3.07 \mathrm{mmol})$ and TBAF ($1.0 \mathrm{~mol} / \mathrm{L}$ solution in THF, $3.07 \mathrm{~mL}, 3.07 \mathrm{mmol}$). The resulting mixture was stirred for 20 h at rt. The mixture was partitioned between aq. saturated NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After evaporation of all of volatiles, the residue was roughly purified by column chromatography on silica gel (hexane $/ \mathrm{AcOEt}=$ 4.1) gave aclude alcohol. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, then treated with $i-\mathrm{Pr}_{2} \mathrm{NEt}$
($486 \mu \mathrm{~L}, 2.77 \mathrm{mmol}$), DMAP ($342 \mathrm{mg}, 2.79 \mathrm{mmol}$) and $\mathrm{BzCl}(392 \mu \mathrm{~L}, 3.35 \mathrm{mmol})$. The mixture was stirred for 20 h at rt . The resulting mixture was partitioned between aq. saturated NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=3 / 1$) of the organic layer gave $\mathbf{5 a}(784 \mathrm{mg}, 77 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.77-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.95(\mathrm{~m},!\mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 5.67(\mathrm{ddd}$, $J=16.8,8.4$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{dt}, J=15.6$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dt}, J=15.6$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47-7.51 (m, 2H), 7.60-7.65 (m, 1H), 8.07-8.09 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.4,51.6$, $74.0\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=31.1 \mathrm{~Hz}\right), 121.0\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=310.0 \mathrm{~Hz}\right), 125.1,128.4,128.6$, 130.1, 133.9, 140.4, 164.6, 165.9. HRFAB-MS $(\mathrm{m} / \mathrm{z}) 363.0073\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrF}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}+\mathrm{H}\right) 363.0044$.

1) Jagodzinska, M.; Huguenot, F.; Zanda, M. Tetrahedron 2007, 63, 2042.

3. Radical reaction of 5a: General procedure for the redical cyclization reaction

To a refluxing solution of $5(337 \mathrm{mg}, 0.93 \mathrm{mmol})$ in toluene $(9 \mathrm{~mL})$ was dropwise added a toluene $(9$ mL) solution of $\mathrm{Bu}_{3} \mathrm{SnH}(500 \mu \mathrm{~L}, 1.86 \mathrm{nnol})$ and $\operatorname{AIBN}(31 \mathrm{mg}, 0.19 \mathrm{mmol})$ over 4 h . The resulting mixture was stirred further 1 h at same temperature. After evaporation of all of volatiles, the residue was roughly purified by column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=3 / 1$). The crude mixture was further purified by preparative TLC (hexane/ $\mathrm{AcOEt}=8 / 1$). This gave a mixture of $7 \mathbf{a}$ and trans- $\mathbf{6 a}$ ($102 \mathrm{mg}, 39 \%$,, the ratio of $\mathbf{7 a} /$ trans- $\mathbf{6 a}=100: 22$, based on the integration of ${ }^{1} \mathrm{H}$ NMR) and cis- $\mathbf{6 a}$ (57 $\mathrm{mg}, 22 \%$, as an oil).
Physical data for cis-6a: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.67-1.75(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.79(\mathrm{~m}, 3 \mathrm{H})$, 2.87-2.99 (m, 1H), 3.71 ($\mathrm{s}, 1 \mathrm{H}), 5.35-5.44(\mathrm{~m}, 1 \mathrm{H}), ~ 7.44-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.61(\mathrm{~m}, 1 \mathrm{H}), 8.04-8.08(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=19.1 \mathrm{~Hz}\right), 31.8\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=7.3 \mathrm{~Hz}\right) .36 .5\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=21.5\right.$ $\mathrm{Hz}), 51.9,70.3\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=27.6\right.$ and 18.0 Hz$), 119.5\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=298.0\right.$ and 278.9 Hz$), 128.5,128.9,129.9$, 133.5, 165.1, 171.3. HRFAB-MS $(\mathrm{m} / \mathrm{z}) 285.0925\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}+\mathrm{H}\right) 285.0938$.

NOE experiments of cis-6a

Physical data for trans-6a: The physical data for trans-6a is illustrated at later stage.
Partial data for 7a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.72-2.84(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 5.33-5.43(\mathrm{~m}, 1 \mathrm{H})$, 5.95 (ddd, $J_{\mathrm{C}, \mathrm{F}}=57.6$ and $54.4 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.99 (dt, $J=15.6$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.94 (dt, $J=$ 15.6 and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.63(\mathrm{~m}, 1 \mathrm{H}), 8.04-8.09(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 30.2,51.6,70.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=25.1 \mathrm{~Hz}\right), 113.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=246.6 \mathrm{~Hz}\right), 124.8,128.6,128.8,129.9$, 133.7, 141.4, 165.3, 166.1. FAB-MS $(m / z) 285\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

4. Preparation of 5b

Benzoic acid 1-(ethoxycarbonyl-difluoromethyl)-3-tributylstannyl-allyl ester (S5)
To a THF (7 mL) suspension of activated $\mathrm{Zn}(1.38 \mathrm{~g})$ was added $\mathrm{TMSCl}(190 \mu \mathrm{~L}, 1.38 \mathrm{mmol})$. The resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 15 min , then cooled to rt . To the mixture was added THF (30 $\mathrm{mL})$ and $\mathrm{BrF}_{2} \mathrm{CCO}_{2} \mathrm{Et}(2.72 \mathrm{~mL}, 21.2 \mathrm{mmol})$ then heated at $60{ }^{\circ} \mathrm{C}$ for 3 min . A vigorous reflux was observed during this period. The resulting Zn enolate solution was quickly transferred to a THF (30 $\mathrm{mL})$ solution of $\mathbf{S 4 ^ { 2 }}(3.66 \mathrm{~g}, 10.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, then the mixture was stirred at rt for 2 h . The mixture was partitioned between aq. saturated NaHCO_{3} and AcOEt . Flush column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=3 / 1$) of the organic layer gave a crude alcohol (ca. 4.86 g). To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ solution of above alcohol was added $\mathrm{Et}_{3} \mathrm{~N}(2.22 \mathrm{~mL}, 15.9 \mathrm{mmol})$ and $\mathrm{BzCl}(1.49 \mathrm{~mL}, 12.7 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 25 h stirring of the resulting mixture at rt , this was partitioned between aq. saturated NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=11 / 1$) of the organic layer gave $\mathbf{S 5}$ $\left(5.28 \mathrm{~g}, 86 \%\right.$ for two steps) as an oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.82-0.98(\mathrm{~m}, 15 \mathrm{H}), 1.22-1.33(\mathrm{~m}$, $9 \mathrm{H}), 1.54-1.57(\mathrm{~m}, 6 \mathrm{H}), 4.25-4.33(\mathrm{~m}, 2 \mathrm{H}), 5.89-6.12(\mathrm{~m}, 2 \mathrm{H}), 6.54-6.74(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.58-7.62 (m, 1H), 8.01-8.08 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.6,13.6,13.9,27.2,29.0,63.1$, $75.0\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=29.8\right.$ and 25.0 Hz), $112.9\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=256.3\right.$ and 252.8 Hz), 128.6, 129.1, 130.0, 133.5, $135.3,140.3,162.5\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=31.0 \mathrm{~Hz}\right)$, 164.5. HRFAB-MS $(\mathrm{m} / \mathrm{z}) 575.2012\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{26} \mathrm{H}_{41}$ $\mathrm{F}_{2} \mathrm{O}_{4} \mathrm{Sn}\left(\mathrm{M}^{+}+\mathrm{H}\right) 575.1995$.

Benzoic acid 1-[2-(tert-butyldimethylsiloxy)-1,1-difluoroethyl]-3-iodoallyl ester (S6)

To a $\mathrm{MeOH}(50 \mathrm{~mL})$ solution of $\mathbf{S 5}(5.11 \mathrm{~g}, 8.9 \mathrm{mmol})$ and $\mathrm{AcOH}(1.53 \mathrm{~mL}, 26.7 \mathrm{mmol})$ was portionwise added $\mathrm{NaBH}_{4}(4.04 \mathrm{~g}, 106.8 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was partitioned between aq. saturated NaHCO_{3} and CHCl_{3}. After evaporation of all of volatiles of the organic layer, crude alcohol was obtained. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ solution of above alcohol was added DMAP ($437 \mathrm{mg}, 3.56 \mathrm{mmol}$), imidazole ($727 \mathrm{mg}, 10.68$ $\mathrm{mmol})$ and $\mathrm{TBSCl}(1.61 \mathrm{~g}, 10.68 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$. The resulting mixture
 was stirred at $0{ }^{\circ} \mathrm{C}$ for 13 h . The mixture was partitioned between aq. saturated NaHCO_{3} and CHCl_{3}. After evaporation of all of volatiles of the organic layer, crude silyl ether was obtained. This was treated with THF (100 mL) and $\mathrm{I}_{2}(4.52 \mathrm{~g}, 17.8 \mathrm{mmol})$. After 1 h stirring at rt of the resulting mixture, this was partitioned between aq. saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, aq. saturated NaHCO_{3} and AcOEt. Column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=15 / 1$) of the organic layer gave $\mathbf{S 6}$ $\left(2.83 \mathrm{~g}, 66 \%\right.$ for three steps) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}$, 9 H), $3.80-3.93(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{ddd}, J=14.8,8.8$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=14.8$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.78(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.61(\mathrm{~m}, 1 \mathrm{H}), 8.04-8.06(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.7,18.1,25.6,62.4\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=34.6\right.$ and 31.0 Hz), $72.6\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=32.4\right.$ and 25.1 Hz), $84.9,119.2\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=251.3\right.$ and 247.8 Hz$), 128.6,129.1,129.8,133.6,136.2$, 164.4. HRFAB-MS $(m / z) 483.0680\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{IO}_{3} \mathrm{Si}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 483.0664.

