Supplementary Information

Contents

1. General	······S-2
2. Preparationof 5a	······S-2
3. Radical reaction of 5a: General procedure for the redical cyclization reaction	·····S-3
4. Preparation of 5b	······S-4
5. Preparation of 5c	S-5
6. Radical reaction of 5c	·····S-7
7. Preparation of 5d	S-7
8. Radical reaction of 5d	·····S-8
9. Preparation of 5e	·····S-8
10. Radical reaction of 5e	S-9
11. Preparation of 5f	······S-9
12. Radical reaction of 5f	S-10
13. Preparatio of radical precursor 13	······S-11
14. Radical cyclization of 13: Transformation to	
[4-Benzyloxymethyl-3-(<i>tert</i> -butyldimethylsiloxy)-2,2-difluorocyclobutyl]-acetic	
acid methyl ester (14) (Table 2,	
entry5)	·····S-14
15. Synthesis of 4	······S-15
16. Table SI-1	······S-18
17. ¹ H and ¹³ C NMR spectra	······S-19

1. General

NMR (¹H, ¹³C, and ¹⁹F) spectra were recorded with a Jeol JNMAL-400 or Jeol JNM ECA-500 instruments (¹H, 500 or 400 MHz, ¹³C. 125 MHz, ¹⁹F. 470 MHz). Chemical sifts are reported relative to Me₄Si, except for fluorine-containing compounds where CFCl₃ was used as an internal standard. Mass spectra (MS) were taken in FAB mode with *m*-nitrobenzyl alcohol as a matrix. Column chromatography was carried out on silica gel (Micro Bead Silica Gel PSQ 100B, Fuji Silysia Chemical Ltd.) or neutral silica gel (Silica Gel 60N, Kanto Chemical Co., Inc.). Thin-layer chromatography (TLC) was performed on precoated silica gel plate F₂₅₄. THF was distilled from benzophenone ketyl.

2. Preparation of 5a

4-Bromo-3-(*tert*-butyldiphenylsilanyloxy)-4,4-difluoro-butyric acid ethyl ester (S2)

To a CH₂Cl₂ (27 mL) solution of **S1**¹ (4.56 g, 18.4 mmol) was added imidazole (2.13 g, 31.3 mmol) at 0 °C. After 20 min stirring of the resulting mixture, TBDPSCl (4.79 mL, 18.4 mmol) was dropwise added, then allowed to rt for 24 h. The mixture was partitioned between aq. saturated NaHCO₃ and CH₂Cl₂. Column chromatography on silica gel (hexane/Et₂O = 10/1) of the organic layer gave **S2** (7.77 g, 87%) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 1.06 (s, 9H), 1.12 (t, *J* = 7.2 Hz, 3H), 2.67-2.76 (m, 2H), 3.83-3.90 (m, 2H), 4.35-4.41 (m, 1H), 7.25-7.48 (m, 6H), 7.61-7.63 (m, 2H), 6.69-7.75 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 13.9, 19.4, 26.9, 38.9, 61.0, 74.2 (dd, *J*_{C,F} = 28.6 and 22.4 Hz), 124.5 (dd, *J*_{C,F} = 312.3 and 308.7 Hz), 127.5, 127.6, 129.8, 130.1, 131.5, 132.8, 135.8, 136.3, 169.1. HRFAB-MS (*m/z*) 485.0959 (M⁺+H) calcd for C₂₂H₂₈BrF₂O₃Si (M⁺+H) 485.0959.

6-Bromo-5-(tert-butyldiphenylsilanyloxy)-6,6-difluoro-hex-2-enoic acid methyl ester (S3)

To a stirred solution CH₂Cl₂ (80 mL) of **S2** (3.8 g, 7.83 mmol) was dropwise added DIBAL-H (1.0 mol.L in toluene, 15.7 mL, 15.7 mmol) over 3 min at -80 °C. The resulting mixture was stirred further 30 min at same temperature. To the mixture was added aq. saturated Rochelle salt (*ca.* 100 mL) then allowed to warm to rt. The mixture was filtrated through a celite pad, the filtrate was partitioned between brine and CH₂Cl₂. The resulting organic layer was dried by Na₂SO₄ then evaporated all of volatiles. The residue was treated with MeCN (150 mL) and Ph₃P=CHCO₂Me (7.85 g, 23.5 mmol). The mixture was stirred further 14 h at rt. The mixture was partitioned between brine and AcOEt. Column chromatography on silica gel (hexane/AcOEt = 10/1) of the organic layer gave **S3** (2.77 g, 71%) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 1.07 (s, 9H), 2.48-2.58 (m, 2H), 3.06 (s, 3H), 3.83-3.89 (m 1H), 5.67 (dt, *J* = 15.6 and 1.6 Hz, 1H), 6.67 (dt, *J* = 15.6 and 7.2 Hz, 1H), 7.38-7.48 (m, 6H), 7.66-7.68 (m, 4H) ; ¹³C NMR (125 MHz, CDCl₃) δ 19.5, 26.8, 36.1, 51.4, 76.4 (dd, *J*_{C,F} = 26.4 and 21.5 Hz), 124.2, 124.7 (dd, *J*_{C,F} = 312.3, and 308.8 Hz), 127.7, 127.8, 130.1, 130.2, 131.7, 132.4, 136.0, 136.1, 142.3, 166.1. HRFAB-MS (*m*/*z*) 497.0983 (M⁺+H) calcd for C₂₃H₂₈BrF₂O₃Si (M⁺+H) 497.0959.

Benzoic acid 1-(bromodifluoromethyl)-4-methoxycarbonyl-but-3-enyl ester (5a)

To a THF (30 mL) solution of **S3** (1.39 g, 2.79 mmol) was added AcOH (176 μ L, 3.07 mmol) and TBAF (1.0 mol/L solution in THF, 3.07 mL, 3.07 mmol). The resulting mixture was stirred for 20 h at rt. The mixture was partitioned between aq. saturated NaHCO₃ and CH₂Cl₂. After evaporation of all of volatiles, the residue was roughly purified by column chromatography on silica gel (hexane/AcOEt = 4.1) gave aclude alcohol. The residue was dissolved in CH₂Cl₂ (30 mL), then treated with *i*-Pr₂NEt

(486 μL, 2.77 mmol), DMAP (342 mg, 2.79 mmol) and BzCl (392 μL, 3.35 mmol). The mixture was stirred for 20 h at rt. The resulting mixture was partitioned between aq. saturated NaHCO₃ and CH₂Cl₂. Column chromatography on silica gel (hexane/Et₂O = 3/1) of the organic layer gave **5a** (784 mg, 77%) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 2.77-2.86 (m, 1H), 2.88-2.95 (m, !H), 3.69 (s, 3H), 5.67 (ddd, J = 16.8, 8.4 and 4.0 Hz, 1H), 5.97 (dt, J = 15.6 and 1.6 Hz, 1H), 6.89 (dt, J = 15.6 and 7.6 Hz, 1H), 7.47-7.51 (m, 2H), 7.60-7.65 (m, 1H), 8.07-8.09 (m, 2H); ¹³C NMR (500 MHz, CDCl₃) δ 32.4, 51.6, 74.0 (t, $J_{C,F} = 31.1$ Hz), 121.0 (t, $J_{C,F} = 310.0$ Hz), 125.1, 128.4, 128.6, 130.1, 133.9, 140.4, 164.6, 165.9. HRFAB-MS (m/z) 363.0073 (M⁺+H) calcd for C₁₄H₁₄BrF₂O₄ (M⁺+H) 363.0044.

1) Jagodzinska, M.; Huguenot, F.; Zanda, M. Tetrahedron 2007, 63, 2042.

3. Radical reaction of 5a: General procedure for the redical cyclization reaction

To a refluxing solution of **5** (337 mg, 0.93 mmol) in toluene (9 mL) was dropwise added a toluene (9 mL) solution of Bu₃SnH (500 μ L, 1.86 nnol) and AIBN (31 mg, 0.19 mmol) over 4 h. The resulting mixture was stirred further 1 h at same temperature. After evaporation of all of volatiles, the residue was roughly purified by column chromatography on silica gel (hexane/Et₂O = 3/1). The crude mixture was further purified by preparative TLC (hexane/AcOEt = 8/1). This gave a mixture of **7a** and *trans*-**6a** (102 mg, 39%,, the ratio of **7a**/*trans*-**6a** = 100:22, based on the integration of ¹H NMR) and *cis*-**6a** (57 mg, 22%, as an oil).

Physical data for *cis*-6a: ¹H NMR (400 MHz, CDCl₃) δ 1.67-1.75 (m, 1H), 2.55-2.79 (m, 3H), 2.87-2.99 (m, 1H), 3.71 (s, 1H), 5.35-5.44 (m, 1H), 7.44-7.48 (m, 2H), 7.57-7.61 (m, 1H), 8.04-8.08 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 26.5 (d, $J_{C,F} = 19.1$ Hz), 31.8 (d, $J_{C,F} = 7.3$ Hz). 36.5 (t, $J_{C,F} = 21.5$ Hz), 51.9, 70.3 (dd, $J_{C,F} = 27.6$ and 18.0 Hz), 119.5 (dd, $J_{C,F} = 298.0$ and 278.9 Hz), 128.5, 128.9, 129.9, 133.5, 165.1, 171.3. HRFAB-MS (*m*/*z*) 285.0925 (M⁺+H) calcd for C₁₄H₁₅F₂O₄ (M⁺+H) 285.0938. **NOE experiments of** *cis*-6a

Physical data for *trans*-6a: The physical data for *trans*-6a is illustrated at later stage.

Partial data for 7a: ¹H NMR (400 MHz, CDCl₃) δ 2.72-2.84 (m, 2H), 3.78 (s, 3H), 5.33-5.43 (m, 1H), 5.95 (ddd, $J_{C,F} = 57.6$ and 54.4 Hz, J = 3.2 Hz, 1H), 5.99 (dt, J = 15.6 and 1.6 Hz, 1H), 6.94 (dt, J = 15.6 and 7.2 Hz, 1H), 7.45-7.49 (m, 2H), 7.58-7.63 (m, 1H), 8.04-8.09 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 30.2, 51.6, 70.4 (t, $J_{C,F} = 25.1$ Hz), 113.4 (t, $J_{C,F} = 246.6$ Hz), 124.8, 128.6, 128.8, 129.9, 133.7, 141.4, 165.3, 166.1. FAB-MS (*m/z*) 285 (M⁺+H).

