Preparation and Helical Folding of Long-Chain

Aromatic Polyamides

Jinxin Cao,^{*a,b*} Mark Kline,^{*c*} Zhongzhu Chen,^{*a,b*} Bao Luan,^{*a,b*} Menglan Lv,^{*a,b*} Wenrui Zhang,^{*a,b*} Chunxia Lian,^{*a*} Qiwei Wang,^{*a*} Qingfei Huang,^{*a,b*} Xiaoxi Wei,^{*c*} Jingen Deng,^{*a*} Jin Zhu^{*a*} and Bing Gong^{*scd*}

^a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China

^b Graduate University of Chinese Academy of Sciences, Beijing 100049, China

^c Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA

^d College of Chemistry, Beijing Normal University, Beijing 100875, China

Supporting Information

Contents

I.	Synthetic Procedures and Analytical Data 2
II.	GPC Data of 3a , 3b and 3c 4
III.	1D ¹ H and ¹³ C NMR Spectra of New Compounds7
IV.	Concentration-Dependent ¹ H NMR Spectra of 3a , 3b , 3c and 4 9
V.	UV Spectra of 3a , 3b , 3c and 4 11
VI.	Additional CD spectra14

I. Synthetic Procedures and Analytical Data

Chemicals were purchased from commercial sources and used as received. Unless otherwise specified, all solvents were removed with a rotary evaporator. Silica gel for analytical thin layer chromatography (TLC) and column chromatography (200~300 mesh) were purchased from Qingdao Haiyang Chemical Co., Ltd & Spegial Silica Gel Factory. The ¹H NMR spectra were recorded at 300 MHz and ¹³C NMR spectra were measured at 75 MHz on a Bruker-300 spectrometer at ambient temperature using CDCl₃ or DMSO-*d*₆ as solvent (Cambridge Isotope Laboratories, Inc.). Chemical shifts are reported in parts per million downfield from TMS (tetramethylsilane). Coupling constant in ¹H NMR are expressed in Hertz. Electroscpray ionization high resolution mass spectra (ESI-HRMS) were recorded on a Bruke P-SIMS-Gly FT-ICR mass spectrometer. Circular Dichroism (CD) were recorded on a JASCO J-815 spectrometer. Gel Permeation Chromatography were recorded on a SHMADZU SPD-20A.

I-1. Preparation of polyamide 3

Diamine 6 (415 mg, 2 mmol), prepared from the reaction of 3, 5-dinitrobenzoyl chloride and isobutylamine followed by hydrogenation, was dissolved in 16 mL of *N*, *N*-dimethylacetamide (DMA) that treated by drying over CaH₂ and then being distilled, in a round-bottomed flask. After adding Et₃N (1.08 mL, 6 mmol), the solution was purged with N₂ a few times and then stirred in an ice-bath for 10 min, to which a solution of diacid chloride 7 (982 mg, 2 mmol), prepared based on known procedures,¹ in 16 mL of DMA was added rapidly. The reaction mixture was purged a few more times with nitrogen, and was then let to warm to room temperature and stirred for an additional 8 hrs. After removing solvent, the remaining residue was dissolved/suspended into CH₂Cl₂, washed with brine for three times, and dried over Na₂SO₄. Removing solvent led to **3** (1.12 g) as a light yellow powder. Using gel permeation chromatography (GPC), the weight-average molecular weights (M_w) of **3** was determined 14,746, with a molecular-weight dispersity of 6.80.

I-2. Synthesis of trimer 4 and pentamer 5

Oligoamides 4 and 5 were synthesized in good yields based on known synthetic procedures.¹

Compound 4. ¹H NMR (300 MHz, CDCl₃) δ 9.96 (2 H, s), 8.78 (2 H, s), 8.49 (1 H, s), 7.88 (2 H, s), 6.63 (1 H, t, J = 6.0 Hz), 6.52 (2 H, s), 4.21 ~ 4.10 (8 H, m), 4.02 ~ 3.89 (4 H, m), 3.85(6H, s), 3.64 ~ 3.50 (8 H, m), 3.28-3.24 (2 H, m), 1.94-1.89 (1H, m), 1.71- 1.57 (4H, m), 1.47~1.42 (10 H, m), 1.38~1.24(10 H, m), 0.97(6H, d, J=6.6), 0.88(12H, d, J=6.6), 0.72 (12 H, d, J = 6.6 Hz). ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 165.1, 162.8, 162.4, 160.7, 139.4, 137.1, 135.8, 114.8, 114.3, 114.2, 113.7, 97.6, 73.6, 73.1, 72.7, 68.1, 67.5, 51.6, 47.4, 38.9, 38.6, 29.6, 28.6, 25.0, 22.6, 22.4, 20.2, 17.3, 16.9. HRMS (ESI) calcd for C₆₁H₉₃N₃Na₂O₁₅, ([M+2Na]⁺) 1153.6402, found 1153.6426.