Benzoic acid 1-(1,1-difluoro-2-phenoxythiocarbonyloxyethyl)-3-methoxycarbonylallyl ester (5b)

A mixture of $\mathbf{S 6}(2.65 \mathrm{~g}, 5.52 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(285 \mathrm{mg}, 1.1 \mathrm{mmol})$ and $i-\operatorname{Pr} \mathrm{Pr}_{2} \mathrm{NEt}(1.01 \mathrm{~mL}, 5.8$ $\mathrm{mmol})$ in $\mathrm{MeOH}(40 \mathrm{~mL})$ was heated at $50{ }^{\circ} \mathrm{C}$ under positive pressure of $\mathrm{CO}(1 \mathrm{~atm})$. After 1.5 h heating of the resulting mixture, this was filtrated through a celite pad, then the filtrate was partitioned between aq. saturated NaHCO_{3} and AcOEt. Evaporation of the organic layer gave a crude methyl acrylate (ca. 2.21 g). To a mixture of above acrylate and AcOH ($379 \mu \mathrm{~L}, \mathrm{mmol}$) in THF (40 mL) was added $\mathrm{Bu}_{4} \mathrm{NF}$ ($1.0 \mathrm{~mol} / \mathrm{L}$ in THF, $6.62 \mathrm{~mL}, 6.62 \mathrm{mmol}$). The resulting mixture was stirred at rt for 3.5 h . This was partitioned bwtween aq. saturated NaHCO_{3} and AcOEt. Evaporation of the organic layer gave a crude alcohol. At this time, benzoyl migration was partially occurred to give an inseparable mixture (ca. 1:1). Therefore, this was used for next reaction without further purification. The mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, then treated with pyridine ($893 \mu \mathrm{~L}, 11.04 \mathrm{mmol}$) and $\mathrm{PhOC}(\mathrm{S}) \mathrm{Cl}$ $(764 \mu \mathrm{~L}, 5.52 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 1.5 h stirring of the resulting mixture, this was partitioned between aq. saturated NaHCO_{3}
and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography on silica gel (hexane/AcOEt $=3 / 1$) gave a mixture of thiocarbonate 5b and $\mathbf{S 7}$ (ca. $1: 1$ mixture, $760 \mathrm{mg}, 32 \%$ for three steps). Preparative TLC (hexane/AcOEt $=17 / 1,8$ times evolution) gave a pure $\mathbf{5 b}$ as an oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ $3.74(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.98(\mathrm{~m}, 2 \mathrm{H}), 6.06-6.14(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=15.6$ and $1,6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=$ 15.6 and $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.53(\mathrm{~m}, 2 \mathrm{H})$, 7.63-7.67 (m, 1H), 8.10-8.12 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 52.3,69.9\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=34.6\right.$ and $29.8 \mathrm{~Hz}), 70.9\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=32.2\right.$ and 26.2 Hz$), 118.5\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=248.0 \mathrm{~Hz}\right), 122.0,126.7,127.3,128.8$, $129.2,130.1,130.4,134.5,136.7,153.9,164.6,165.6,194.5$. HRFAB-MS $(m / z) 437.0861\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{O}_{6} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right) 437.0870$.
2) Senapati, B. K.; Gao, L.; Lee, S. II; Hwang, G-S.; Ryu, D. H. Org. Lett. 2010, 12, 5088.

5. Preparation of 5c

2,2-Difluoro-3-hydroxy-4-phenylselenenyl-butyric acid ethyl ester (S9)

To a stirring mixture of $\mathrm{Cu}(\mathrm{OAc})_{2}(106 \mathrm{mg}, 0.59 \mathrm{mmol})$ in $\mathrm{AcOH}(20 \mathrm{~mL})$ was added activated Zn powder (1.9 g) at $110{ }^{\circ} \mathrm{C}$. The resulting suspension was vigorously stirred further 3 min at same temperature. After decantation of most of AcOH , the crude $\mathrm{Zn} / \mathrm{Cu}$ couple was sequentially washed by $\mathrm{AcOH}(20 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. To a THF (70 mL) suspension of above wet $\mathrm{Zn} / \mathrm{Cu}$ couple was carefully added ethyl bromodifluoroacetate ($3.0 \mathrm{~mL}, 23.4 \mathrm{mmol}$) at $80^{\circ} \mathrm{C}$, then refluxed further 5 min . The resulting zinc enolate was cooled at $0{ }^{\circ} \mathrm{C}$. To this, a THF (20 mL) solution of $\left.\mathbf{S 8}{ }^{3}\right)(2.9 \mathrm{~g}, 14.6$ mmol) was dropwise added. The resulting mixture was stirred at rt further 1 h . After filtration of the mixture through a celite pad, the filtrate was partitioned between aq. saturated NaHCO_{3} and AcOEt. Column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=3 / 1$) of the organic layer gave $\mathbf{S 9}(2.98 \mathrm{~g}, 63 \%)$
as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.79(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=12.6$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=12.6$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-2.18(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.29-7.31 (m, 3H), 7.53-7.56 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,28.2,63.3,70.3\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=\right.$ 30.0 and 25.2 Hz), $113.8\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=259.1\right.$ and 254.3 Hz), 127.8, 128.2, 129.4, 133.2, $163.0\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=\right.$ $32.2 \mathrm{~Hz})$. FAB-MS $(\mathrm{m} / \mathrm{z}) 324\left(\mathrm{M}^{+}+\mathrm{H}\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Se} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 43.39$; $\mathrm{H}, 4.55$. Found: C, 43.79; H, 4.24.

2,2-Difluoro-3-hydroxy- N-methoxy- N-methyl-4-phenylselenenyl butyramide (S10)

To a THF (150 mL) suspension of N, O-dimethylhydroxylamine hydrochloride ($8.52 \mathrm{~g}, 81.4 \mathrm{mmol}$, previously dried by $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum condition for 2 days) was dropwise added $\mathrm{BuLi}(2.69 \mathrm{~mol} / \mathrm{L}$ in hexane, $65.0 \mathrm{~mL}, 174.7 \mathrm{mmol}$) at $-80{ }^{\circ} \mathrm{C}$. The resulting solution was allowed to rt for 5 min . To the mixture was added $\mathbf{S 9}(7.06 \mathrm{~g}, 21.8 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $-80^{\circ} \mathrm{C}$ then rinsed by using further THF $(20 \mathrm{~mL})$. After 1 h stirring of the mixture, this was partitioned between aq. saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and AcOEt. Column chromatography on silica gel (hexane/AcOEt $=1 / 1$) of the organic layer gave $\mathbf{S 1 0}(5.24 \mathrm{~g}$, 71%) as an oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.06-3.17(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.26(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, 4.30-4.38 (m, 1H), 7.21-7.31 (m, 3H), 7.51-7.56 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.7,33.1$, $62.2,71.2\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=28.6\right.$ and 25.1 Hz$), 115.3\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=263.3\right.$ and 259.6 Hz$), 127.5,129.4,131.1$, 133.1, 163.0. HRFAB-MS $(m / z) 340.0293\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{Se}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 340.0263.

4,4-Difluoro-5-hydroxy-6-phenylselenohex-2-enoic acid methyl ester (S11)

To a THF (90 mL) solution of $\mathbf{S 1 0}(3.75 \mathrm{~g}, 11.09 \mathrm{mmol})$ was dropwise added DIBAL-H $(1.0 \mathrm{~mol} / \mathrm{L}$ in toluene, $44.4 \mathrm{~mL}, 44.4 \mathrm{mmol}$) at $-80{ }^{\circ} \mathrm{C}$. After 15 min stirring of the resulting mixture, this was allowed to rt for 5 min . The mixture was partitioned between 0.5 N HCl and AcOEt. The organic layer was filtrated through a celite pad then the filtrate was evaporated. This gave a crude aldehyde, which was used to the next step without further purification. An $\mathrm{MeCN}(90 \mathrm{~mL})$ solution of the aldehyde was treated with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(11.1 \mathrm{~g}, 33.3 \mathrm{mmol})$. The resulting suspension was stirred at rt for 15 h . This was partitioned between brine and AcOEt. Column chromatography on silica gel (hexane/AcOEt $=4 / 1)$ of the organic layer gave $\mathbf{S 1 1}(2.07 \mathrm{~g}, 56 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.78(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=13.2$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=13.2$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, 3.79-3.82 (m, 1H), 6.25-6.28 (m, 1H), 6.80-6.90 (m, 1H), 7.20-7.24 (m, 3H), 7.46-7.48 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.3,52.2,71.7\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=30.6 \mathrm{~Hz}\right), 118.8\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=245.5 \mathrm{~Hz}\right), 126.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}\right.$ $=8.4 \mathrm{~Hz}), 127.9,128.1,129.4,133.3,136.6\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=26.4 \mathrm{~Hz}\right), 165.2 . \operatorname{HRFAB}-\mathrm{MS}(m / z) 336.0089$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Se}\left(\mathrm{M}^{+}+\mathrm{H}\right) 336.0076$.

Benzoic acid 2,2-difluoro-4-methoxycarbonyl-1-phenylselenomethyl-but-3-enyl ester (5c)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ solution of $\mathbf{S 1 1}(623 \mathrm{mg}, 1.86 \mathrm{mmol})$ was added DMAP ($228 \mathrm{mg}, 1.86 \mathrm{mmol}$), $i-\operatorname{Pr}_{2} \mathrm{NEt}(648 \mu \mathrm{~L}, 3.72 \mathrm{mmol})$ and $\mathrm{BzCl}(326 \mu \mathrm{~L}, 2.79 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h . The mixture was partitioned between aq. saturated NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=6 / 1$) of the organic layer gave $\mathbf{5 c}(639 \mathrm{mg}, 78 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.20(\mathrm{dd}, J=13.6$ and $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=13.6$ and 3.2 Hz , $1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 5.63-5.68(\mathrm{~m}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.91(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.24(\mathrm{~m}, 3 \mathrm{H})$, 7.44-7.47 (m, 2H), 7.52-7.54 (m, 2H), 7.59-7.63 (m, 1H), 7.97-7.99 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 26.6,52.2,72.5\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=29.8 \mathrm{~Hz}\right), 117.9\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=245.6\right.$ and 243.2 Hz$), 126.9\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=8.3\right.$ Hz), 127.8, 128.6, 128.7, 129.2, 129.9, 133.5, 133.7, 136.0 ($\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=25.0 \mathrm{~Hz}$), 164.9, 164.9. HRFAB-MS $(m / z) 440.0353\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Se}\left(\mathrm{M}^{+}+\mathrm{H}\right) 440.0338$.
3) Abbas, M.; Bethke, J.; Wessjohann, L. A. Chem. Commun. 2006, 541.