4. Preparation of 5b

Benzoic acid 1-(ethoxycarbonyl-difluoromethyl)-3-tributylstannyl-allyl ester (S5)

To a THF (7 mL) suspension of activated Zn (1.38 g) was added TMSCl (190 µL, 1.38 mmol). The resulting mixture was stirred at 60 °C for 15 min, then cooled to rt. To the mixture was added THF (30 mL) and BrF₂CCO₂Et (2.72 mL, 21.2 mmol) then heated at 60 °C for 3 min. A vigorous reflux was observed during this period. The resulting Zn enolate solution was quickly transferred to a THF (30 mL) solution of S4²⁾ (3.66 g, 10.6 mmol) at 0 $^{\circ}$ C, then the mixture was stirred at rt for 2 h. The mixture was partitioned between aq. saturated NaHCO₃ and AcOEt. Flush column chromatography on silica gel (hexane/Et₂O = 3/1) of the organic layer gave a crude alcohol (*ca.* 4.86 g). To a CH₂Cl₂ (50 mL) solution of above alcohol was added Et₃N (2.22 mL, 15.9 mmol) and BzCl (1.49 mL, 12.7 mmol) at 0°C. After 25h stirring of the resulting mixture at rt, this was partitioned between aq. saturated NaHCO₃ and CH_2Cl_2 . Column chromatography on silica gel (hexane/Et₂O = 11/1) of the organic layer gave S5 (5.28 g, 86% for two steps) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 0.82-0.98 (m, 15H), 1.22-1.33 (m, 9H), 1.54-1.57 (m, 6H), 4.25-4.33 (m, 2H), 5.89-6.12 (m, 2H), 6.54-6.74 (m, 1H), 7.44-7.48 (m, 2H), 7.58-7.62 (m, 1H), 8.01-8.08 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 9.6, 13.6, 13.9, 27.2, 29.0, 63.1, 75.0 (dd, $J_{C,F}$ = 29.8 and 25.0 Hz), 112.9 (dd, $J_{C,F}$ = 256.3 and 252.8 Hz), 128.6, 129.1, 130.0, 133.5, 135.3, 140.3, 162.5 (t, $J_{C,F}$ = 31.0 Hz), 164.5. HRFAB-MS (*m/z*) 575.2012 (M⁺+H) calcd for C₂₆H₄₁ $F_2O_4Sn (M^++H) 575.1995.$

Benzoic acid 1-[2-(tert-butyldimethylsiloxy)-1,1-difluoroethyl]-3-iodoallyl ester (S6)

To a MeOH (50 mL) solution of S5 (5.11 g, 8.9 mmol) and AcOH (1.53 mL, 26.7 mmol) was portionwise added NaBH₄ (4.04 g, 106.8 mmol) at -40 °C. The resulting mixture was stirred at 0 °C for

1 h. The mixture was partitioned between aq. saturated NaHCO₃ and CHCl₃. After evaporation of all of volatiles of the organic layer, crude alcohol was obtained. To a CH₂Cl₂ (50 mL) solution of above alcohol was added DMAP (437 mg, 3.56 mmol), imidazole (727 mg, 10.68 mmol) and TBSCl (1.61 g, 10.68 mmol) at -40 °C. The resulting mixture was stirred at 0 °C for 13 h. The mixture was partitioned between aq.

saturated NaHCO₃ and CHCl₃. After evaporation of all of volatiles of the organic layer, crude silyl ether was obtained. This was treated with THF (100 mL) and I₂ (4.52 g, 17.8 mmol). After 1 h stirring at rt of tne resulting mixture, this was partitioned between aq. saturated Na₂S₂O₃, aq. saturated NaHCO₃ and AcOEt. Column chromatography on silica gel (hexane/Et₂O = 15/1) of the organic layer gave **S6** (2.83 g, 66% for three steps) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 0.00 (s, 3H), 0.03 (s, 3H), 0.86 (s, 9H), 3.80-3.93 (m, 2H), 5.83 (ddd, *J* = 14.8, 8.8 and 7.2 Hz, 1H), 6.69 (dd, *J* = 14.8 and 7.2 Hz, 1H), 6.78 (d, *J* = 14.8 Hz, 1H), 7.44-7.48 (m, 2H), 7.57-7.61 (m, 1H), 8.04-8.06 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ –5.7, 18.1, 25.6, 62.4 (dd, *J*_{C,F} = 34.6 and 31.0 Hz), 72.6 (dd, *J*_{C,F} = 32.4 and 25.1 Hz), 84.9, 119.2 (dd, *J*_{C,F} = 251.3 and 247.8 Hz), 128.6, 129.1, 129.8, 133.6, 136.2, 164.4. HRFAB-MS (*m/z*) 483.0680 (M⁺+H) calcd for C₁₈H₂₆ F₂IO₃Si (M⁺+H) 483.0664.

Benzoic acid 1-(1,1-difluoro-2-phenoxythiocarbonyloxyethyl)-3-methoxycarbonylallyl ester (5b)

A mixture of **S6** (2.65 g, 5.52 mmol), PdCl₂(MeCN)₂ (285 mg, 1.1 mmol) and *i*-Pr₂NEt (1.01 mL, 5.8 mmol) in MeOH (40 mL) was heated at 50 °C under positive pressure of CO (1 atm). After 1.5h heating of the resulting mixture, this was filtrated through a celite pad, then the filtrate was partitioned between aq. saturated NaHCO₃ and AcOEt. Evaporation of the organic layer gave a crude methyl acrylate (*ca.* 2.21 g). To a mixture of above acrylate and AcOH (379 μ L, mmol) in THF (40 mL) was added Bu₄NF (1.0 mol/L in THF, 6.62 mL, 6.62 mmol). The resulting mixture was stirred at rt for 3.5h. This was partitioned bwtween aq. saturated NaHCO₃ and AcOEt. Evaporation of the organic layer gave a crude methyl acrylate (*ca.* 1.1). Therefore, this was used for next reaction without further purification. The mixture was dissolved in CH₂Cl₂ (40 mL), then treated with pyridine (893 μ L, 11.04 mmol) and PhOC(S)Cl (764 μ L, 5.52 mmol) at 0 °C. After 1.5 h stirring of the resulting mixture, this was partitioned between aq. saturated NaHCO₃

and CH₂Cl₂. Column chromatography on silica gel (hexane/AcOEt = 3/1) gave a mixture of thiocarbonate **5b** and **S7** (*ca.* 1:1 mixture, 760 mg, 32% for three steps). Preparative TLC (hexane/AcOEt = 17/1, 8 times evolution) gave a pure **5b** as an oil: ¹H NMR (400 MHz, CD₂Cl₂) δ 3.74 (s, 1H), 4.82-4.98 (m, 2H), 6.06-6.14 (m, 1H), 6.25 (dd, *J* = 15.6 and 1.6 Hz, 1H), 7.02 (dd, *J* = 15.6 and 5.6 Hz, 1H), 7.07-7.09 (m, 2H), 7.30-7.34 (m, 1H), 7.41-7.45 (m, 2H), 7.49-7.53 (m, 2H), 7.63-7.67 (m, 1H), 8.10-8.12 (m, 2H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 52.3, 69.9 (dd, *J*_{C,F} = 34.6 and 29.8 Hz), 70.9 (dd, *J*_{C,F} = 32.2 and 26.2 Hz), 118.5 (t, *J*_{C,F} = 248.0 Hz), 122.0, 126.7, 127.3, 128.8, 129.2, 130.1, 130.4, 134.5, 136.7, 153.9, 164.6, 165.6, 194.5. HRFAB-MS (*m*/*z*) 437.0861 (M⁺+H) calcd for C₂₁H₁₉F₂O₆S (M⁺+H) 437.0870.

2) Senapati, B. K.; Gao, L.; Lee, S. II; Hwang, G-S.; Ryu, D. H. Org. Lett. 2010, 12, 5088.

5. Preparation of 5c

To a stirring mixture of Cu(OAc)₂ (106 mg, o.59 mmol) in AcOH (20 mL) was added activated Zn powder (1.9 g) at 110 °C. The resulting suspension was vigorously stirred further 3 min at same temperature. After decantation of most of AcOH, the crude Zn/Cu couple was sequentially washed by AcOH (20 mL) and Et₂O (20 mL). To a THF (70 mL) suspension of above wet Zn/Cu couple was carefully added ethyl bromodifluoroacetate (3.0 mL, 23.4 mmol) at 80 °C, then refluxed further 5 min. The resulting zinc enolate was cooled at 0 °C. To this, a THF (20 mL) solution of **S8**³ (2.9 g, 14.6 mmol) was dropwise added. The resulting mixture was stirred at rt further 1 h. After filtration of the mixture through a celite pad, the filtrate was partitioned between aq. saturated NaHCO₃ and AcOEt. Column chromatography on silica gel (hexane/Et₂O = 3/1) of the organic layer gave **S9** (2.98 g, 63%)

as an oil: ¹H NMR (400 MHz, CDCl₃) δ 1.34 (t, *J* = 7.4 Hz, 3H), 2.79 (br-s, 1H), 3.08 (dd, *J* = 12.6 and 10.4 Hz, 1H), 3.26 (dd, *J* = 12.6 and 3.0 Hz, 1H), 4.10-2.18 (m, 1H), 4.35 (q, *J* = 7.4 Hz, 2H), 7.29-7.31 (m, 3H), 7.53-7.56 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 13.7, 28.2, 63.3, 70.3 (dd, *J*_{C,F} = 30.0 and 25.2 Hz), 113.8 (dd, *J*_{C,F} = 259.1 and 254.3 Hz), 127.8, 128.2, 129.4, 133.2, 163.0 (t, *J*_{C,F} = 32.2 Hz). FAB-MS (*m*/*z*) 324 (M⁺+H). Anal. Calcd for C₁₂H₁₄F₂O₃Se·1/2 H₂O: C, 43.39; H, 4.55. Found: C, 43.79; H, 4.24.

2,2-Difluoro-3-hydroxy-N-methoxy-N-methyl-4-phenylselenenyl butyramide (S10)

To a THF (150 mL) suspension of *N*,*O*-dimethylhydroxylamine hydrochloride (8.52 g, 81.4 mmol, previously dried by P₂O₅ under vacuum condition for 2 days) was dropwise added BuLi (2.69 mol/L in hexane, 65.0 mL, 174.7 mmol) at -80 °C. The resulting solution was allowed to rt for 5 min. To the mixture was added **S9** (7.06 g, 21.8 mmol) in THF (50 mL) at -80 °C then rinsed by using further THF (20 mL). After 1 h stirring of the mixture, this was partitioned between aq. saturated NH₄Cl and AcOEt. Column chromatography on silica gel (hexane/AcOEt = 1/1) of the organic layer gave **S10** (5.24 g, 71%) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 3.06-3.17 (m, 2H), 3.23-3.26 (m, 4H), 3.73 (s, 3H), 4.30-4.38 (m, 1H), 7.21-7.31 (m, 3H), 7.51-7.56 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 27.7, 33.1, 62.2, 71.2 (dd, $J_{C,F}$ = 28.6 and 25.1 Hz), 115.3 (dd, $J_{C,F}$ = 263.3 and 259.6 Hz), 127.5, 129.4, 131.1, 133.1, 163.0. HRFAB-MS (*m*/*z*) 340.0293 (M⁺+H) calcd for C₁₂H₁₆F₂NO₃Se (M⁺+H) 340.0263.