Compound 5. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.19 (s, 2H), 10.15 (s, 2H), 10.11 (s, 2H), 8.45 (s, 2H), 8.40 (s, 1H), 8.36 (br, 3H), 8.21 (s, 2H), 7.83 (s, 2H), 7.73 (s, 2H), 7.71 (s, 2H), 6.97 (s, 2H), 4.36-4.30 (m, 8H), 3.97 (br, 4H), 3.53-3.50 (m, 4H), 3.48-3.45 (m, 4H), 3.06 (t, J = 16 Hz, 6H), 1.87-1.83 (m, 3H), 1.52-1.47 (m, 4H), 1.30-1.21 (m, 20H), 0.92-0.89 (m, 18H), 0.70-0.67 (m, 24H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.4, 166.5, 166.3, 162.6, 160.0, 139.5, 138.8, 138.7, 136.4, 136.4, 134.2, 115.8, 115.7, 114.0, 113.6, 113.2, 98.8, 72.6, 66.5, 46.7, 38.3, 28.1, 24.4, 23.9, 22.3, 22.3, 20.2, 16.8; MS (MALDI-TOF) *m/z*, Calcd for C₈₅H₁₂₃N₉O₁₇ 1541.90 (M⁺), Found 1564.9 (M+Na⁺).

II. GPC Data of 3a, 3b and 3c

GPC measurements. GPC measurements on the three fractions of **3** were performed with a GMH_{HR}-N column, with a flow rate of 0.35 ml/min, and using THF as the eluting solvent at room temperature. The injection volume was 10 μ L and UV detection at 254 nm was applied. Molecular weights and molecular-weight dispersity were calculated based on 12 polystyrene standards (Mw = 500 to 1.11x10⁶, Table S1).

Table S1. The molecular wieghts of the 12 polystyrene standards (polydispersity <1.1)

entry	1	2	3	4	5	6	7	8	9	10	11	12
Mw	5.89×10 ²	1.01×10 ³	2.5×10 ³	4.92×10 ³	9.49×10 ³	1.71×10^{4}	3.72×10 ⁴	9.89×10 ⁴	1.89×10 ⁵	3.97×10 ⁵	7.07×10 ⁵	1.11×10 ⁶

GPC traces and results of 3a

GPC Summary

Chromatogram Det.A Chl						
Title	Mn	Mw	Mz	Mzl	Mv	Mw/Mn
cjx-s-a-5-20""ok.lcd	35166	36112	37053	38003	0	1.02689
Average	35166	36112	37053	38003	0	1.02689
%RSD	0.000	0.000	0.000	0.000	0.000	0.000
Maximum	35166	36112	37053	38003	0	1.02689
Minimum	35166	36112	37053	38003	0	1.02689
SD	0	0	0	0	0	0.00000

GPC traces and results of 3b

GPC Summary

		Of C Summ				
Chromatogram Det.A Chl						
Title	Mn	Mw	Mz	Mzl	Mv	Mw/Mn
cjx-s-a-5-19ok.lcd	18597	19053	19509	19971	0	1.02452
Average	18597	19053	19509	19971	0	1.02452
%RSD	0.000	0.000	0.000	0.000	0.000	0.000
Maximum	18597	19053	19509	19971	0	1.02452
Minimum	18597	19053	19509	19971	0	1.02452
SD	0	0	0	0	0	0.00000

GPC traces and results of 3c

GPC Summary

Chromatogram Det.A Chl						
Title	Mn	Mw	Mz	Mzl	Mv	Mw/Mn
cjx-s-a-5-18ok.lcd	10198	10486	10777	11076	0	1.02826
Average	10198	10486	10777	11076	0	1.02826
%RSD	0.000	0.000	0.000	0.000	0.000	0.000
Maximum	10198	10486	10777	11076	0	1.02826
Minimum	10198	10486	10777	11076	0	1.02826
SD	0	0	0	0	0	0.00000

III. 1D ¹H and ¹³C NMR Spectra

¹H NMR spectrum of 4

¹³C NMR spectrum of 5

V. Concentration-Dependent 'H NMR Spectra of 3a, 3b, 3c and 4

Concentration-Dependent 1H NMR Spectra of 3a

Concentration-Dependent 1H NMR Spectra of 3b

Concentration-Dependent 1H NMR Spectra of 4

VI. UV Data of 3a, 3b, 3c and 4

UV Spectra of 3a (in CHCl₃)

VII. Additional CD Spectra

The CD Spectra of 4 (in CHCl₃)

Temperature-dependent CD Spectra of 3a (70 µM, CHCl₃)

L. H. Yuan, A. R. Sanford, W. Feng, A. M. Zhang, J. S. Ferguson, K. Yamato, J. Zhu, H. Q. Zeng and B. Gong, *J. Org. Chem.* 2005, **70**, 10660.