6. Radical reaction of 5 c

Compound $\mathbf{5 c}(220 \mathrm{mg}, 0.5 \mathrm{mmol})$ was treated by the procedure described for the reaction of $\mathbf{5 a}$. Column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=9 / 1$) gave an inseparable mixture of $\mathbf{7 c}$ and $\mathbf{8}(27$ $\mathrm{mg}, 12 \%$ and 7% respectively, calcurated by integration of ${ }^{1} \mathrm{H} N M R$) and a mixture of $\mathbf{6 a}$ (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ $=5 / 1$). This was purified by preparative TLC (hexane $/ \mathrm{AcOEt}=20 / 1,7$ times evolution). This gave cis- $\mathbf{6 a}(60 \mathrm{mg}, 48 \%$, oil) and trans- $\mathbf{6 a}(31 \mathrm{mg}, 24 \%$, oil) respectively.
Physical data for trans-6a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 2.05-2.14 (m, 1H), 2.19-2.29 (m, 1H), 2.46 (dd, $J=16.8$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.65-2.72 (m, 1H), $3.65(\mathrm{~s}, 3 \mathrm{H}), 5.40-5.48(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 2 \mathrm{H})$, 7.51-7.55 (m, 1H), 8.00-8.02 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.0\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=10.9\right.$ and 4.9 Hz), $33.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=22.8 \mathrm{~Hz}\right), 52.2,72.2\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=30.0\right.$ and 19.1 Hz$), 119.2\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=289.6 \mathrm{~Hz}\right), 128.5$, 129.0, 129.9, 133.4, 165.2, 171.3. HRFAB-MS $(m / z) 285.0961\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 285.0938.

NOE experiments of trans-6a

Physical data for 7c and 8: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.38(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 4.8 \mathrm{H})$, $5.33-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=3.2$ and $1.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 5.59(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.28-6.38(\mathrm{~m}, 1.6 \mathrm{H})$, 6.79-6.91 (m, 1.6H), 7.37-7.49 (m, 3.2H), 7.56-7.63 (m, 1.6H), 8.00-8.07 (m, 3.2H); ${ }^{13} \mathrm{C}$ NMR for $7 \mathbf{c}$ $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,52.2,70.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=31.0 \mathrm{~Hz}\right), 118.3\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=242.0 \mathrm{~Hz}\right), 126.7\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=8.4\right.$ $\mathrm{Hz}), 128.5,129.8,130.2,133.6,136.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=25.1 \mathrm{~Hz}\right), 165.1 ;{ }^{13} \mathrm{C}$ NMR for $8\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $52.2,107.2\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=3.6 \mathrm{~Hz}\right), 114.2(\mathrm{t}, 232.3 \mathrm{~Hz}), 126.3\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=8.3 \mathrm{~Hz}\right), 128.8$, 129.2, 129.9, 134.0, $137.1\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=28.6 \mathrm{~Hz}\right), 146.3\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=29.8 \mathrm{~Hz}\right)$, 165.0. FAB-MS $(\mathrm{m} / \mathrm{z}) 285\left(\mathrm{M}^{+}+\mathrm{H}\right)$ for $7 \mathrm{c}, 263$ $\left(\mathrm{M}^{+}-\mathrm{F}\right)$ for $\mathbf{8}$.

7. Preparation of 5d

5-(tert-Butyldimethylsiloxy)-4,4-difluoro-6-phenylseleno-hex-2-enoic acid methyl ester (5d)

To a DMF (6 mL) solution of $\mathbf{S 1 1}(373 \mathrm{mg}, 1,11 \mathrm{mmol})$ was added imidazole ($302 \mathrm{mg}, 4.44 \mathrm{mmol}$) and TBSCl ($335 \mathrm{mg}, 2.22 \mathrm{mmol}$). The resulting solution was stirred at rt for 4 days. The mixture was partitioned between aq. saturated NaHCO_{3} and AcOEt. Column chromatography on silica gel (hexane/AcOEt = 11/1) of the organic layer gave 5d (260 mg, 52\%) as an oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta-0.06(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H}), 2.71(\mathrm{dd}, J=12.4$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dt}, J=12.4$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.94-4.01(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{dq}, J=16.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{ddd}, J=$ $16.0,14.8$ and $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.7$, -4.4, .18.2, $25.829 .5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=6.0 \mathrm{~Hz}\right), 52.2,74.5\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=32.2\right.$ and 27.4 Hz$), 119.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=244.4\right.$ Hz), $126.3\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=7.2 \mathrm{~Hz}\right), 127.1,129.2,130.1,132.4,136.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=25.0 \mathrm{~Hz}\right), 165.3$. HRFAB-MS $(m / z) 451.0967\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{SiSe}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 451.1019.

8. Radical reaction of $\mathbf{5 d}$

Compound $\mathbf{5 d}(2.17 \mathrm{~g}, 4.82 \mathrm{mmol})$ was treated by the procedure described for the reaction of $\mathbf{5 a}$. Column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=15 / 1$) gave $\mathbf{6 d}(1.29 \mathrm{~g}, 91 \%$, ca. $2: 1$ of inseparable mixture) as an oil:
Physical data for 6d: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.08(\mathrm{~s}, 1.5 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 1.5 \mathrm{H}), 0.10(\mathrm{~s}$, $3 \mathrm{H}), 0.90(\mathrm{~s}, 13.5 \mathrm{H}), 1.35-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.41(\mathrm{~m}, 1.5 \mathrm{H}), 2.48-2.53(\mathrm{~m}, 1 \mathrm{H})$, 2.57-2.70 (m, 2.5H), 3.05-3.10 (m, 0.5H), 3.69 (s, 3 H$), 3.69(\mathrm{~s}, 1.5 \mathrm{H}), 4.26-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.48(\mathrm{~m}$, 0.5 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of cis-6d: $\delta-5.2,-5.0,18.1,25.6,29.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=22.8 \mathrm{~Hz}\right.$), $31.8(\mathrm{~d}$, $\left.J_{\mathrm{C}, \mathrm{F}}=7.2 \mathrm{~Hz}\right), 35.0\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=22.7 \mathrm{~Hz}\right), 51.8,70.4\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=25.0 \mathrm{and} 17.9 \mathrm{~Hz}\right), 121.2\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=296.9\right.$ and 277.8 Hz), 171.8. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of trans- $\mathbf{6 d}$: $\delta-5.2,-5.0,18.1,25.6,29.0(\mathrm{dd}$, $J_{\mathrm{C}, \mathrm{F}}=14.4$ and 3.6 Hz$), 33.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=3.6 \mathrm{~Hz}\right), 37.5\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=21.5 \mathrm{~Hz}\right), 51.8,71.8\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=27.4\right.$ and $19.1 \mathrm{~Hz}), 120.5\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=290.9\right.$ and 286.2 Hz$), 171.6$. HRFAB-MS $(m / z) 295.1537\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{M}^{+}+\mathrm{H}\right) 295.1541$.
NOE experiments of 6d: The NOE experiments were carried out as a mixture of two diastereomers.

9. Preparation of 5e

3,3-Difluoro-1-phenylselenopent-4-en-2-ol (S12)
To a THF (30 mL) solution of $\mathbf{S 9}(1.25 \mathrm{~g}, 3.7 \mathrm{mmol})$ was dropwise added DIBAL-H $(1.0 \mathrm{~mol} / \mathrm{L}$ in toluene, $14.8 \mathrm{~mL}, 14.8 \mathrm{mmol})$ at $-80{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to rt for 5 min . This was partitioned between 0.5 N HCl and AcOEt. The organic layer was dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then through a celite pad. Evaporation of the filtrate gave a crude aldehyde ($c a, 1.12 \mathrm{~g}$). This was used for the next step without further purification. To a THF (20 mL) suspension of $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}(4.64 \mathrm{~g}, 13.0 \mathrm{mmol})$ was dropwise added t-BuOK ($1.0 \mathrm{~mol} / \mathrm{L}$ in THF, $11.1 \mathrm{~mL}, 11.1 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The resulting yellowish
suspension was stirred at rt for 1 h . To the mixture was added above aldehyde in THF (20 mL) at $-80{ }^{\circ} \mathrm{C}$. The mixture was stirred further 1 h at rt . The mixture was partitioned between aq. saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and AcOEt. Column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=4 / 1$) gave $\mathbf{S 1 2}(757 \mathrm{mg}$, 74%) as an oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.67(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.2$ and 10.4 Hz , 1 H), 3.23 (dd, $J=13.2$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.83-3.92(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.75(\mathrm{~m}$, $1 \mathrm{H}), 5.94-6.07(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.4$, $71.9\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=29.9 \mathrm{~Hz}\right), 119.3\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=245.4 \mathrm{~Hz}\right), 121.5\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=9.5 \mathrm{~Hz}\right), 127.7,128.5,129.4,129.6(\mathrm{t}$, $\left.J_{\mathrm{C}, \mathrm{F}}=26.4 \mathrm{~Hz}\right), 133.2$. HRFAB-MS $(m / z) 278.0015\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{OSe}\left(\mathrm{M}^{+}+\mathrm{H}\right) 278.0021$.

Benzoic acid 2,2-difluoro-1-phenylselenomethyl-but-3-enyl ester (5e)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ solution of $\mathbf{S 1 2}(680 \mathrm{mg}, 2.45 \mathrm{mmol})$ was treated with $\mathrm{BzCl}(374 \mu \mathrm{~L}, 3.2 \mathrm{mmol})$, DMAP ($601 \mathrm{mg}, 4.9 \mathrm{mmol}$) and $i-\operatorname{Pr}_{2} \mathrm{NEt}(854 \mu \mathrm{~L}, 4.0 \mathrm{mmol})$. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . The mixture was partitioned between aq. saturated NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography on silica gel (hexane/AcOEt $=9 / 1$) gave $\mathbf{5 e}(874 \mathrm{mg}, 94 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.20(\mathrm{dd}, J=13.6$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=13.6$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (dd, $J=$ 11.2 and $0.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.69-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.98(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 3 \mathrm{H})$, 7.40-7.44 (m, 2H), 7.49-7.59 (m, 3H), 7.95-7.97 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 25.7\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=\right.$ $35.9 \mathrm{~Hz}), 72.8\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=33.5\right.$ and 30.0 Hz$), 118.3\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=247.8\right.$ and 244.1 Hz$), 122.1\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=9.6\right.$ Hz), 127.6, 128.4, 129.0, 129.1, 129.2, 129.5 (t, $J_{\mathrm{C}, \mathrm{F}}=25.1 \mathrm{~Hz}$), 129.9, 133.4, 133.6, 165.1. HRFAB-MS $(\mathrm{m} / \mathrm{z}) 382.0287\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{Se}\left(\mathrm{M}^{+}+\mathrm{H}\right) 382.0284$.