4,4-Difluoro-5-hydroxy-6-phenylselenohex-2-enoic acid methyl ester (S11)

To a THF (90 mL) solution of **S10** (3.75 g, 11.09 mmol) was dropwise added DIBAL-H (1.0 mol/L in toluene, 44.4 mL, 44.4 mmol) at -80 °C. After 15 min stirring of the resulting mixture, this was allowed to rt for 5 min. The mixture was partitioned between 0.5 N HCl and AcOEt. The organic layer was filtrated through a celite pad then the filtrate was evaporated. This gave a crude aldehyde, which was used to the next step without further purification. An MeCN (90 mL) solution of the aldehyde was treated with Ph₃P=CHCO₂Me (11.1 g, 33.3 mmol). The resulting suspension was stirred at rt for 15 h. This was partitioned between brine and AcOEt. Column chromatography on silica gel (hexane/AcOEt = 4/1) of the organic layer gave **S11** (2.07 g, 56%) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 2.78 (d, *J* = 4.0 Hz, 1H), 2.87 (dd, *J* = 13.2 and 10.4 Hz, 1H), 3.16 (dd, *J* = 13.2 and 2.4 Hz, 1H), 3.72 (s, 3H), 3.79-3.82 (m, 1H), 6.25-6.28 (m, 1H), 6.80-6.90 (m, 1H), 7.20-7.24 (m, 3H), 7.46-7.48 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 29.3, 52.2, 71.7 (t, *J*_{C,F} = 30.6 Hz), 118.8 (t, *J*_{C,F} = 245.5 Hz), 126.4 (t, *J*_{C,F} = 8.4 Hz), 127.9, 128.1, 129.4, 133.3, 136.6 (t, *J*_{C,F} = 26.4 Hz), 165.2. HRFAB-MS (*m*/*z*) 336.0089 (M⁺+H) calcd for C₁₃H₁₄F₂O₃Se (M⁺+H) 336.0076.

Benzoic acid 2,2-difluoro-4-methoxycarbonyl-1-phenylselenomethyl-but-3-enyl ester (5c)

To a CH₂Cl₂ (20 mL) solution of **S11** (623 mg, 1.86 mmol) was added DMAP (228 mg, 1.86 mmol), *i*-Pr₂NEt (648 µL, 3.72 mmol) and BzCl (326 µL, 2.79 mmol) at 0 °C. The resulting mixture was stirred at 0 °C for 4 h. The mixture was partitioned between aq. saturated NaHCO₃ and CH₂Cl₂. Column chromatography on silica gel (hexane/AcOEt = 6/1) of the organic layer gave **5c** (639 mg, 78%) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 3.20 (dd, *J* = 13.6 and 10.0 Hz, 1H), 3.33 (dd, *J* = 13.6 and 3.2 Hz, 1H), 3.78 (s, 3H), 5.63-5.68 (m, 1H), 6.36 (d, *J* = 15.6 Hz, 1H), 6.81-6.91 (m, 1H), 7.23-7.24 (m, 3H), 7.44-7.47 (m, 2H), 7.52-7.54 (m, 2H), 7.59-7.63 (m, 1H), 7.97-7.99 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 26.6, 52.2, 72.5 (t, *J*_{C,F} = 29.8 Hz), 117.9 (dd, *J*_{C,F} = 245.6 and 243.2 Hz), 126.9 (t, *J*_{C,F} = 8.3 Hz), 127.8, 128.6, 128.7, 129.2, 129.9, 133.5, 133.7, 136.0 (t, *J*_{C,F} = 25.0 Hz), 164.9, 164.9. HRFAB-MS (*m/z*) 440.0353 (M⁺+H) calcd for C₂₀H₁₈F₂O₄Se (M⁺+H) 440.0338.

³⁾ Abbas, M.; Bethke, J.; Wessjohann, L. A. Chem. Commun. 2006, 541.

6. Radical reaction of 5c

Compound **5c** (220 mg, 0.5 mmol) was treated by the procedure described for the reaction of **5a**. Column chromatography on silica gel (hexane/Et₂O = 9/1) gave an inseparable mixture of **7c** and **8** (27 mg, 12% and 7% respectively, calcurated by integration of ¹H NMR) and a mixture of **6a** (hexane/Et₂O = 5/1). This was purified by preparative TLC (hexane/AcOEt = 20/1, 7 times evolution). This gave *cis*-**6a** (60 mg, 48%, oil) and *trans*-**6a** (31 mg, 24%, oil) respectively.

Physical data for *trans-6*a: ¹H NMR (400 MHz, CDCl₃) δ 2.05-2.14 (m, 1H), 2.19-2.29 (m, 1H), 2.46 (dd, J = 16.8 and 8.8 Hz, 1H), 2.65-2.72 (m, 1H), 3.65 (s, 3H), 5.40-5.48 (m, 1H), 7.34-7.41 (m, 2H), 7.51-7.55 (m, 1H), 8.00-8.02 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 26.0 (dd, $J_{C,F} = 10.9$ and 4.9 Hz), 33.0 (d, $J_{C,F} = 22.8$ Hz), 52.2, 72.2 (dd, $J_{C,F} = 30.0$ and 19.1 Hz), 119.2 (t, $J_{C,F} = 289.6$ Hz), 128.5, 129.0, 129.9, 133.4, 165.2, 171.3. HRFAB-MS (*m/z*) 285.0961 (M⁺+H) calcd for C₁₄H₁₅F₂O₄ (M⁺+H) 285.0938.

NOE experiments of trans-6a

Physical data for 7c and 8: ¹H NMR (400 MHz, CDCl₃) δ 1.38 (d, J = 6.4 Hz, 3H), 3.77 (s, 4.8H), 5.33-5.40 (m, 1H), 5.46 (dd, J = 3.2 and 1.2 Hz, 0.6H), 5.59 (d, J = 3.2 Hz, 0.6H), 6.28-6.38 (m, 1.6H), 6.79-6.91 (m, 1.6H), 7.37-7.49 (m, 3.2H), 7.56-7.63 (m, 1.6H), 8.00-8.07 (m, 3.2H); ¹³C NMR for **7c** (125 MHz, CDCl₃) δ 13.7, 52.2, 70.4 (t, $J_{C,F} = 31.0$ Hz), 118.3 (t, $J_{C,F} = 242.0$ Hz), 126.7 (t, $J_{C,F} = 8.4$ Hz), 128.5, 129.8, 130.2, 133.6, 136.4 (t, $J_{C,F} = 25.1$ Hz), 165.1; ¹³C NMR for **8** (125 MHz, CDCl₃) δ 52.2, 107.2 (t, $J_{C,F} = 3.6$ Hz), 114.2 (t, 232.3 Hz), 126.3 (t, $J_{C,F} = 8.3$ Hz), 128.8, 129.2, 129.9, 134.0, 137.1 (t, $J_{C,F} = 28.6$ Hz), 146.3 (t, $J_{C,F} = 29.8$ Hz), 165.0. FAB-MS (*m/z*) 285 (M⁺+H) for **7c**, 263 (M⁺-F) for **8**.

7. Preparation of 5d

5-(*tert*-Butyldimethylsiloxy)-4,4-difluoro-6-phenylseleno-hex-2-enoic acid methyl ester (5d)

To a DMF (6 mL) solution of **S11** (373 mg, 1,11 mmol) was added imidazole (302 mg, 4.44 mmol) and TBSCl (335 mg, 2.22 mmol). The resulting solution was stirred at rt for 4 days. The mixture was partitioned between aq. saturated NaHCO₃ and AcOEt. Column chromatography on silica gel (hexane/AcOEt = 11/1) of the organic layer gave **5d** (260 mg, 52%) as an oil: ¹H NMR (400 MHz,

CDCl₃) δ –0.06 (s, 3H), 0.00 (s, 3H), 0.76 (s, 9H), 2.71 (dd, J = 12.4 and 4.8 Hz, 1H), 2.98 (dt, J = 12.4 and 2.8 Hz, 1H), 3.66 (s, 3H), 3.94-4.01 (m, 1H), 6.17 (dq, J = 16.0 and 1.2 Hz, 1H), 6.75 (ddd, J = 16.0, 14.8 and 9.6 Hz, 1H), 7.09-7.15 (m, 3H), 7.31-7.34 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ –4.7, –4.4, .18.2, 25.8 29.5 (d, $J_{C,F}$ = 6.0 Hz), 52.2, 74.5 (dd, $J_{C,F}$ = 32.2 and 27.4 Hz), 119.4 (t, $J_{C,F}$ = 244.4 Hz), 126.3 (t, $J_{C,F}$ = 7.2 Hz), 127.1, 129.2, 130.1, 132.4, 136.4 (t, $J_{C,F}$ = 25.0 Hz), 165.3. HRFAB-MS (m/z) 451.0967 (M⁺+H) calcd for C₁₉H₂₉F₂O₃SiSe (M⁺+H) 451.1019.

8. Radical reaction of 5d

Compound 5d (2.17 g, 4.82 mmol) was treated by the procedure described for the reaction of 5a. Column chromatography on silica gel (hexane/Et₂O = 15/1) gave 6d (1.29 g, 91%, *ca.* 2:1 of inseparable mixture) as an oil:

Physical data for 6d: ¹H NMR (500 MHz, CDCl₃) δ 0.08 (s, 1.5H), 0.09 (s, 3H), 0.10 (s, 1.5H), 0.10 (s, 3H), 0.90 (s, 13.5H), 1.35-1.42 (m, 1H), 1.87-1.90 (m, 1H), 2.35-2.41 (m, 1.5H), 2.48-2.53 (m, 1H), 2.57-2.70 (m, 2.5H), 3.05-3.10 (m, 0.5H), 3.69 (s, 3H), 3.69 (s, 1.5H), 4.26-4.33 (m, 1H), 4.42-4.48 (m, 0.5H); ¹³C NMR (125 MHz, CDCl₃) of *cis*-6d: δ -5.2, -5.0, 18.1, 25.6, 29.6 (d, *J*_{C,F} = 22.8 Hz), 31.8 (d, *J*_{C,F} = 7.2 Hz), 35.0 (t, *J*_{C,F} = 22.7 Hz), 51.8, 70.4 (dd, *J*_{C,F} = 25.0 and 17.9 Hz), 121.2 (dd, *J*_{C,F} = 296.9 and 277.8 Hz), 171.8. ¹³C NMR (125 MHz, CDCl₃) of *trans*-6d: δ -5.2, -5.0, 18.1, 25.6, 29.0 (dd, , *J*_{C,F} = 27.4 and 19.1 Hz), 120.5 (dd, *J*_{C,F} = 290.9 and 286.2 Hz), 171.6. HRFAB-MS (*m*/*z*) 295.1537 (M⁺+H) calcd for C₁₃H₂₅F₂O₃Si (M⁺+H) 295.1541.