10. Radical reaction of 5e

5 e

7e

Compound $\mathbf{5 e}(529 \mathrm{mg}, 1.39 \mathrm{mmol})$ was treated by the procedure described for the reaction of $\mathbf{5 a}$. Column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=20 / 1$) gave $7 \mathbf{e}(227 \mathrm{mg}, 72 \%)$ as an oil.
Physical data for $7 \mathrm{e}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 5.36-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.56$ (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dt}, J=17.2$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-6.06(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 2 \mathrm{H})$, 7.57-7.61 (m, 1H), 8.03-8.06 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.7,70.6\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=31.1 \mathrm{~Hz}\right.$), $118.7\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=245.3\right.$ and 242.9 Hz), $121.6\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=9.6 \mathrm{~Hz}\right), 128.4,129.8\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=21.6 \mathrm{~Hz}\right), 129.8$, 130.0, 165.2. HRFAB-MS $(m / z) 226.0820\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right) 226.0805$.

11. Preparation of $5 f$

3-Hydroxy-N-methoxy-N-methyl-4-(phenylseleno)butyramide (S13)
To a THF (25 mL) solution of diisopropylamine ($2.11 \mathrm{~mL}, 15.1 \mathrm{mmol}$) was dropwise added BuLi (2.66 $\mathrm{mol} / \mathrm{L}$ in hexane, $5.7 \mathrm{~mL}, 15.1 \mathrm{mmol}$) at $-80^{\circ} \mathrm{C}$. The resulting mixture was further stirred for 10 min at same temperature then 10 min at rt . To the mixture was dropwise added $\mathrm{AcOEt}(1.48 \mathrm{~mL}, 15.1 \mathrm{mmol})$ at $-80{ }^{\circ} \mathrm{C}$ then stirred further 1 h at same temperature. To the resulting lithium enolate solution was
dropwise added $\mathbf{S 8}(1.5 \mathrm{~g}, 7.53 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ over 3 min . The mixture was stirred at $-80{ }^{\circ} \mathrm{C}$ for 30 min . The mixture was partitioned between aq. saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and AcOEt. Evaporation of the organic layer gave a crude ester ($c a .2 .12 \mathrm{~g}$) which was used for next step without further purification. To a stirred suspension of N, O-dimethylhydroxylamine hydrochloride ($2.13 \mathrm{~g}, 21.8 \mathrm{mmol}$) in THF (40 mL) was dropwise added $\operatorname{BuLi}(2.66 \mathrm{~mol} / \mathrm{L}$ in hexane, $16.4 \mathrm{~mL}, 43.7 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$. The mixture was stirred at rt for 10 min . To the resulting lithium amide solution was added above ester in THF (15 $\mathrm{mL})$ at $-40{ }^{\circ} \mathrm{C}$ then stirred for 1 h at same temperature. The mixture was partitioned between aq. saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and AcOEt. Column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=1 / 4$) gave $\mathbf{S 1 3}$ $\left(1.29 \mathrm{~g}, 57 \%\right.$ for two steps) as an oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.61-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.84(\mathrm{~m}$, $1 \mathrm{H}), 3.08(\mathrm{dd}, J=12.8$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=12.8$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $3.97(\mathrm{br}-\mathrm{d}, 1 \mathrm{H}), 4.19-4.21(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 31.7,34.1,37.1,61.1,67.4,126.9,129.0,129.7,132.5,172.9$. HRFAB-MS $(m / z) 304.0438$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{Se}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 304.0452.

5-Hydroxy-6-(phenylseleno)-hex-2-enoic acid methyl ester (S14)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ solution of $\mathbf{S 1 3}(1.27 \mathrm{~g}, 4.2 \mathrm{mmol})$ was dropwise added DIBAL-H $(0.99 \mathrm{~mol} / \mathrm{L}$ in toluene, $9.3 \mathrm{~mL}, 9.2 \mathrm{mmol}$) at $-80{ }^{\circ} \mathrm{C}$. After 30 min stirring at same temperature, further DIBAL-H $(4.23 \mathrm{~mL}, 4.2 \mathrm{mmol})$ then stirred for 1 h . The mixture was partitioned between aq. saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the organic layer gave a crude aldehyde. This was dissolved in $\mathrm{MeCN}(40 \mathrm{~mL})$ then treated with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(3.09 \mathrm{~g}, 9.24 \mathrm{mmol})$. The resulting suspension was stirred at rt for 24 h . After evaporation of all of volatiles, the residue was purified by column chromatography on silica gel (hexane/AcOEt $=2 / 1$). This gave $\mathbf{S 1 4}\left(507 \mathrm{mg}, 40 \%\right.$ for two steps) as an oil: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.40-2.53(\mathrm{~m}, 3 \mathrm{H}), 2.91(\mathrm{dd}, J=13.2$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=13.2$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.84(\mathrm{~m}, 1 \mathrm{H}), 5.88(\mathrm{dt}, J=15.6$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dt}, J=15.6$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27-7.30 (m, 3H), 7.51-7.56 (m,2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.5,39.0,51.5,68.6,123.7$, 127.6, 128.7, 129.3, 133.3, 144.5, 166.6. HRFAB-MS $(m / z) 300.0288\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Se}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 300.0265$.

Benzoic acid 4-methoxycarbonyl-1-(phenylselenomethyl)-but-3-enyl ester (5f)

To a mixture of $\mathbf{S 1 4}(500 \mathrm{mg}, 1.67 \mathrm{mmol})$, DMAP ($410 \mathrm{mg}, 3.34 \mathrm{mmol}$) and $i-\operatorname{Pr}_{2} \mathrm{NEt}(580 \mu \mathrm{~L}, 3.34$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ was added $\mathrm{BzCl}(254 \mu \mathrm{~L}, 2.17 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 30 min stirring of the resulting mixture at rt , this was partitioned between aq. saturated NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=3 / 1$) gave $\mathbf{5 f}(575 \mathrm{mg}, 85 \%)$ as a solid: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.73-2.83(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=12.8$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=12.8$ and 6.0 Hz , $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 5.31-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=15.6$ and $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dt}, J=15.6$ and 7.2 Hz , $1 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.92-7.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 30.6,36.1,51.5,72.4,124.4,127.4,128.3,129.2,129.7,129.8,133.0,133.1,145.0,165.7$, 166.4. HRFAB-MS $(m / z) 404.0514\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Se}\left(\mathrm{M}^{+}+\mathrm{H}\right) 404.0527$.

12. Radical reaction of $\mathbf{5 f}$

Compound $\mathbf{5 f}(403 \mathrm{mg}, 1.0 \mathrm{mmol})$ was treated by the procedure described for the reaction of $\mathbf{5 a}$. Column chromatography on silica gel (hexane/Et $2 \mathrm{O}=3 / 1$) gave 7 f and $\mathbf{6 f}[206 \mathrm{mg}, 83 \%$, $c a$. 1:0.20:0.16 (7f, $61 \%, \mathbf{6 f}, 22 \%$ respectively), calculated by integration of ${ }^{1} \mathrm{H}$ NMR] as an inseparable mixture.

Physical data for a mixture of $7 \mathbf{f}$ and $\mathbf{6 f}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.88-1.92(\mathrm{~m}, 0.47 \mathrm{H}), 2.26-2.82(\mathrm{~m}, 3.6 \mathrm{H}), 3.67(\mathrm{~s}, 0.6 \mathrm{H}), 3.68(\mathrm{~s}, 0.3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 5.08-5.15(\mathrm{~m}$, $0.2 \mathrm{H}), 5.24-5.35(\mathrm{~m}, 1.16 \mathrm{H}), 5.94(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, J=15.6$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.46$ $(\mathrm{m}, 2.86 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 1.6 \mathrm{H}), 8.02-8.06(\mathrm{~m}, 2.84 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR for $7 \mathrm{f}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.7$, $38.5,51.5,69.7,123.9,128.3,129.5,130.3,132.9,143.7,165.6,166.5$. Partial ${ }^{13} \mathrm{C}$ NMR for $\mathbf{6 f}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.8,25.6,34.7,36.3,39.9,40.8,66.0,68.8,172.6,172.8$. FAB-MS $(m / z) 249\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

13. Preparatio of radical precursor 13

12
13

3-Benzyloxy-2-phenylselenenylpropionaldehyde (10)

To a THF (160 mL) solution of $\boldsymbol{9}^{4,5)}(13.66 \mathrm{~g}, 52.9 \mathrm{mmol})$ was dropwise added Li-HMDS $(1.0 \mathrm{~mol} / \mathrm{L}$ in THF, $58.2 \mathrm{~mL}, 58.2 \mathrm{mmol}$) at $-80{ }^{\circ} \mathrm{C}$ over 10 min . The resulting mixture was stirred further 30 min at same temperature. To this was sequentially added freshly distilled BOMCl ($8.35 \mathrm{~mL}, 60.84 \mathrm{mmol}$) and HMPA ($18.4 \mathrm{~mL}, 105.8 \mathrm{mmol}$). The mixture was slowly warmed to $-55^{\circ} \mathrm{C}$ then stirred further 20 h at same temperature. The mixture was partitioned between aq. saturated NaHCO_{3} and AcOEt then dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of all of volatiles of the organic layer, the residue was roughly purified by column chromatography on neutral silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=6 / 4$). This gave crude benzyl ether $(14.08 \mathrm{~g})$ as an oil. This benzyl ether was used for the next step without further purification. To a THF $(90 \mathrm{~mL})$ solution of above residue was dropwise added DIBAL-H ($1.0 \mathrm{~mol} / \mathrm{L}$ in toluene, $63.5 \mathrm{~mL}, 63.5$ $\mathrm{mmol})$ at $-80{ }^{\circ} \mathrm{C}$ over 10 min . The resulting mixture was stirred further 45 min at same temperature. Then, the mixture was treated with aq. saturated Rochelle salt (ca. 100 mL) and stirred at rt for 1 h . The resulting mixture was partitioned between brine and $\mathrm{Et}_{2} \mathrm{O}$. Column chromatography on neutral silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=3 / 1$) of the organic layer gave an unstable aldehyde $10(7.9 \mathrm{~g}, 47 \%$ for two steps) as a yellowish oil: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 3.81-3.89(\mathrm{~m}, 3 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.55(\mathrm{~m}, 10 \mathrm{H})$, $9.49(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 51.4,67.5,73.7,126.0,128.1,128.7,129.3$, 129.7 (2C), 136.3, 138.2, 192.9. HRFAB-MS (m / z) $321.0384\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Se}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 321.0394.