NOE experiments of 6d: The NOE experiments were carried out as a mixture of two diastereomers.

9. Preparation of 5e

To a THF (30 mL) solution of **S9** (1.25 g, 3.7 mmol) was dropwise added DIBAL-H (1.0 mol/L in toluene, 14.8 mL, 14.8 mmol) at -80 °C. The resulting mixture was allowed to rt for 5 min. This was partitioned between 0.5 N HCl and AcOEt. The organic layer was dried by Na₂SO₄, then through a celite pad. Evaporation of the filtrate gave a crude aldehyde(*ca*, 1.12 g). This was used for the next step without further purification. To a THF (20 mL) suspension of Ph₃PCH₃Br (4.64 g, 13.0 mmol) was dropwise added *t*-BuOK (1.0 mol/L in THF, 11.1 mL, 11.1 mmol) at 0 °C. The resulting yellowish

suspension was stirred at rt for 1 h. To the mixture was added above aldehyde in THF (20 mL) at -80 °C. The mixture was stirred further 1 h at rt. The mixture was partitioned between aq. saturated NH₄Cl and AcOEt. Column chromatography on silica gel (hexane/Et₂O = 4/1) gave **S12** (757 mg, 74%) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 2.67 (d, *J* = 4.0 Hz, 1H), 2.95 (dd, *J* = 13.2 and 10.4 Hz, 1H), 3.23 (dd, *J* = 13.2 and 2.8 Hz, 1H), 3.83-3.92 (m, 1H), 5.56 (d, *J* = 10.8 Hz, 1H), 5.70-5.75 (m, 1H), 5.94-6.07 (m, 1H), 7.27-7.31 (m, 3H), 7.52-7.56 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 29.4, 71.9 (t, *J*_{C,F} = 29.9 Hz), 119.3 (t, *J*_{C,F} = 245.4 Hz), 121.5 (t, *J*_{C,F} = 9.5 Hz), 127.7, 128.5, 129.4, 129.6 (t, *J*_{C,F} = 26.4 Hz), 133.2. HRFAB-MS (*m*/*z*) 278.0015 (M⁺+H) calcd for C₁₁H₁₂F₂OSe (M⁺+H) 278.0021.

Benzoic acid 2,2-difluoro-1-phenylselenomethyl-but-3-enyl ester (5e)

To a CH₂Cl₂ (25 mL) solution of **S12** (680 mg, 2.45 mmol) was treated with BzCl (374 µL, 3.2 mmol), DMAP (601 mg, 4.9 mmol) and *i*-Pr₂NEt (854 µL, 4.0 mmol). The resulting solution was stirred at 0 °C for 3 h. The mixture was partitioned between aq. saturated NaHCO₃ and CH₂Cl₂. Column chromatography on silica gel (hexane/AcOEt = 9/1) gave **5e** (874 mg, 94%) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 3.20 (dd, *J* = 13.6 and 10.4 Hz, 1H), 3.32 (dd, *J* = 13.6 and 2.8 Hz, 1H), 5.51 (dd, *J* = 11.2 and 0.4 Hz, 1H), 5.56-5.64 (m, 1H), 5.69-5.74 (m, 1H), 5.85-5.98 (m, 1H), 7.20-7.22 (m, 3H), 7.40-7.44 (m, 2H), 7.49-7.59 (m, 3H), 7.95-7.97 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 25.7 (t, *J*_{C,F} = 35.9 Hz), 72.8 (dd, *J*_{C,F} = 33.5 and 30.0 Hz), 118.3 (dd, *J*_{C,F} = 247.8 and 244.1 Hz), 122.1 (t, *J*_{C,F} = 9.6 Hz), 127.6, 128.4, 129.0, 129.1, 129.2, 129.5 (t, *J*_{C,F} = 25.1 Hz), 129.9, 133.4, 133.6, 165.1. HRFAB-MS (*m/z*) 382.0287 (M⁺+H) calcd for C₁₈H₁₆F₂O₂Se (M⁺+H) 382.0284.

10. Radical reaction of 5e

Compound **5e** (529 mg, 1.39 mmol) was treated by the procedure described for the reaction of **5a**. Column chromatography on silica gel (hexane/ $Et_2O = 20/1$) gave **7e** (227 mg, 72%) as an oil.

Physical data for 7e ¹H NMR (400 MHz, CDCl₃) δ 1.44 (d, J = 6.4 Hz, 3H), 5.36-5.44 (m, 1H), 5.56 (d, J = 11.2 Hz, 1H), 5.77 (dt, J = 17.2 and 2.4 Hz, 1H), 5.93-6.06 (m, 1H), 7.44-7.48 (m, 2H), 7.57-7.61 (m, 1H), 8.03-8.06 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 13.7, 70.6 (t, $J_{C,F} = 31.1$ Hz), 118.7 (dd, $J_{C,F} = 245.3$ and 242.9 Hz), 121.6 (t, $J_{C,F} = 9.6$ Hz), 128.4, 129.8 (t, $J_{C,F} = 21.6$ Hz), 129.8, 130.0, 165.2. HRFAB-MS (m/z) 226.0820 (M⁺+H) calcd for C₁₂H₁₂F₂O₂ (M⁺+H) 226.0805.

11. Preparation of 5f

3-Hydroxy-N-methoxy-N-methyl-4-(phenylseleno)butyramide (S13)

To a THF (25 mL) solution of diisopropylamine (2.11 mL, 15.1 mmol) was dropwise added BuLi (2.66 mol/L in hexane, 5.7 mL, 15.1 mmol) at -80 °C. The resulting mixture was further stirred for 10 min at same temperature then 10 min at rt. To the mixture was dropwise added AcOEt (1.48 mL, 15.1 mmol) at -80 °C then stirred further 1 h at same temperature. To the resulting lithium enolate solution was

dropwise added **S8** (1.5 g, 7.53 mmol) in THF (20 mL) over 3 min. The mixture was stirred at -80 °C for 30 min. The mixture was partitioned between aq. saturated NH₄Cl and AcOEt. Evaporation of the organic layer gave a crude ester (*ca*. 2.12 g) which was used for next step without further purification. To a stirred suspension of *N*,*O*-dimethylhydroxylamine hydrochloride (2.13 g, 21.8 mmol) in THF (40 mL) was dropwise added BuLi (2.66 mol/L in hexane, 16.4 mL, 43.7 mmol) at -40 °C. The mixture was stirred at rt for 10 min. To the resulting lithium amide solution was added above ester in THF (15 mL) at -40 °C then stirred for 1 h at same temperature. The mixture was partitioned between aq. saturated NH₄Cl and AcOEt. Column chromatography on silica gel (hexane/AcOEt = 1/4) gave **S13** (1.29 g, 57% for two steps) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 2.61-2.67 (m, 1H), 2.81-2.84 (m, 1H), 3.08 (dd, *J* = 12.8 and 6.4 Hz, 1H), 3.13 (dd, *J* = 12.8 and 6.4 Hz, 1H), 3.17 (s, 3H), 3.65 (s, 3H), 3.97 (br-d, 1H), 4.19-4.21 (m, 1H), 7.24-7.29 (m, 3H), 7.52-7.55 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 31.7, 34.1, 37.1, 61.1, 67.4, 126.9, 129.0, 129.7, 132.5, 172.9. HRFAB-MS (*m/z*) 304.0438 (M⁺+H) calcd for C₁₂H₁₈NO₃Se (M⁺+H) 304.0452.

5-Hydroxy-6-(phenylseleno)-hex-2-enoic acid methyl ester (S14)

To a CH₂Cl₂ (30 mL) solution of **S13** (1.27 g, 4.2 mmol) was dropwise added DIBAL-H (0.99 mol/L in toluene, 9.3 mL, 9.2 mmol) at -80 °C. After 30 min stirring at same temperature, further DIBAL-H (4.23 mL, 4.2 mmol) then stirred for 1 h. The mixture was partitioned between aq. saturated NH₄Cl and CH₂Cl₂. Evaporation of the organic layer gave a crude aldehyde. This was dissolved in MeCN (40 mL) then treated with Ph₃P=CHCO₂Me (3.09 g, 9.24 mmol). The resulting suspension was stirred at rt for 24h. After evaporation of all of volatiles, the residue was purified by column chromatography on silica gel (hexane/AcOEt = 2/1). This gave **S14** (507 mg, 40% for two steps) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 2.40-2.53 (m, 3H), 2.91 (dd, *J* = 13.2 and 8.8 Hz, 1H), 3.12 (dd, *J* = 13.2 and 4.0 Hz, 1H), 3.72 (s, 3H), 3.78-3.84 (m, 1H), 5.88 (dt, *J* = 15.6 and 1.2 Hz, 1H), 6.94 (dt, *J* = 15.6 and 7.5 Hz, 1H), 7.27-7.30 (m, 3H), 7.51-7.56 (m,2H); ¹³C NMR (125 MHz, CDCl₃) δ 36.5, 39.0, 51.5, 68.6, 123.7, 127.6, 128.7, 129.3, 133.3, 144.5, 166.6. HRFAB-MS (*m*/*z*) 300.0288 (M⁺+H) calcd for C₁₃H₁₆O₃Se (M⁺+H) 300.0265.

Benzoic acid 4-methoxycarbonyl-1-(phenylselenomethyl)-but-3-enyl ester (5f)

To a mixture of **S14** (500 mg, 1.67 mmol), DMAP (410 mg, 3.34 mmol) and *i*-Pr₂NEt (580 µL, 3.34 mmol) in CH₂Cl₂ (17 mL) was added BzCl (254 µL, 2.17 mmol) at 0 °C. After 30 min stirring of the resulting mixture at rt, this was partitioned between aq. saturated NaHCO₃ and CH₂Cl₂. Column chromatography on silica gel (hexane/Et₂O = 3/1) gave **5f** (575 mg, 85%) as a solid: ¹H NMR (400 MHz, CDCl₃) δ 2.73-2.83 (m, 1H), 3.15 (dd, *J* = 12.8 and 6.4 Hz, 1H), 3.27 (dd, *J* = 12.8 and 6.0 Hz, 1H), 3.71 (s, 3H), 5.31-5.38 (m, 1H), 5.89 (dd, *J* = 15.6 and 0.8 Hz, 1H), 6.92 (dt, *J* = 15.6 and 7.2 Hz, 1H), 7.20-7.26 (m, 3H), 7.39-7.45 (m, 2H), 7.53-7.57 (m, 3H), 7.92-7.94 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 30.6, 36.1, 51.5, 72.4, 124.4, 127.4, 128.3, 129.2, 129.7, 129.8, 133.0, 133.1, 145.0, 165.7, 166.4. HRFAB-MS (*m*/*z*) 404.0514 (M⁺+H) calcd for C₂₀H₂₀O₄Se (M⁺+H) 404.0527.