5-Benzyloxy-3-(tert-butyldimethylsilanyloxy)-2,2-difluoro-4-phenylselenenyl-pentanoic acid ethyl ester (11) To a THF (10 mL) suspension of activated zinc (2.52 g) was added TMSCl ($342 \mu \mathrm{~L}, 2.7$ mmol). The resulting mixture was heated at $60{ }^{\circ} \mathrm{C}$. After 15 min stirring of the resulting mixture, THF $(50 \mathrm{~mL})$ and $\mathrm{BrF}_{2} \mathrm{CCO}_{2} \mathrm{Et}(4.93 \mathrm{~mL}, 38.5 \mathrm{mmol})$ were sequentially added, then heated at $60^{\circ} \mathrm{C}$ for 5 min. The resulting THF solution which include zinc enolate was quickly transferred via cannula to a THF (50 mL) solution of $\mathbf{1 0}(6.14 \mathrm{~g}, 19.23 \mathrm{mmol})$ which was cooled at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at it for 2 h . The mixture was partitioned between 0.5 N HCl and AcOEt. Column chromatography (hexane $/ \mathrm{AcOEt}=3: 1$) of the organic layer gave a clude alcohol $(7.29 \mathrm{~g})$ as an oil. This
was used for the next step without further purification. The crude alcohol was dissolved in DMF (70 $\mathrm{mL})$. This was treated with 2,6-lutidine ($7.25 \mathrm{~mL}, 65.6 \mathrm{mmol}$) and TBSOTf ($7.53 \mathrm{~mL}, 32.8 \mathrm{mmol}$). The resulting mixture was stirred at rt for 4 days. This was partitioned between aq. saturated NaHCO_{3} and AcOEt , then 0.5 N HCl and AcOEt. Column chromatography on neutral silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=11 / 1$) of the organic layer gave $11(8.23 \mathrm{~g}, 77 \%$ for two steps) as a diastereomixture (ca. 5:1). Analytical samples were prepared by preparative TLC (hexane/ $\mathrm{AcOEt}=40 / 1,4$ times evolution). This gave major- $\mathbf{1 1}$ (slow moving) and minor- $\mathbf{1 1}$ (fast moving) each as an oil.
Physical data for major-11: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $1.25(\mathrm{dt}, J=7.6$ and $0.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.63-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{dd}, J=9.6$ and $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, 7.6 \mathrm{~Hz}$, $2 \mathrm{H}), ~ 4.47-4.60(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.54-7.57(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3$, $-4.7,13.8,18.4,25.7,45.6,63.0,70.3,71.6\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=29.9 \mathrm{~Hz}\right), 72.3,77.2,114.2\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=256.1 \mathrm{~Hz}\right)$, 127.6, 127.7, 127.8, 128.4, 129.1, 134.1, 137.7, $163.3\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=32.3 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-111.5(\mathrm{~m})$. HRFAB-MS $(\mathrm{m} / \mathrm{z}) 558.1531\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{SiSe}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 558.1516.
Physical data for minor-11: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.93$ ($\mathrm{s}, 9 \mathrm{H}$), $1.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.49-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.40(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.53-7.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.3,-4.7,13.8,18.4,25.7,45.6,63.0,70.3,71.6\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=29.9 \mathrm{~Hz}\right), 72.3,77.2,114.2\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}\right.$ $=256.1 \mathrm{~Hz}), 127.6,127.7,127.8,128.4,129.1,134.2,137.7,163.3\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=32.4 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}$ NMR $(470$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-111.1(\mathrm{~d}, J=263.4 \mathrm{~Hz}),-114.8(\mathrm{~d}, J=263.4 \mathrm{~Hz})$. HRFAB-MS (m / z) 558.1531 $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{SiSe}\left(\mathrm{M}^{+}+\mathrm{H}\right) 558.1516$.

5-Benzyloxy-3-(tert-butyldimethylsilyloxy)-2,2-difluoro-4-phenylselenenyl-pentanoic acid methoxymethyl amide (12) To a THF (80 mL) suspension of N, O-dimethylhydroxylamine hydrochloride ($4.05 \mathrm{~g}, 41.57 \mathrm{mmol}$, previously dried by $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum condition for 2 days) was dropwise added $\operatorname{BuLi}(2.64 \mathrm{~mol} / \mathrm{L}$ in hexane, $31.5 \mathrm{~mL}, 83.2 \mathrm{mmol})$ at $-80^{\circ} \mathrm{C}$. After 5 min stirring, this was allowed to rt for 10 min . The resulting mixture was cooled at $-80{ }^{\circ} \mathrm{C}$, then added a THF (50 mL) solution of $\mathbf{1 1}(7.73 \mathrm{~g}, 13.86 \mathrm{mmol}, ~ c a .5: 1$ mixture of two stereoisomers) via cannula. The mixture was stirred at same temperature for 24 h . Then the mixture was partitioned between aq. saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and AcOEt. Column chromatography on neutral silica gel (hexane/ $\mathrm{AcOEt}=2 / 1$) of the organic layer gave $12(7.14 \mathrm{~g}, 90 \%$ as a $5: 1$ of diastereomeric mixture). Analytical samples were prepared by preparative TLC (hexane/ $\mathrm{AcOEt}=8 / 1$, five times evolution). This gave major- $\mathbf{1 2}$ (slow moving) and minor- $\mathbf{1 2}$ (fast moving) each as an oil
Physical data for major-12: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.08(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H})$, $2.98(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.89(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.56-4.63 (m, 1H), 7.10-7.29 (m, 8H), 7.44-7.46 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-5.0,-4.3 .18 .4,25.8,33.1,45.5,61.7,68.9,72.9,74.1\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=22.7 \mathrm{~Hz}\right), 116.3\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=256.4 \mathrm{~Hz}\right)$, $127.4,127.6,127.7,128.2,129.1,129.6,134.8,138.2,162.9\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=28.6 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}$ NMR (470 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-108.4(\mathrm{~d}, J=254.3 \mathrm{~Hz}),-114.1(\mathrm{~d}, J=254.3 \mathrm{~Hz}) . \operatorname{HRFAB}-\mathrm{MS}(m / z) 574.1683\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{SiSe}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 574.1703.
Physical data for minor-12: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H})$, 3.09 (br-s, 3 H), 3.42-3.45 (m, 2H), $3.61(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.73(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}) 4,74(\mathrm{dd}, J=15.2$ and $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.48-7.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2,-4.6,18.4,28.8,33.4,45.5,61.8,70.5,70.5\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=28.6 \mathrm{~Hz}\right), 72.2,116.3$ $\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=254.0 \mathrm{~Hz}\right), 127.4,127.5,127.6,127.7,128.2,129.0,134.5,138.9,162.9\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=28.6 \mathrm{~Hz}\right)$; ${ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-110.6(\mathrm{~d}, J=254.3 \mathrm{~Hz}),-114.4(\mathrm{~d}, J=254.3 \mathrm{~Hz})$. HRFAB-MS $(\mathrm{m} / \mathrm{z})$ $574.1683\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{SiSe}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 574.1703.

7-Benzyloxy-5-(tert-butyldimethylsilyloxy)-4,4-difluoro-6-phenylselenenyl-hept-2-enoic acid methyl ester (13) To a stirred solution of $\mathbf{1 2}(7.0 \mathrm{~g}, 12.2 \mathrm{mmol}, c a .5: 1$ mixture of two stereoisomers) in THF (100 mL) was dropwise added DIBAL-H ($1.0 \mathrm{~mol} / \mathrm{L}$ in toluene, $36.7 \mathrm{~mL}, 36.7 \mathrm{mmol}$) at $-80^{\circ} \mathrm{C}$.

The resulting mixture was stirred for 15 min at rt . The mixture was partitioned between 0.5 N HCl and AcOEt. The organic layer was dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then filtrated through a celite pad. The filtrate was evaporated. The crude aldehyde was dissolved in $\mathrm{MeCN}(100 \mathrm{~mL})$, then treated with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$ $(12.26 \mathrm{~g}, 36.7 \mathrm{mmol})$. The resulting mixture was stirred at rt for 14 h . This was partitioned between brine and AcOEt. Column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=4 / 1$) of the organic layer gave $\mathbf{1 3}$ ($6.45 \mathrm{~g}, 93 \%$ for two steps as a diastereomixture, major- $(E) \mathbf{- 1 3}:(Z)-\mathbf{1 3}:$ minor- $(E)-\mathbf{1 3}=1.0: 0.14: 0.22$ calcurated by integration of ${ }^{1} \mathrm{HNMR}$). Analytical samples were prepared by preparative TLC (hexane/AcOEt $=50 / 1$, seven times evolution). This gave major $-(E)-\mathbf{1 3},(Z)-\mathbf{1 3}$ and minor- $(E)-\mathbf{1 3}$ respectively each as an oil.
Physical data for major-(E)-13: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07$ ($\mathrm{s}, 3 \mathrm{H}$), 0.13 (s, 3H), $0.90(\mathrm{~s}, 9 \mathrm{H})$, 3.59-3.67 (m, 2H), 3.75(s, 3H), $3.89(\mathrm{dd}, J=10.0$ and $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{ddd}, J=12.8,7.2$ and 1.6 Hz , $1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dt}, J=16.0$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{ddd}$, $J=16.0,13.6$ and $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-4.8,-4.7,18.3,25.8,45.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=3.6 \mathrm{~Hz}\right), 52.1,69.2,73.0,76.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=29.8 \mathrm{~Hz}\right), 119.3\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=\right.$ $245.6 \mathrm{~Hz}), 125.6\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=8.4 \mathrm{~Hz}\right), 127.6,127.6,127.7,128.3,129.2,129.7,134.2,137.3\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=25.1\right.$ Hz), 137.9, 165.3; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-101.3$ (d, $J=254.3 \mathrm{~Hz}$), -107.4 (d, $J=254.3 \mathrm{~Hz}$). HRFAB-MS $(m / z) 570.1523\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{SiSe}\left(\mathrm{M}^{+}+\mathrm{H}\right) 570.1516$.
Physical data for (Z)-13: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 3.62-3.72 (m, 2H), $3.66(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{dd}, J=10.0$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.72(\mathrm{~m}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dt}, J=24.8$ and $12.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23-7.32 (m, 8H), 7.53-7.56 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.7,-4.6,18.4,25.9,46.4,52.0$, $69.2,73.0,76.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=26.3 \mathrm{~Hz}\right), 119.6\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=247.8 \mathrm{~Hz}\right), 125.9\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=6.0 \mathrm{~Hz}\right), 127.5,127.6$, $127.8,128.3,129.1,130.0,133.7\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=27.5 \mathrm{~Hz}\right), 134.1,138.1,165.0 ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-100.5(\mathrm{~d}, J=245.2 \mathrm{~Hz}),-101.7(\mathrm{dd}, J=245.2$ and 18.2 Hz$) . \operatorname{HRFAB}-\mathrm{MS}(m / z) 570.1485\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{SiSe}\left(\mathrm{M}^{+}+\mathrm{H}\right) 570.1516$.
Physical data for minor-(E)-13: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0,92(\mathrm{~s}, 9 \mathrm{H})$, 3.35-3.38 (m, 1H), $3.62(\mathrm{ddd}, J=10.0,4.8$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.42(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=12.4$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dt}, J=16.0$ and 1.6 $\mathrm{Hz}, 1 \mathrm{H}), 7.16-7.35(\mathrm{~m}, 9 \mathrm{H}), 7.39-7.41(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3,-4.5,18.3,25.8$, $29.7,45.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=6.0 \mathrm{~Hz}\right), 52.0,70.6,72.5,73.0\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=34.6\right.$ and 28.6 Hz$), 119.6\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=243.2\right.$ $\mathrm{Hz}), 124.1\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=8.3 \mathrm{~Hz}\right), 127.4,127.8,127.8,128.4,129.1,129.7,133.4,137.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=23.9 \mathrm{~Hz}\right)$, 137.6, 165.6; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-99.4(\mathrm{~d}, J=254.3 \mathrm{~Hz}),-108.8(\mathrm{~d}, J=254.3 \mathrm{~Hz})$. HRFAB-MS $(\mathrm{m} / \mathrm{z}) 570.1568\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{SiSe}\left(\mathrm{M}^{+}+\mathrm{H}\right) 570.1516$.
4) Shen, Z.; Khan, H. A.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 2916.
5) Barluenga, S.; Moulin, E.; Lopez, P.; Winssinger, N. Chem. Eur. J. 2005, 11, 4935.

14-1. Radical cyclization of 13: Transformation to [4-Benzyloxymethyl-3-(tert-butyldimethylsiloxy)-2,2-difluorocyclobutyl]-acetic acid methyl ester (14) (Table 2, entry 5)

(2.6:1)

To a benzene (230 mL) solution of $13(6.52 \mathrm{~g}, 11.45 \mathrm{mmol}, 1.0: 0.14: 0.22$ of diastereomeric mixture) and freshly opened $\mathrm{Et}_{3} \mathrm{~B}(1.0 \mathrm{~mol} / \mathrm{L}$ in THF, $5.73 \mathrm{~mL}, 5.73 \mathrm{mmol})$ was dropwise added $\mathrm{Bu}_{3} \mathrm{SnH}(6.16$ $\mathrm{mL}, 22.9 \mathrm{mmol}$) over 24 h using motor driven syringe at rt . When half volume of $\mathrm{Bu}_{3} \mathrm{SnH}$ was transferred to the reaction mixture ($c a .12 \mathrm{~h}$), further $\mathrm{Et}_{3} \mathrm{~B}(5.73 \mathrm{~mL}, 5.73 \mathrm{mmol})$ was added then continued to stir further 12 h at rt . After evaporation of all of volatiles, the residue was purified by column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=4 / 1$). This gave $14(3.71 \mathrm{~g}, 78 \%$, oil) as a diastereomeric mixture (trans,trans-14/trans,cis $\mathbf{- 1 4}=c a .2 .6: 1$ based on the integration of ${ }^{1} \mathrm{H} N \mathrm{NR}$): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.06(\mathrm{~s}, 1.16 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 1.16 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}$, $3.47 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.49(\mathrm{~m}, 0.39 \mathrm{H}), 2.48-2.70(\mathrm{~m}, 3.77 \mathrm{H}), 3.13-3.21(\mathrm{~m}$, $0.39 \mathrm{H}), 3.53-3.62(\mathrm{~m}, 2.77 \mathrm{H}), 3.63(\mathrm{~s}, 1.16 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 4.22-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 0.39 \mathrm{H})$, 4.43 (d, $J=12.1 \mathrm{~Hz}, 0.39 \mathrm{H}), 4.48$ (d, $J=12.1 \mathrm{~Hz}, 0.39 \mathrm{H}), 4.51(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 6.95 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for trans, trans-14 $\delta-5.2 .-5.1,18.1$, $25.6,31.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=6.0 \mathrm{~Hz}\right), 37.1$, (dd, $J_{\mathrm{C}, \mathrm{F}}=19.6$ and 19.2 Hz$), 42.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=21.6 \mathrm{~Hz}\right), 51.8,68.0(\mathrm{~d}$, $\left.J_{\mathrm{C}, \mathrm{F}}=2.4 \mathrm{~Hz}\right), 71.8\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=25.2\right.$ and 18.0 Hz$), 73.3,119.9\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=297.5\right.$ and 177.1 Hz$), 127.5$, 127.6, 128.4, 138.1, 171.8. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for trans, cis-14 $\delta-5.5,18.2,25.6,29.6,39.0$ $\left(\mathrm{d}, J_{\mathrm{C}, \mathrm{F}}=15.5 \mathrm{~Hz}\right), 39.2\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=21.5 \mathrm{~Hz}\right), 51.6,66.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=2.4 \mathrm{~Hz}\right), 72.8\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=26.4\right.$ and 20.4 Hz), 73.3, $120.0\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=293.9\right.$ and 282.0 Hz), 127.2, 127.8, 128.3, 137.8, 172.1; ${ }^{19} \mathrm{~F}$ NMR (470 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) for trans-14 $\delta-91.8(\mathrm{~d}, J=190.7 \mathrm{~Hz}),-136.2(\mathrm{~d}, J=190.7 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (470 MHz , CDCl_{3}) for $c i s-14 \delta-103.7(\mathrm{~d}, J=199.8 \mathrm{~Hz}),-117.4(\mathrm{~d}, J=199.8 \mathrm{~Hz})$. $\mathrm{HRFAB}-\mathrm{MS}(\mathrm{m} / \mathrm{z}) 415.2130$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}+\mathrm{H}\right) 415.2116$.
NOE experiments of 14: The NOE experiments were carried out as a mixture of two diastereomers.

trans, trans-14

trans, cis-14 (minor)

14-2. Radical reaction of major-(E)-13
Compound major- $(E)-\mathbf{1 3}(219 \mathrm{mg}, 0.38 \mathrm{mmol})$ was treated with a same procedure described for $\mathbf{1 3}$. This gave a mixture of $\mathbf{1 4}\left(112 \mathrm{mg}, 71 \%\right.$, trans $-\mathbf{1 4} /$ cis $\mathbf{- 1 4}=c a .2 .6: 1$ based on the integration of ${ }^{1} \mathrm{H}$ NMR).

14-3. Radical reaction of (Z) - 13
Compound $(Z) \mathbf{- 1 3}(106 \mathrm{mg}, 0.19 \mathrm{mmol})$ was treated with a same procedure described for $\mathbf{1 3}$. This gave a mixture of $\mathbf{1 4}\left(49 \mathrm{mg}, 64 \%\right.$, trans,trans- $\mathbf{1 4} /$ trans, cis $-\mathbf{1 4}=c a .1: 1$ based on the integration of ${ }^{1} \mathrm{H}$ NMR).

15. Synthesis of 4

1) $\mathrm{OsO}_{4}, \mathrm{NaIO}_{4}, 2,6$-lutidine 1,4-dooxane/ $\mathrm{H}_{2} \mathrm{O}$
2) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$
3) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{Bu}_{4} \mathrm{NI}, \mathrm{THF}$
4) $\mathrm{Bu}_{4} \mathrm{NF}, \mathrm{AcOH}, \mathrm{THF}$

4

2) $\mathrm{NH}_{4} \mathrm{OH}, 1,4$-dioxane

3) $\begin{aligned} & \mathrm{H}_{2}, \mathrm{Pd}(\mathrm{O} \\ & \mathrm{MeOH}\end{aligned}$
1)

18

17

3-Benzyloxymethyl-2-tert-butyldimethylsiloxy-1,1-difluoro-4-(phenylseleno)ethylcyclobutane (15)
To a stirred solution of $\mathbf{1 4}$ [$3.5 \mathrm{~g}, 8.44 \mathrm{mmol}$, diastereomeric mixture (ca. 2.6:1)] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (85 mL) was dropwise added DIBAL-H ($1.0 \mathrm{~mol} / \mathrm{L}$ in toluene, $33.8 \mathrm{~mL}, 33.8 \mathrm{mmol}$) at $-80{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred further 20 min at rt . The mixture was partitioned between 0.5 N HCl and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of all of volatiles of the organic layer gave a crude alcohol ($c a .3 .3 \mathrm{~g}$). This was used for next step without further purification. To a THF (85 mL) solution of above alcohol was added PhSeCN $(2.07 \mathrm{~mL}, 16.9 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{P}(4.22 \mathrm{~mL}, 16.9 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was further stirred for 16 h at same temperature. This was partitioned between aq. saturated NaHCO_{3} and AcOEtt. Column chromatography on neutral silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=7 / 1$) of the organic layer gave a mixture of $\mathbf{1 5}$ ($4.32 \mathrm{~g}, 97 \%$ for two steps, $c a .3: 1$ of diastereomeric mixture). Analytical samples were prepared by preparative TLC (hexane/AcOEt = 50/1, four times evolution). This gave major- $\mathbf{1 5}$ (fast moving) and minor- $\mathbf{1 5}$ (slow moving) respectively each as an oil.
Physical data for major-15: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, 1.79-1.89 (m, 2H), 1.97-2.06 (m, 1H), 2.31-2.39 (m, 1H), $2.84(\mathrm{ddd}, J=12.0,8.8$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (ddd, $J=12.0,9.2$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.51(\mathrm{~m}, 2 \mathrm{H})$, 7.23-7.36 (m, 8H), 7.45-7.48 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.2,-5.0,18.1,25.0 .25 .6,27.3$ $\left(\mathrm{d}, J_{\mathrm{C}, \mathrm{F}}=4.8 \mathrm{~Hz}\right), 41.2$, ($\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=20.3 \mathrm{~Hz}$), $42.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=23.4 \mathrm{~Hz}\right), 68.5,71.6\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=23.8\right.$ and 17.9 Hz), 73.1, 120.7 (dd, $J_{\mathrm{C}, \mathrm{F}}=293.3$ and 274.2 Hz), 126.9, 127.6, 127.7, 128.4m 129.1, 129.8, 132.6, 138.0; ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-90.0(\mathrm{~d}, J=199.8 \mathrm{~Hz}$), $-137.2(\mathrm{~d}, J=199.8 \mathrm{~Hz}$). HRFAB-MS $(m / z) 527.1700\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{SiSe}\left(\mathrm{M}^{+}+\mathrm{H}\right) 527.1696$.
Physical data for minor-15: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, 1.79-1.96 (m, 2H), 2.34-2.43 (m, 1H), 2.75-2.80 (m, 1H), $2.85(\mathrm{ddd}, J=12.0,10.0$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.99(\mathrm{ddd}, J=12.0,10.4$ and $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=10.0$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.13-4.20 (m, 1H), $4.43(\mathrm{t}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.46-7.48(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2,-5.0,18.1,25.6,25.8,29.7,39.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=17.9 \mathrm{~Hz}\right), 43.0\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=20.3 \mathrm{~Hz}\right), 67.3$ $\left(\mathrm{d}, J_{\mathrm{C}, \mathrm{F}}=3.6 \mathrm{~Hz}\right), 73.2,73.6\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=27.4\right.$ and 20.3 Hz$), 120.6\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=293.3\right.$ and 281.4 Hz$), 126.8$, 127.7, 127.8, 128.4, 129.0, 129.9, 132.5, 137.8; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-104.6(\mathrm{~d}, J=199.8$ $\mathrm{Hz}),-115.2(\mathrm{~d}, J=199.8 \mathrm{~Hz})$. HRFAB-MS $(\mathrm{m} / \mathrm{z}) 527.1700\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{SiSe}\left(\mathrm{M}^{+}+\mathrm{H}\right)$ 527.1696.