12. Radical reaction of 5f

Compound **5f** (403 mg, 1.0 mmol) was treated by the procedure described for the reaction of **5a**. Column chromatography on silica gel (hexane/Et₂O = 3/1) gave **7f** and **6f** [206 mg, 83%, *ca*. 1:0.20:0.16 (**7f**, 61%, **6f**, 22% respectively), calculated by integration of ¹H NMR] as an inseparable mixture.

Physical data for a mixture of 7f and 6f: ¹H NMR (400 MHz, CDCl₃) δ 1.39 (d, *J* = 6.4 Hz, 3H), 1.88-1.92 (m, 0.47H), 2.26-2.82 (m, 3.6H), 3.67 (s, 0.6H), 3.68 (s, 0.3H), 3.72 (s, 3H), 5.08-5.15 (m, 0.2H), 5.24-5.35 (m, 1.16H), 5.94 (d, *J* = 15.6 Hz, 1H), 6.98 (dt, *J* = 15.6 and 7.2 Hz, 1H), 7.42-7.46 (m, 2.86H), 7.54-7.58 (m, 1.6H), 8.02-8.06 (m, 2.84H); ¹³C NMR for **7f** (125 MHz, CDCl₃) δ 19.7, 38.5, 51.5, 69.7, 123.9, 128.3, 129.5, 130.3, 132.9, 143.7, 165.6, 166.5. Partial ¹³C NMR for **6f** (125 MHz, CDCl₃) δ 23.8, 25.6, 34.7, 36.3, 39.9, 40.8, 66.0, 68.8, 172.6, 172.8. FAB-MS (*m/z*) 249 (M⁺+H).

13. Preparatio of radical precursor 13

3-Benzyloxy-2-phenylselenenylpropionaldehyde (10)

To a THF (160 mL) solution of $9^{4,5}$ (13.66 g, 52.9 mmol) was dropwise added Li-HMDS (1.0 mol/L in THF, 58.2 mL, 58.2 mmol) at -80 °C over 10 min. The resulting mixture was stirred further 30 min at same temperature. To this was sequentially added freshly distilled BOMCl (8.35 mL, 60.84 mmol) and HMPA (18.4 mL, 105.8 mmol). The mixture was slowly warmed to -55 °C then stirred further 20 h at same temperature. The mixture was partitioned between aq. saturated NaHCO₃ and AcOEt then dried by Na₂SO₄. After evaporation of all of volatiles of the organic layer, the residue was roughly purified by column chromatography on neutral silica gel (hexane/Et₂O = 6/4). This gave crude benzvl ether (14.08 g) as an oil. This benzyl ether was used for the next step without further purification. To a THF (90 mL) solution of above residue was dropwise added DIBAL-H (1.0 mol/L in toluene, 63.5 mL, 63.5 mmol) at -80 °C over 10 min. The resulting mixture was stirred further 45 min at same temperature. Then, the mixture was treated with aq. saturated Rochelle salt (ca. 100 mL) and stirred at rt for 1 h. The resulting mixture was partitioned between brine and Et₂O. Column chromatography on neutral silica gel (hexane/ $Et_2O = 3/1$) of the organic layer gave an unstable aldehyde 10 (7.9 g, 47% for two steps) as a yellowish oil: ¹H NMR (400 MHz, CD₂Cl₂) δ 3.81-3.89 (m, 3H), 4.53 (s, 2H), 7.28-7.55 (m, 10H), 9.49 (d, J = 3.2 Hz, 1H); ¹³C NMR (125 MHz, CD₂Cl₂) δ 51.4, 67.5, 73.7, 126.0, 128.1, 128.7, 129.3, 129.7 (2C), 136.3, 138.2, 192.9. HRFAB-MS (m/z) 321.0384 (M⁺+H) calcd for C₁₆H₁₇O₂Se (M⁺+H) 321.0394.

5-Benzyloxy-3-(*tert*-butyldimethylsilanyloxy)-2,2-difluoro-4-phenylselenenyl-pentanoic acid ethyl ester (11) To a THF (10 mL) suspension of activated zinc (2.52 g) was added TMSCl (342 μ L, 2.7 mmol). The resulting mixture was heated at 60 °C. After 15 min stirring of the resulting mixture, THF (50 mL) and BrF₂CCO₂Et (4.93 mL, 38.5 mmol) were sequentially added, then heated at 60 °C for 5 min. The resulting THF solution which include zinc enolate was quickly transferred *via* cannula to a THF (50 mL) solution of 10 (6.14 g, 19.23 mmol) which was cooled at 0 °C. The resulting mixture was stirred at rt for 2 h. The mixture was partitioned between 0.5 N HCl and AcOEt. Column chromatography (hexane/AcOEt = 3:1) of the organic layer gave a clude alcohol (7.29 g) as an oil. This

was used for the next step without further purification. The crude alcohol was dissolved in DMF (70 mL). This was treated with 2,6-lutidine (7.25 mL, 65.6 mmol) and TBSOTf (7.53 mL, 32.8 mmol). The resulting mixture was stirred at rt for 4 days. This was partitioned between aq. saturated NaHCO₃ and AcOEt, then 0.5 N HCl and AcOEt. Column chromatography on neutral silica gel (hexane/Et₂O = 11/1) of the organic layer gave **11** (8.23 g, 77% for two steps) as a diastereomixture (*ca*. 5:1). Analytical samples were prepared by preparative TLC (hexane/AcOEt = 40/1, 4 times evolution). This gave *major*-**11** (slow moving) and *minor*-**11** (fast moving) each as an oil.

Physical data for *major*-11: ¹H NMR (400 MHz, CDCl₃) δ 0.07 (s, 3H), 0.13 (s, 3H), 0.89 (s, 9H), 1.25 (dt, J = 7.6 and 0.4 Hz, 3H), 3.63-3.70 (m, 2H), 3.95 (dd, J = 9.6 and 6.8 Hz, 1H), 4.19 (q, 7.6 Hz, 2H), 4.47-4.60 (m, 3H), 7.23-7.35 (m, 8H), 7.54-7.57 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ -5.3, -4.7, 13.8, 18.4, 25.7, 45.6, 63.0, 70.3, 71.6 (t, $J_{C,F} = 29.9$ Hz), 72.3, 77.2, 114.2 (t, $J_{C,F} = 256.1$ Hz), 127.6, 127.7, 127.8, 128.4, 129.1, 134.1, 137.7, 163.3 (t, $J_{C,F} = 32.3$ Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -111.5 (m). HRFAB-MS (*m/z*) 558.1531 (M⁺+H) calcd for C₂₆H₃₆F₂O₄SiSe (M⁺+H) 558.1516.

Physical data for *minor*-11: ¹H NMR (400 MHz, CDCl₃) δ 0.08 (s, 3H), 0.15 (s, 3H), 0.93 (s, 9H), 1.31 (t, J = 7.6 Hz, 3H), 3.49-3.56 (m, 2H), 3.77 (t, J = 10.0 Hz, 1H), 4.22-4.40 (m, 3H), 4.49 (d, J = 12.0 Hz, 1H), 4.56 (t, J = 9.2 Hz, 1H), 7.22-7.36 (m, 8H), 7.53-7.57 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ -5.3, -4.7, 13.8, 18.4, 25.7, 45.6, 63.0, 70.3, 71.6 (t, $J_{C,F} = 29.9$ Hz), 72.3, 77.2, 114.2 (t, $J_{C,F} = 256.1$ Hz), 127.6, 127.7, 127.8, 128.4, 129.1, 134.2, 137.7, 163.3 (t, $J_{C,F} = 32.4$ Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -111.1 (d, J = 263.4 Hz), -114.8 (d, J = 263.4 Hz). HRFAB-MS (*m/z*) 558.1531 (M⁺+H) calcd for C₂₆H₃₆F₂O₄SiSe (M⁺+H) 558.1516.

5-Benzyloxy-3-(*tert***-butyldimethylsilyloxy)-2,2-difluoro-4-phenylselenenyl-pentanoic** acid methoxymethyl amide (12) To a THF (80 mL) suspension of *N*, *O*-dimethylhydroxylamine hydrochloride (4.05 g, 41.57 mmol, previously dried by P_2O_5 under vacuum condition for 2 days) was dropwise added BuLi (2.64 mol/L in hexane, 31.5 mL, 83.2 mmol) at -80 °C. After 5 min stirring, this was allowed to rt for 10 min. The resulting mixture was cooled at -80 °C, then added a THF (50 mL) solution of **11** (7.73 g, 13.86 mmol, *ca.* 5:1 mixture of two stereoisomers) *via* cannula. The mixture was stirred at same temperature for 24 h. Then the mixture was partitioned between aq. saturated NH₄Cl and AcOEt. Column chromatography on neutral silica gel (hexane/AcOEt = 2/1) of the organic layer gave **12** (7.14 g, 90% as a 5:1 of diastereomeric mixture). Analytical samples were prepared by preparative TLC (hexane/AcOEt = 8/1, five times evolution). This gave *major*-**12** (slow moving) and *minor*-**12** (fast moving) each as an oil

Physical data for *major*-12: ¹H NMR (400 MHz, CDCl₃) δ –0.08 (s, 3H), 0.00 (s, 3H), 0.76 (s, 9H), 2.98 (s, 3H), 3.39 (s, 3H), 3.52-3.59 (m, 2H), 3.88-3.89 (m, 1H), 4.36 (d, J = 15.2 Hz, 1H), 4.43 (d, J = 15.2 Hz, 1H), 4.56-4.63 (m, 1H), 7.10-7.29 (m, 8H), 7.44-7.46 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ –5.0, -4.3. 18.4, 25.8, 33.1, 45.5, 61.7, 68.9, 72.9, 74.1 (t, $J_{C,F} = 22.7$ Hz), 116.3 (t, $J_{C,F} = 256.4$ Hz), 127.4, 127.6, 127.7, 128.2, 129.1, 129.6, 134.8, 138.2, 162.9 (t, $J_{C,F} = 28.6$ Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ –108.4 (d, J = 254.3 Hz), –114.1 (d, J = 254.3 Hz). HRFAB-MS (*m*/*z*) 574.1683 (M⁺+H) calcd for C₂₆H₃₈F₂NO₄SiSe (M⁺+H) 574.1703.

Physical data for *minor*-12: ¹H NMR (400 MHz, CDCl₃) δ –0.04 (s, 3H), 0.00 (s, 3H), 0.83 (s, 9H), 3.09 (br-s, 3H), 3.42-3.45 (m, 2H), 3.61 (s, 3H), 3.68-3.73 (m, 1H), 4.24 (d, J = 12.0 Hz, 1H), 3.70 (d, J = 12.0 Hz, 1H) 4,74 (dd, J = 15.2 and 9.6 Hz, 1H), 7.12-7.25 (m, 8H), 7.48-7.50 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ –5.2, –4.6, 18.4, 28.8, 33.4, 45.5, 61.8, 70.5, 70.5 (t, $J_{C,F} = 28.6$ Hz), 72.2, 116.3 (t, $J_{C,F} = 254.0$ Hz), 127.4, 127.5, 127.6, 127.7, 128.2, 129.0, 134.5, 138.9, 162.9 (t, $J_{C,F} = 28.6$ Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ –110.6 (d, J = 254.3 Hz), –114.4 (d, J = 254.3 Hz). HRFAB-MS (*m/z*) 574.1683 (M⁺+H) calcd for C₂₆H₃₈F₂NO₄SiSe (M⁺+H) 574.1703.

7-Benzyloxy-5-(*tert***-butyldimethylsilyloxy)-4,4-difluoro-6-phenylselenenyl-hept-2-enoic** acid methyl ester (13) To a stirred solution of 12 (7.0 g, 12.2 mmol, *ca.* 5:1 mixture of two stereoisomers) in THF (100 mL) was dropwise added DIBAL-H (1.0 mol/L in toluene, 36.7 mL, 36.7 mmol) at -80 °C.

The resulting mixture was stirred for 15 min at rt. The mixture was partitioned between 0.5 N HCl and AcOEt. The organic layer was dried by Na₂SO₄, then filtrated through a celite pad. The filtrate was evaporated. The crude aldehyde was dissolved in MeCN (100 mL), then treated with Ph₃P=CHCO₂Me (12.26 g, 36.7 mmol). The resulting mixture was stirred at rt for 14 h. This was partitioned between brine and AcOEt. Column chromatography on silica gel (hexane/Et₂O = 4/1) of the organic layer gave **13** (6.45 g, 93% for two steps as a diastereomixture, *major*-(*E*)-**13**:*(Z*)-**13**:*minor*-(*E*)-**13** = 1.0:0.14:0.22 calcurated by integration of ¹HNMR). Analytical samples were prepared by preparative TLC (hexane/AcOEt = 50/1, seven times evolution). This gave *major*-(*E*)-**13**, (*Z*)-**13** and *minor*-(*E*)-**13** respectively each as an oil.

Physical data for *major-(E)***-13**: ¹H NMR (400 MHz, CDCl₃) δ 0.07 (s, 3H), 0.13 (s, 3H), 0.90 (s, 9H), 3.59-3.67 (m, 2H), 3.75(s, 3H), 3.89 (dd, J = 10.0 and 5.6 Hz, 1H), 4.34 (ddd, J = 12.8, 7.2 and 1.6 Hz, 1H), 4.46 (d, J = 12.0 Hz, 1H), 4.50 (d, J = 12.0 Hz, 1H), 6.23 (dt, J = 16.0 and 1.6 Hz, 1H), 6.89 (ddd, J = 16.0, 13.6 and 11.2 Hz, 1H), 7.24-7.34 (m, 8H), 7.52-7.54 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ -4.8, -4.7, 18.3, 25.8, 45.4 (d, $J_{C,F} = 3.6$ Hz), 52.1, 69.2, 73.0, 76.4 (t, $J_{C,F} = 29.8$ Hz), 119.3 (t, $J_{C,F} = 245.6$ Hz), 125.6 (t, $J_{C,F} = 8.4$ Hz), 127.6, 127.6, 127.7, 128.3, 129.2, 129.7, 134.2, 137.3 (t, $J_{C,F} = 25.1$ Hz), 137.9, 165.3; ¹⁹F NMR (470 MHz, CDCl₃) δ -101.3 (d, J = 254.3 Hz), -107.4 (d, J = 254.3 Hz). HRFAB-MS (m/z) 570.1523 (M⁺+H) calcd for C₂₇H₃₆F₂O₄SiSe (M⁺+H) 570.1516.

Physical data for (*Z***)-13**: ¹H NMR (400 MHz, CDCl₃) δ 0.09 (s, 3H), 0.17 (s, 3H), 0.91 (s, 9H), 3.62-3.72 (m, 2H), 3.66 (s, 3H), 4.02 (dd, *J* = 10.0 and 6.0 Hz, 1H), 4.48 (d, *J* = 12.0 Hz, 1H), 4.52 (d, *J* = 12.0 Hz, 1H), 4.66-4.72 (m, 1H), 5.97 (d, *J* = 12.4 Hz, 1H), 6.02 (dt, *J* = 24.8 and 12.4 Hz, 1H), 7.23-7.32 (m, 8H), 7.53-7.56 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ -4.7, -4.6, 18.4, 25.9, 46.4, 52.0, 69.2, 73.0, 76.4 (t, *J*_{C,F} = 26.3 Hz), 119.6 (t, *J*_{C,F} = 247.8 Hz), 125.9 (t, *J*_{C,F} = 6.0 Hz), 127.5, 127.6, 127.8, 128.3, 129.1, 130.0, 133.7 (t, *J*_{C,F} = 27.5 Hz), 134.1, 138.1, 165.0; ¹⁹F NMR (470 MHz, CDCl₃) δ -100.5 (d, *J* = 245.2 Hz), -101.7 (dd, *J* = 245.2 and 18.2 Hz). HRFAB-MS (*m/z*) 570.1485 (M⁺+H) calcd for C₂₇H₃₆F₂O₄SiSe (M⁺+H) 570.1516.

Physical data for *minor-(E)-13*: ¹H NMR (400 MHz, CDCl₃) δ 0.09 (s, 3H), 0.12 (s, 3H), 0.92 (s, 9H), 3.35-3.38 (m, 1H), 3.62 (ddd, J = 10.0, 4.8 and 1.6 Hz, 1H), 3.76-3.81 (m, 1H), 3.78 (s, 3H), 4.42 (d, J = 12.0 Hz, 1H), 4.50 (d, J = 12.0 Hz, 1H), 4.56 (dd, J = 12.4 and 4.4 Hz, 1H), 6.26 (dt, J = 16.0 and 1.6 Hz, 1H), 7.16-7.35 (m, 9H), 7.39-7.41 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ -5.3, -4.5, 18.3, 25.8, 29.7, 45.9 (d, $J_{C,F} = 6.0$ Hz), 52.0, 70.6, 72.5, 73.0 (dd, $J_{C,F} = 34.6$ and 28.6 Hz), 119.6 (t, $J_{C,F} = 243.2$ Hz), 124.1 (t, $J_{C,F} = 8.3$ Hz), 127.4, 127.8, 127.8, 128.4, 129.1, 129.7, 133.4, 137.4 (t, $J_{C,F} = 23.9$ Hz), 137.6, 165.6; ¹⁹F NMR (470 MHz, CDCl₃) δ -99.4 (d, J = 254.3 Hz), -108.8 (d, J = 254.3 Hz). HRFAB-MS (m/z) 570.1568 (M⁺+H) calcd for C₂₇H₃₆F₂O₄SiSe (M⁺+H) 570.1516.

⁴⁾ Shen, Z.; Khan, H. A.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 2916.

⁵⁾ Barluenga, S.; Moulin, E.; Lopez, P.; Winssinger, N. Chem. Eur. J. 2005, 11, 4935.

14-1.Radicalcyclizationof13:Transformationto[4-Benzyloxymethyl-3-(*tert*-butyldimethylsiloxy)-2,2-difluorocyclobutyl]-aceticacidmethylester(14) (Table 2, entry 5)

To a benzene (230 mL) solution of 13 (6.52 g, 11.45 mmol, 1.0:0.14:0.22 of diastereomeric mixture) and freshly opened Et₃B (1.0 mol/L in THF, 5.73 mL, 5.73 mmol) was dropwise added Bu₃SnH (6.16 mL, 22.9 mmol) over 24h using motor driven syringe at rt. When half volume of Bu₃SnH was transferred to the reaction mixture (ca. 12h), further Et₃B (5.73 mL, 5.73 mmol) was added then continued to stir further 12h at rt. After evaporation of all of volatiles, the residue was purified by column chromatography on silica gel (hexane/Et₂O = 4/1). This gave 14 (3.71 g, 78%, oil) as a diastereomeric mixture (*trans,trans*-14/*trans,cis*-14 = ca. 2.6:1 based on the integration of ¹H NMR): ¹H NMR (500 MHz, CDCl₃) δ 0.06 (s, 1.16H), 0.07 (s, 3H), 0.08 (s, 1.16H), 0.09 (s, 3H), 0.88 (s, 3.47H), 0.89 (s, 9H), 1.86-1.90 (m, 1H), 2.39-2.49 (m, 0.39H), 2.48-2.70 (m, 3.77H), 3.13-3.21 (m, 0.39H), 3.53-3.62 (m, 2.77H), 3.63 (s, 1.16H), 3.64 (s, 3H), 4.22-4.28 (m, 1H), 4.31-4.36 (m, 0.39H), 4.43 (d, J = 12.1 Hz, 0.39H), 4.48 (d, J = 12.1 Hz, 0.39H), 4.51 (d, J = 12.0 Hz, 1H), 4.54 (d, J = 12.0Hz, 1H), 7.27-7.36 (m, 6.95H); ¹³C NMR (125 MHz, CDCl₃) for *trans*, *trans*-14 δ -5.2, -5.1, 18.1, 25.6, 31.4 (d, $J_{C,F} = 6.0$ Hz), 37.1, (dd, $J_{C,F} = 19.6$ and 19.2 Hz), 42.7 (d, $J_{C,F} = 21.6$ Hz), 51.8, 68.0 (d, $J_{C,F} = 2.4 \text{ Hz}$, 71.8 (dd, $J_{C,F} = 25.2 \text{ and } 18.0 \text{ Hz}$), 73.3, 119.9 (dd, $J_{C,F} = 297.5 \text{ and } 177.1 \text{ Hz}$), 127.5, 127.6, 128.4, 138.1, 171.8. ¹³C NMR (125 MHz, CDCl₃) for *trans, cis*-14 δ-5.5, 18.2, 25.6, 29.6, 39.0 (d, $J_{C,F} = 15.5 \text{ Hz}$), 39.2 (t, $J_{C,F} = 21.5 \text{ Hz}$), 51.6, 66.9 (d, $J_{C,F} = 2.4 \text{ Hz}$), 72.8 (dd, $J_{C,F} = 26.4 \text{ and } 20.4 \text{ Hz}$) Hz), 73.3, 120.0 (dd, $J_{C,F}$ = 293.9 and 282.0 Hz), 127.2, 127.8, 128.3, 137.8, 172.1; ¹⁹F NMR (470 MHz, CDCl₃) for *trans*-14 δ –91.8 (d, *J* = 190.7 Hz), –136.2 (d, *J* = 190.7 Hz). ¹⁹F NMR (470 MHz). CDCl₃) for *cis*-14 δ –103.7 (d, *J* = 199.8 Hz), –117.4 (d, *J* = 199.8 Hz). HRFAB-MS (*m/z*) 415.2130 (M^++H) calcd for $C_{21}H_{33}F_2O_4Si$ (M^++H) 415.2116.