3-Benzyloxymethyl-2-tert-butyldimethylsiloxy-1,1-difluoro-4-vinylcyclobutane (16)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ solution of $\mathbf{1 5}(4.2 \mathrm{~g}, 7.99 \mathrm{mmol}, c a .2 .6: 1$ of diastereomeric mixture) was treated with m-CPBA $(70 \%, 1.99 \mathrm{~g}, 8.07 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 min at same temperature, then added $\mathrm{Et}_{3} \mathrm{~N}(5.58 \mathrm{~mL}, 40 \mathrm{mmol})$. The mixture was refluxed for 20 h . The mixture was partitioned between aq. saturated NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=60 / 1$) of the organic layer gave an inseparable mixture of $16(2.52 \mathrm{~g}, 86 \%$ for two steps, 2.6:1) as an oil. Analytical sample was prepared by preparative TLC (hexane/AcOEt = 40/1, ca. 2:1 mixture): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09(\mathrm{~s}, 4.5 \mathrm{H}), 0.10(\mathrm{~s}, 4.5 \mathrm{H}), 0.90(\mathrm{~s}, 13.5 \mathrm{H}), 2.02-2.09(\mathrm{~m}$, $1 \mathrm{H}), 2.45-2.49(\mathrm{~m}, 0.5 \mathrm{H}), 2.79-2.88(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.34(\mathrm{~m}, 0.5 \mathrm{H}), 3.49-3.62(\mathrm{~m}, 3 \mathrm{H}), 4.23-4.30(\mathrm{~m}$, $1 \mathrm{H}), 4.33-4.44(\mathrm{~m}, 0.5 \mathrm{H}), 4.47-4.55(\mathrm{~m}, 3 \mathrm{H}), 5.15-5.21(\mathrm{~m}, 3 \mathrm{H}), 5.75(\mathrm{dt}, J=16.4 \mathrm{and} 9.6 \mathrm{~Hz}, 0.5 \mathrm{H})$, 5.84 (ddd, $J=17.2,10.4$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.27-7.37(\mathrm{~m}, 7.5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR for major- 16 (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.2,-5.0,18.1,25.6,42.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=23.9 \mathrm{~Hz}\right), 44.4\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=22.7\right.$ and 19.1 Hz$), 67.0(\mathrm{~d}$, $\left.J_{\mathrm{C}, \mathrm{F}}=2.4 \mathrm{~Hz}\right), 71.4\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=23.9\right.$ and 17.9 Hz$), 73.0,118.9,120.1\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=296.3\right.$ and 274.8 Hz$)$, 127.5, 127.6, 128.4, $130.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=6.0 \mathrm{~Hz}\right), 138.1 ;{ }^{19} \mathrm{~F}$ NMR for major-16 $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-91.4$ (d, $J=190.7 \mathrm{~Hz}$), $-136.0(\mathrm{~d}, J=190.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR for minor $-16\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2,-5.0$, $18.1,25.6,40.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=17.9 \mathrm{~Hz}\right), 48.0\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=21.5 \mathrm{~Hz}\right), 67.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=3.6 \mathrm{~Hz}\right), 73.1,73.6\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=\right.$ 26.2 and 19.1 Hz), $119.7\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=294.5\right.$ and 281.4 Hz), 120.2, 127.6, 127.8, 128.3, $130.0\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=3.6\right.$ Hz), 138.1; ${ }^{19} \mathrm{~F}$ NMR for minor- $\mathbf{1 6}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-100.2(\mathrm{~d}, J=199.8 \mathrm{~Hz}),-118.0(\mathrm{~d}, J=199.8$ $\mathrm{Hz})$. HRFAB-MS $(\mathrm{m} / z) 369.2086\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}+\mathrm{H}\right) 369.2061$.

3,4-Bis-benzyloxymethyl-2,2-difluorocyclobutanol (17)

To a mixture of $\mathbf{1 6}\left(2.7 \mathrm{~g}, 7.35 \mathrm{mmol}, c a .2 .6: 1\right.$ of diastereomeric mixture), $\mathrm{NaIO}_{4}(12.56 \mathrm{~g}, 58.8$ $\mathrm{mmol})$ and 2,6-lutidine ($1.63 \mathrm{~mL}, 14.7 \mathrm{mmol}$) in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O}(3 / 1,200 \mathrm{~mL})$ was added $\mathrm{OsO}_{4}(0.16$ $\mathrm{mol} / \mathrm{L}$ in $\mathrm{H}_{2} \mathrm{O}, 938 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$). The resulting suspension was stirred at rt for 7 h . After filtration of the mixture through a celite pad, the filtrate was evaporated below $30{ }^{\circ} \mathrm{C}$ until half volume of the volatiles were removed. To the residue was added $\mathrm{MeOH}(100 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(2.78 \mathrm{~g}, 73.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred further 30 min at same temperature, then added acetone (3 mL). The mixture was filtrated through a celite pad, then the filtrate was evaporated. The residue was partitioned between 1 N HCl and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Flush column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=1 / 1$) of the organic layer gave crude alcohol ($c a .2 .25 \mathrm{~g}$). This was used for next step without further purification. To an anhydrous THF (30 mL) solution of above alcohol was added $\mathrm{NaH}(60 \%, 294 \mathrm{mg}, 7.35 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After 20 min stirring of the resulting mixture, this was treated with $\mathrm{BnBr}(1.05 \mathrm{~mL}, 8.82 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NI}(2.71 \mathrm{~g}, 7.35 \mathrm{mmol})$. The mixture was stirred further 6 h at rt . Then, this was partitioned between aq. saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and AcOEt. After evaporation of all of volatiles of the organic layer, this was dissolved in THF (50 mL), then added $\mathrm{AcOH}(1.26 \mathrm{~mL}, 22.05 \mathrm{mmol})$ and $\mathrm{Bu} \mathrm{A}_{4} \mathrm{NF}(1.0 \mathrm{~mol} / \mathrm{L}$ in THF, $16.2 \mathrm{~mL}, 16.2 \mathrm{mmol}$). After 14 h stirring of the resulting mixture at rt , the mixture was partitioned between aq. saturated NaHCO_{3} and AcOEt. Column chromatography on silica gel (hexane/AcOEt = 1/1) of the organic layer gave an inseparable mixture of $17(1.66 \mathrm{~g}, 65 \%$ for four steps, ca. 3.0:1) as an oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.86-1.93(\mathrm{~m}, 1 \mathrm{H}), 2,05(\mathrm{br}-\mathrm{s}, 1.3 \mathrm{H})$, 2.39-2.42 (m, 0.3H), 2.56-2.68 (m, 1H), 2.90-2.92 (m, 0.3H), $3.55(\mathrm{dd}, J=9.6$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.59-3.64 (m, 2.6H), 3.67-3.77 (m, 1,6H), 4.20-4.27 (m, 1H), 4.34-4.41 (m, 0.3H), 4.43-4.57 (m, 5.2H), 7.28-7.37 (m, 13H); ${ }^{13} \mathrm{C}$ NMR for major-17 $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 40.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=20.3 \mathrm{~Hz}\right), 41.9\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}\right.$ $=20.3 \mathrm{~Hz}), 66.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=6.0 \mathrm{~Hz}\right), 68.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=2.4 \mathrm{~Hz}\right), 72.3\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=25.0\right.$ and 19.1 Hz$), 73.0,73.1$, $119.9\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=295.7\right.$ and 271.9 Hz$), 127.5,127.6,127.7,127.7,128.4,128.4,137.9,138.0 ;{ }^{19} \mathrm{~F}$ NMR for major-17 $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-92.7(\mathrm{~d}, J=199.8 \mathrm{~Hz}),-137.6(\mathrm{~d}, J=199.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR for minor-17 ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 39.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=17.9 \mathrm{~Hz}\right), 43.1\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=20.3 \mathrm{~Hz}\right), 64.8,67.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=3.6\right.$ $\mathrm{Hz}), 73.2,73.3,74.3\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=25.1\right.$ and 19.1 Hz$), 120.1\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=287.4\right.$ and 270.7 Hz$), 127.6,127.6$, 127.7, 127.8, 128.4, 128.5, 137.8, 137.9; ${ }^{19} \mathrm{~F}$ NMR for minor- 17 ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-104.6(\mathrm{~d}, J=$ 199.8 Hz), $-120.1(\mathrm{~d}, ~ J=199.8 \mathrm{~Hz})$. HRFAB-MS $(\mathrm{m} / \mathrm{z}) 349.1613\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{O}_{3}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 349.1615$.
(\pm)-t-3, c-4-3,4-Bis(benzyloxymethyl)-1,1-difluorocyclobut-r-2-ylamine (18)
To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ solution of $\mathbf{1 7}(700 \mathrm{mg}, 2.01 \mathrm{mmol}$, ca. $3: 1)$ was added Dess-Martin periodinane $(1.45 \mathrm{~g}, 3.42 \mathrm{mmol})$. The resulting mixture was stirred for 1 h at rt . To the mixture was added brine (50 mL) then stirred further 20 min . The mixture was partitioned between aq. saturated NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of all of volatiles of the organic layer gave a crude aldehyde (ca. 950 mg).The aldehyde was dissolved in pyridine $(30 \mathrm{~mL})$. The pyridine solution was treated with $\mathrm{HONH}_{2} \cdot \mathrm{HCl}(1.4$ $\mathrm{g}, 20.1 \mathrm{mmol}$). The resulting mixture was stirred for 3 days at rt . The resulting mixture was partitioned between NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Flush column chromatography on silica gel (hexane/AcOEt $=1 / 1$) gave a crude oxime (589 mg). This was well dried under vacuum condition by using $\mathrm{P}_{2} \mathrm{O}_{5}$ for 20 h . This was used for next reaction without further purification. To a THF (20 mL) solution of above oxime was dropwise added $\mathrm{LiAlH}_{4}(1.0 \mathrm{~mol} / \mathrm{L}$ in THF, $4.02 \mathrm{~mL}, 4.02 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$. After 30 min stirring of the resulting mixture $-40{ }^{\circ} \mathrm{C}$, this was stirred further 2 h at rt . The mixture was carefully treated with $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$, aq. $15 \% \mathrm{NaOH}(6 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ sequentially. After filtration of the mixture through a celite pad, the filtrate was partitioned between brine and AcOEt. Column chromatography on silica gel (hexane/AcOEt $=1 / 3$) of the organic layer gave $\mathbf{1 8}\left(220 \mathrm{mg}, 32 \%\right.$ for three steps) as an oil: ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.55(\mathrm{br}-\mathrm{s}, 2 \mathrm{H}), 1.62-1.69(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.75(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dt}, J=11.6$ and $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=9.8$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=9.8$ and $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.67(\mathrm{~m}$, $2 \mathrm{H}), 4.49(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 10 \mathrm{~J}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 40.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=20.4 \mathrm{~Hz}\right), 43.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=20.4 \mathrm{~Hz}\right), 56.5\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=22.8 \mathrm{~Hz}\right), 66.3(\mathrm{~d}$, $\left.J_{\mathrm{C}, \mathrm{F}}=7.3 \mathrm{~Hz}\right), 69.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=2.4 \mathrm{~Hz}\right), 73.0,73.1,120.8\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=300.4\right.$ and 271.6 Hz$), 127.5,127.5$, $127.6,127.6,128.3,128.4,138.1,138.2 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-91.8(\mathrm{~d}, J=190.7 \mathrm{~Hz})$, $-136.7(\mathrm{dd}, J=190.7$ and 18.2 Hz$)$. HRFAB-MS $(m / z) 348.1786\left(\mathrm{M}^{+}+\mathrm{H}\right)$ calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{NO}_{2}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 348.1775$.