NOE experiments of 14: The NOE experiments were carried out as a mixture of two diastereomers.

14-2. Radical reaction of *major*-(*E*)-13

Compound *major*-(*E*)-13 (219 mg, 0.38 mmol) was treated with a same procedure described for 13. This gave a mixture of 14 (112 mg, 71%, *trans*-14/*cis*-14 = *ca*. 2.6:1 based on the integration of ¹H NMR).

14-3. Radical reaction of (Z)-13

Compound (Z)-13 (106 mg, 0.19 mmol) was treated with a same procedure described for 13. This gave a mixture of 14 (49 mg, 64%, *trans,trans*-14/*trans,cis*-14 = ca. 1:1 based on the integration of ¹H NMR).

`ОН **4**

3-Benzyloxymethyl-2-*tert*-butyldimethylsiloxy-1,1-difluoro-4-(phenylseleno)ethylcyclobutane (15) To a stirred solution of 14 [3.5 g, 8.44 mmol, diastereomeric mixture (*ca.* 2.6:1)] in CH₂Cl₂ (85 mL) was dropwise added DIBAL-H (1.0 mol/L in toluene, 33.8 mL, 33.8 mmol) at -80 °C. The resulting mixture was stirred further 20 min at rt. The mixture was partitioned between 0.5 N HCl and CH₂Cl₂. Evaporation of all of volatiles of the organic layer gave a crude alcohol (*ca.* 3.3 g). This was used for next step without further purification. To a THF (85 mL) solution of above alcohol was added PhSeCN (2.07 mL, 16.9 mmol) and Bu₃P (4.22 mL, 16.9 mmol) at 0 °C. The resulting mixture was further stirred for 16 h at same temperature. This was partitioned between aq. saturated NaHCO₃ and AcOEtt. Column chromatography on neutral silica gel (hexane/Et₂O = 7/1) of the organic layer gave a mixture of 15 (4.32 g, 97% for two steps, *ca.* 3:1 of diastereomeric mixture). Analytical samples were prepared by preparative TLC (hexane/AcOEt = 50/1, four times evolution). This gave *major*-15 (fast moving) and *minor*-15 (slow moving) respectively each as an oil.

18

Physical data for *major*-15: ¹H NMR (400 MHz, CDCl₃) δ 0.06 (s, 3H), 0.08 (s, 3H), 0.89 (s, 9H), 1.79-1.89 (m, 2H), 1.97-2.06 (m, 1H), 2.31-2.39 (m, 1H), 2.84 (ddd, J = 12.0, 8.8 and 6.4 Hz, 1H), 2.94 (ddd, J = 12.0, 9.2 and 6.0 Hz, 1H), 3.52 (d, J = 4.4 Hz, 2H), 4.12-4.18 (m, 1H), 4.49-4.51 (m, 2H), 7.23-7.36 (m, 8H), 7.45-7.48 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ –5.2, –5.0, 18.1, 25.0. 25.6, 27.3 (d, $J_{C,F} = 4.8$ Hz), 41.2, (t, $J_{C,F} = 20.3$ Hz), 42.6 (d, $J_{C,F} = 23.4$ Hz), 68.5, 71.6 (dd, $J_{C,F} = 23.8$ and 17.9 Hz), 73.1, 120.7 (dd, $J_{C,F} = 293.3$ and 274.2 Hz), 126.9, 127.6, 127.7, 128.4m 129.1, 129.8, 132.6, 138.0; ¹⁹F NMR (470 MHz, CDCl₃) δ –90.0 (d, J = 199.8 Hz), –137.2 (d, J = 199.8 Hz). HRFAB-MS (*m/z*) 527.1700 (M⁺+H) calcd for C₂₆H₃₇F₂O₂SiSe (M⁺+H) 527.1696.

Physical data for *minor*-15: ¹H NMR (400 MHz, CDCl₃) δ 0.05 (s, 3H), 0.07 (s, 3H), 0.88 (s, 9H), 1.79-1.96 (m, 2H), 2.34-2.43 (m, 1H), 2.75-2.80 (m, 1H), 2.85 (ddd, J = 12.0, 10.0 and 6.4 Hz, 1H), 2.99 (ddd, J = 12.0, 10.4 and 5.2 Hz, 1H), 3.48 (t, J = 10.0 Hz, 1H), 3.53 (dd, J = 10.0 and 4.8 Hz, 1H), 4.13-4.20 (m, 1H), 4.43 (t, J = 12.4 Hz, 2H), 7.23-7.34 (m, 8H), 7.46-7.48 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ –5.2, –5.0, 18.1, 25.6, 25.8, 29.7, 39.3 (d, $J_{C,F} = 17.9$ Hz), 43.0 (t, $J_{C,F} = 20.3$ Hz), 67.3 (d, $J_{C,F} = 3.6$ Hz), 73.2, 73.6 (dd, $J_{C,F} = 27.4$ and 20.3 Hz), 120.6 (dd, $J_{C,F} = 293.3$ and 281.4 Hz), 126.8, 127.7, 127.8, 128.4, 129.0, 129.9, 132.5, 137.8; ¹⁹F NMR (470 MHz, CDCl₃) δ –104.6 (d, J = 199.8 Hz), –115.2 (d, J = 199.8 Hz). HRFAB-MS (m/z) 527.1700 (M⁺+H) calcd for C₂₆H₃₇F₂O₂SiSe (M⁺+H) 527.1696.

17

3-Benzyloxymethyl-2-tert-butyldimethylsiloxy-1,1-difluoro-4-vinylcyclobutane (16)

To a CH₂Cl₂ (80 mL) solution of 15 (4.2 g, 7.99 mmol, ca. 2.6:1 of diastereomeric mixture) was treated with *m*-CPBA (70%, 1.99 g, 8.07mmol) at 0 °C. The resulting mixture was stirred for 10 min at same temperature, then added Et₃N (5.58 mL, 40 mmol). The mixture was refluxed for 20 h. The mixture was partitioned between aq. saturated NaHCO₃ and CH₂Cl₂. Column chromatography on silica gel (hexane/Et₂O = 60/1) of the organic layer gave an inseparable mixture of **16** (2.52 g, 86% for two steps, 2.6:1) as an oil. Analytical sample was prepared by preparative TLC (hexane/AcOEt = 40/1, ca. 2:1 mixture): ¹H NMR (400 MHz, CDCl₃) δ 0.09 (s, 4.5H), 0.10 (s, 4.5H), 0.90 (s, 13.5H), 2.02-2.09 (m, 1H), 2.45-2.49 (m, 0.5H), 2.79-2.88 (m, 1H), 3.30-3.34 (m, 0.5H), 3.49-3.62 (m, 3H), 4.23-4.30 (m, 1H), 4.33-4.44 (m, 0.5H), 4.47-4.55 (m, 3H), 5.15-5.21 (m, 3H), 5.75 (dt, *J* = 16.4 and 9.6 Hz, 0.5H), 5.84 (ddd, J = 17.2, 10.4 and 7.6 Hz, 1H), 7.27-7.37 (m, 7.5H); ¹³C NMR for *major*-16 (125 MHz, $CDCl_3$) δ -5.2, -5.0, 18.1, 25.6, 42.4 (d, J_{CF} = 23.9 Hz), 44.4 (dd, J_{CF} = 22.7 and 19.1 Hz), 67.0 (d, $J_{C,F} = 2.4 \text{ Hz}$, 71.4 (dd, $J_{C,F} = 23.9 \text{ and } 17.9 \text{ Hz}$), 73.0, 118.9, 120.1 (dd, $J_{C,F} = 296.3 \text{ and } 274.8 \text{ Hz}$), $127.5, 127.6, 128.4, 130.7 \text{ (d}, J_{C,F} = 6.0 \text{ Hz}), 138.1; {}^{19}\text{F} \text{ NMR for$ *major-16* $(470 MHz, CDCl₃) <math>\delta$ –91.4 (d, $J = 190.7 \text{ Hz}), -136.0 \text{ (d}, J = 190.7 \text{ Hz}); {}^{13}\text{C} \text{ NMR for$ *minor-16* $(125 MHz, CDCl₃) <math>\delta$ –5.2, –5.0, 18.1, 25.6, 40.7 (d, $J_{C,F} = 17.9$ Hz), 48.0 (t, $J_{C,F} = 21.5$ Hz), 67.4 (d, $J_{C,F} = 3.6$ Hz), 73.1, 73.6 (dd, $J_{C,F} = 21.5$ Hz) 26.2 and 19.1 Hz), 119.7 (dd, J_{CF} = 294.5 and 281.4 Hz), 120.2, 127.6, 127.8, 128.3, 130.0 (t, J_{CF} = 3.6 Hz), 138.1; ¹⁹F NMR for *minor*-16 (470 MHz, CDCl₃) δ –100.2 (d, J = 199.8 Hz), –118.0 (d, J = 199.8 Hz). HRFAB-MS (m/z) 369.2086 (M⁺+H) calcd for C₂₀H₃₁F₂O₂Si (M⁺+H) 369.2061.