NOE experiments of 18

18

(\pm)-1-[t-3,c-4-3,4-Bis(hydroxymethyl)-1,1-difluorocyclobut-r-2-yl]-thymine (4)

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.7 \mathrm{~mL})$ solution of β-methoxy- α-metacrylic acid ${ }^{6}$ ($208 \mathrm{mg}, 1.79 \mathrm{mmol}$) was added oxalyl chloride ($172 \mu \mathrm{~L}, 1.97 \mathrm{mmol}$) and DMF (one drop) at rt. The resulting mixture was stirred for 40 \min at same temperature. After evaporation of all of volatiles, the residue was dissolved in dry benzene $(3.5 \mathrm{~mL})$ then added a benzene (3.5 mL) suspension of silver cyanate ($295 \mathrm{mg}, 1.97 \mathrm{mmol}$). The mixture was refluxed for 30 min , then cooled to rt . The resulting supernatant solution include isocyanate (19) was slowly transferred over 1.5 min via cannula to a THF (9.3 mL) solution of $\mathbf{1 8}$ (207 $\mathrm{mg}, 0.596 \mathrm{mmol}$) at $-40{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 40 min at same temperature. After worming to rt of the mixture, this was stirred further 2 h at rt . The residue was roughly purified by flush column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=1 / 1$). This gave a crude adduct, which was used for next reaction without further purification. The above residue was dissolved in $\mathrm{EtOH}(10 \mathrm{~mL})$, 1,4-dioxane (10 mL) and $29 \% \mathrm{NH}_{4} \mathrm{OH}^{7}(20 \mathrm{~mL})$. The resulting solution was heated at $110{ }^{\circ} \mathrm{C}$ in a shield tube for 15 h . After evaporation of all of volatiles, the residue was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL})$. This was treated with $20 \mathrm{wt} \%$ of $\mathrm{Pd}(\mathrm{OH})_{2}(200 \mathrm{mg})$ under positive pressure of $\mathrm{H}_{2}(1 \mathrm{~atm})$ at rt for 4 h . After filtration through a celite pad, the filtrate was purified by preparative TLC $\left(\mathrm{CHCl}_{3} /\right.$ acetone $\left.=1 / 1\right)$. This gave 4 ($93 \mathrm{mg}, 56 \%$ for three steps). This was recrystalyzed from $\mathrm{MeOH} / 1,2$-dichloroethane. Mp $=235-237{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.75(\mathrm{~m}, 1 \mathrm{H}), 3.67$
(dd, $J=11.5$ and $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (dd, $J=11.5$ and $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (dd, $J=11.5$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{dd}, J=11.5$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.16(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $12.8,37.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=16.7 \mathrm{~Hz}\right), 46.4\left(\mathrm{t}, J_{\mathrm{C}, \mathrm{F}}=19.1 \mathrm{~Hz}\right), 58.0\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=25.0\right.$ and 17.9 Hz$), 59,0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=\right.$ $7.2 \mathrm{~Hz}), 61.9,111.8,121.9\left(\mathrm{dd}, J_{\mathrm{C}, \mathrm{F}}=295.7\right.$ and 271.8 Hz), $140.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=2.4 \mathrm{~Hz}\right), 153.4,166.7 ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-86.4(\mathrm{~d}, J=196.2 \mathrm{~Hz}),-132.7(\mathrm{~d}, J=196.2 \mathrm{~Hz})$. FAB-MS $(m / z) 277$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 47.83; H, 5.11; N, 10.14. Found: C, 47.48; H, 5.06; N, 10.02.

NOE experiments of 4

6) Csuk, R.; Scholz, Y. Tetrahedron 1995, 51, 7193.
7) Wang, P.; Agrofoglio, L. A.; Newton, M. G.; Chu, C. K. J. Org. Chem. 1999, 64, 4173.
16. Table SI-1. SOMO and LUMO values of model radical intermediates $\mathbf{5 c} \mathbf{c}^{\mathbf{\prime}} \mathbf{- 5} \mathbf{f}^{\mathbf{\prime}}$

radical	$\mathbf{5} \mathbf{c}^{\prime} \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{X}=\mathrm{F}$ $\mathbf{5} \mathbf{e}^{\prime} \mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{F}$ $\mathbf{5} \mathbf{f}^{\prime} \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{X}=\mathrm{H}$	
$\mathbf{5} \mathbf{c}^{\prime}$	$\mathrm{SOMO}(\mathrm{eV})^{a}$	$\mathrm{LUMO}(\mathrm{eV})^{b}$
$\mathbf{5 e}^{\prime}$	-0.22456	0.03084
$\mathbf{5 f}^{\prime}$	-0.21952	0.04128
	-0.22244	0.04433

${ }^{a}$ Calculations were carried out by usingUB3LYP/6-31G.
${ }^{b}$ Calculations were carried out by usingUB3LYP/6-31G $*$.

C: \WINNMR98\COMMON _DEFAULT.ALS
kma37179

S9
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

DFile
C: \WINNMR 98 \COMMON \backslash DEFAULT.ALS kma37179
Sat Sep 0 Sat
1H
NON

OBNUC
EXMOD

OBFIN
OBINT OBFIN
POINT
FREOU

C: \backslash WINNMR98
kma38003
COMMON \backslash DEFAULT. ALS

 7e ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$	4	
! ${ }_{8}$		

EXMOD
OBFRQ
OBSET
OBFRQ
OBSET
OBFIN
OBFIN
POINT
FREOU
POINT
FREQU
SCANS
EREQU
SCANS
ACQTM
ACQTM
PD
PW1
PW1
IRNUC
CTEMP
$\begin{array}{ll}\text { IRNUC } & \text { 1H } \\ \text { CTEMP } & \\ \text { SLVNT } & \text { CDCL3 }\end{array}$
399
124
10500
32
799
4.
2.
399.65 MHz
124.00 KH
1500.00 K
32768

32768
992.01 Hz
40
4.1001 sec
2.9000 sec
5.80 usec

EXREF
BF
RGAIN
24.5 c
0.00 ppm
0.12 Hz

DFILE
COANT
DATIM
OBNUC
EXMOD
EXMOD
OBFRQ
OBSET
OBFIN
OBSET
OBFIN
POINT
POINT
FREQU
FREQU
ACQTM
PD
PW1
IRN
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN
${ }^{1 \mathrm{H}}$
C: \WINNMR98\COMMON \backslash _DEFAULT.ALS
kma3712212
Mon Oct 10 12:51:21 2011
1 H
1H
NON
399.65 MHz
124.00 KHz
10500.00 Hz
32768
7992.01 Hz
40
4.1001 sec
2.9000 sec
5.80 use
23.4 c

0.00 pp
0.12 Hz
13

minor- $\mathbf{1 2}$
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

(

 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)			

C: \backslash WINNMR $98 \backslash$ COMMON \backslash DEFAULT.ALS

DFILE DATIM
OBNUC OBFRQ OBFRQ
OBSET
OBFIN OBFIN
POINT POINT
FREQU
SCANS FREQU
SCANS
ACOTM SCANS PD
PW1
IRNUC IRNUC
CTEMP CTEMP
SLVNT SLVNT ${ }_{\mathrm{BF}}^{\mathrm{EXREF}}$ $\underset{\text { RGAIN }}{\text { BF }}$

```
C:\WINNMR98\COMMON\DEEAULT.ALS
kma37155
Fue Oct 11 08:31:26 2011
IH
        399.65 MHz
        124.00 KHz
        10500.00 H
        7992.01 Hz
        40
        .
        5.80 usec
            23.4 c
CDCL3
            l
```


17 (ca. 3:1 mixture)
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$)

C: $\backslash W$ INNMR
kma 38007
kma 38007 COMMON \DEFAULT.ALS
DATIM
XMOD
OBFRQ 399.65 MHz
124.00 KHz
10500.00 Hz
32768
7992.01 Hz
40 Hz
4.1001 sec
2.9000 sec
5.80 usec

24.5 c

0.00 ppm
0.12 Hz
12

18
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