3,4-Bis-benzyloxymethyl-2,2-difluorocyclobutanol (17)

To a mixture of 16 (2.7 g, 7.35 mmol, ca. 2.6:1 of diastereomeric mixture), NaIO₄ (12.56 g, 58.8 mmol) and 2,6-lutidine (1.63 mL, 14.7 mmol) in 1,4-dioxane/H₂O (3/1, 200 mL) was added OsO₄ (0.16 mol/L in H₂O, 938 µL, 0.15 mmol). The resulting suspension was stirred at rt for 7 h. After filtration of the mixture through a celite pad, the filtrate was evaporated below 30 °C until half volume of the volatiles were removed. To the residue was added MeOH (100 mL) and NaBH₄ (2.78 g, 73.5 mmol) at 0 °C. The mixture was stirred further 30 min at same temperature, then added acetone (3 mL). The mixture was filtrated through a celite pad, then the filtrate was evaporated. The residue was partitioned between 1 N HCl and CH_2Cl_2 . Flush column chromatography on silica gel (hexane/AcOEt = 1/1) of the organic layer gave crude alcohol (ca. 2.25 g). This was used for next step without further purification. To an anhydrous THF (30 mL) solution of above alcohol was added NaH (60%, 294 mg, 7.35 mmol) at 0 °C. After 20 min stirring of the resulting mixture, this was treated with BnBr (1.05 mL, 8.82 mmol) and Bu₄NI (2.71 g, 7.35 mmol). The mixture was stirred further 6 h at rt. Then, this was partitioned between aq. saturated NH₄Cl and AcOEt. After evaporation of all of volatiles of the organic layer, this was dissolved in THF (50 mL), then added AcOH (1.26 mL, 22.05 mmol) and Bu₄NF (1.0 mol/L in THF, 16.2 mL, 16.2 mmol). After 14 h stirring of the resulting mixture at rt, the mixture was partitioned between aq. saturated NaHCO₃ and AcOEt. Column chromatography on silica gel (hexane/AcOEt = 1/1) of the organic layer gave an inseparable mixture of 17 (1.66 g, 65% for four steps, ca. 3.0:1) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 1.86-1.93 (m, 1H), 2,05 (br-s, 1.3H), 2.39-2.42 (m, 0.3H), 2.56-2.68 (m, 1H), 2.90-2.92 (m, 0.3H), 3.55 (dd, J = 9.6 and 4.8 Hz, 1H), 3.59-3.64 (m, 2.6H), 3.67-3.77 (m, 1,6H), 4.20-4.27 (m, 1H), 4.34-4.41 (m, 0.3H), 4.43-4.57 (m, 5.2H), 7.28-7.37 (m, 13H); ¹³C NMR for *major*-17 (125 MHz, CDCl₃) δ 40.7 (d, J_{CF} = 20.3 Hz), 41.9 (t, J_{CF} = 20.3 Hz), 66.0 (d, $J_{C,F}$ = 6.0 Hz), 68.6 (d, $J_{C,F}$ = 2.4 Hz), 72.3 (dd, $J_{C,F}$ = 25.0 and 19.1 Hz), 73.0, 73.1, 119.9 (dd, $J_{C,F}$ = 295.7 and 271.9 Hz), 127.5, 127.6, 127.7, 127.7, 128.4, 128.4, 137.9, 138.0; ¹⁹F NMR for *major*-17 (470 MHz, CDCl₃) δ -92.7 (d, J = 199.8 Hz), -137.6 (d, J = 199.8 Hz); ¹³C NMR for *minor*-17 (125 MHz, CDCl₃) δ 39.9 (d, J_{CF} = 17.9 Hz), 43.1 (t, J_{CF} = 20.3 Hz), 64.8, 67.6 (d, J_{CF} = 3.6 Hz), 73.2, 73.3, 74.3 (dd, *J*_{C,F} = 25.1 and 19.1 Hz), 120.1 (dd, *J*_{C,F} = 287.4 and 270.7 Hz), 127.6, 127.6, 127.7, 127.8, 128.4, 128.5, 137.8, 137.9; ¹⁹F NMR for *minor*-17 (470 MHz, CDCl₃) δ -104.6 (d, J = 199.8 Hz), -120.1 (d, J = 199.8 Hz). HRFAB-MS (*m/z*) 349.1613 (M⁺+H) calcd for C₂₀H₂₃F₂O₃ (M⁺+H) 349.1615.

(±)-*t*-3,*c* -4-3,4-Bis(benzyloxymethyl)-1,1-difluorocyclobut-*r*-2-ylamine (18)

To a CH₂Cl₂ (20mL) solution of 17 (700 mg, 2.01 mmol, ca. 3:1) was added Dess-Martin periodinane (1.45 g, 3.42 mmol). The resulting mixture was stirred for 1 h at rt. To the mixture was added brine (50 mL) then stirred further 20 min. The mixture was partitioned between aq. saturated NaHCO₃ and CH₂Cl₂. Evaporation of all of volatiles of the organic layer gave a crude aldehyde (ca. 950 mg). The aldehyde was dissolved in pyridine (30 mL). The pyridine solution was treated with HONH₂·HCl (1.4 g, 20.1 mmol). The resulting mixture was stirred for 3 days at rt. The resulting mixture was partitioned between NaHCO₃ and CH₂Cl₂. Flush column chromatography on silica gel (hexane/AcOEt = 1/1) gave a crude oxime (589 mg). This was well dried under vacuum condition by using P_2O_5 for 20 h. This was used for next reaction without further purification. To a THF (20 mL) solution of above oxime was dropwise added LiAlH₄ (1.0 mol/L in THF, 4.02 mL, 4.02 mmol) at -40 °C. After 30 min stirring of the resulting mixture -40 °C, this was stirred further 2 h at rt. The mixture was carefully treated with H₂O (6 mL), aq. 15%NaOH (6 mL) and H₂O (6 mL) sequentially. After filtration of the mixture through a celite pad, the filtrate was partitioned between brine and AcOEt. Column chromatography on silica gel (hexane/AcOEt = 1/3) of the organic layer gave **18** (220 mg, 32% for three steps) as an oil: ¹H NMR (400 MHz, CDCl₃) δ 1.55 (br-s, 2H), 1.62-1.69 (m, 1H), 2.62-2.75 (m, 1H), 3.49 (dt, J = 11.6and 8.4 Hz, 1H), 3.56 (dd, J = 9.8 and 4.8 Hz, 1H), 3.60 (dd, J = 9.8 and 4.8 Hz, 1H), 3.63-3.67 (m, 2H), 4.49 (d, J = 12.0 Hz, 1H), 4.53 (s, 2H), 4.54 (d, J = 12.0 Hz, 1H), 7.26-7.35 (m, 10J); ¹³C NMR $(125 \text{ MHz}, \text{CDCl}_3) \delta 40.1 \text{ (d, } J_{C,F} = 20.4 \text{ Hz}), 43.4 \text{ (t, } J_{C,F} = 20.4 \text{ Hz}), 56.5 \text{ (t, } J_{C,F} = 22.8 \text{ Hz}), 66.3 \text{ (d, } J_{C,F} = 22.8 \text{ Hz}), 66.$ $J_{C,F} = 7.3$ Hz), 69.0 (d, $J_{C,F} = 2.4$ Hz), 73.0, 73.1, 120.8 (dd, $J_{C,F} = 300.4$ and 271.6 Hz), 127.5, 127.5, 127.6, 127.6, 128.3, 128.4, 138.1, 138.2; ¹⁹F NMR (470 MHz, CDCl₃) δ –91.8 (d, J = 190.7 Hz), -136.7 (dd, J = 190.7 and 18.2 Hz). HRFAB-MS (m/z) 348.1786 (M⁺+H) calcd for C₂₀H₂₄F₂NO₂ (M⁺+H) 348.1775.

NOE experiments of 18

(±)-1-[*t*-3,*c*-4-3,4-Bis(hydroxymethyl)-1,1-difluorocyclobut-*r*-2-yl]-thymine (4)

To a CH₂Cl₂ (2.7 mL) solution of β -methoxy- α -metacrylic acid⁶ (208 mg, 1.79 mmol) was added oxalyl chloride (172 µL, 1.97 mmol) and DMF (one drop) at rt. The resulting mixture was stirred for 40 min at same temperature. After evaporation of all of volatiles, the residue was dissolved in dry benzene (3.5 mL) then added a benzene (3.5 mL) suspension of silver cyanate (295 mg, 1.97 mmol). The mixture was refluxed for 30 min, then cooled to rt. The resulting supernatant solution include isocyanate (19) was slowly transferred over 1.5 min via cannula to a THF (9.3 mL) solution of 18 (207 mg, 0.596 mmol) at -40 °C. The resulting mixture was stirred for 40 min at same temperature. After worming to rt of the mixture, this was stirred further 2 h at rt. The residue was roughly purified by flush column chromatography on silica gel (hexane/AcOEt = 1/1). This gave a crude adduct, which was used for next reaction without further purification. The above residue was dissolved in EtOH (10 mL), 1.4-dioxane (10 mL) and 29% NH₄OH⁷ (20 mL). The resulting solution was heated at 110 °C in a shield tube for 15 h. After evaporation of all of volatiles, the residue was dissolved in MeOH (20 mL). This was treated with 20 wt % of Pd(OH)₂ (200 mg) under positive pressure of H₂ (1 atm) at rt for 4 h. After filtration through a celite pad, the filtrate was purified by preparative TLC (CHCl₃/acetone = 1/1). This gave 4 (93 mg, 56% for three steps). This was recrystalyzed from MeOH/1,2-dichloroethane. Mp = 235-237 °C; ¹H NMR (500 MHz, CD₃OD) δ 1.90 (s, 3H), 2.60-2.63 (m, 1H), 2.65-2.75 (m, 1H), 3.67

(dd, J = 11.5 and 4.6 Hz, 1H), 3.71 (dd, J = 11.5 and 4.6 Hz, 1H), 3.76 (dd, J = 11.5 and 5.7 Hz, 1H), 3.85 (dd, J = 11.5 and 8.0 Hz, 1H), 5.10-5.16 (m, 1H), 7.52 (s, 1H); ¹³C NMR (125 MHz, CD₃OD) δ 12.8, 37.6 (d, $J_{C,F} = 16.7$ Hz), 46.4 (t, $J_{C,F} = 19.1$ Hz), 58.0 (dd, $J_{C,F} = 25.0$ and 17.9 Hz), 59,0 (d, $J_{C,F} = 7.2$ Hz), 61.9, 111.8, 121.9 (dd, $J_{C,F} = 295.7$ and 271.8 Hz), 140.1 (d, $J_{C,F} = 2.4$ Hz), 153.4, 166.7; ¹⁹F NMR (470 MHz, CD₃OD) δ -86.4 (d, J = 196.2 Hz), -132.7 (d, J = 196.2 Hz). FAB-MS (*m/z*) 277 (M⁺+H) Anal. Calcd for C₁₁H₁₄F₂ N₂O₄: C, 47.83; H, 5.11; N, 10.14. Found: C, 47.48; H, 5.06; N, 10.02.

NOE experiments of 4

6) Csuk, R.; Scholz, Y. Tetrahedron 1995, 51, 7193.

7) Wang, P.; Agrofoglio, L. A.; Newton, M. G.; Chu, C. K. J. Org. Chem. 1999, 64, 4173.

16. Table SI-1. SOMO and LUMO values of model radical intermediates 5c'-5f'

radical	SOMO $(eV)^a$	LUMO $(eV)^b$	
5c'	-0.22456	0.03084	
5e′	-0.21952	0.04128	
5f′	-0.22244	0.04433	
^{<i>a</i>} Calculations were carried out by usingUB3LYP/6-31G. ^{<i>b</i>} Calculations were carried out by usingUB3LYP/6-31G $\stackrel{\text{\tiny \ensuremath{\%}}}{\sim}$.			

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

