Hydrogen shuttling: synthesis and reactivity of a 14-electron iridium complex featuring a *bis*(alkyl) tethered N-heterocyclic carbene ligand

⁵ Christina Y. Tang, Nicholas Phillips, Michael J. Kelly and Simon Aldridge

Supporting Information

10 General details of synthetic procedures and instrumentation

Materials: All reactions involving air- or moisture-sensitive compounds were carried out under an inert atmosphere by using Schlenk-type glassware or in a glovebox. Solvents were dried 15 using an MBraun SPS800 prior to use. NMR-solvents were dried

- over molecular sieves and degassed before use when necessary. Solid starting materials were dried under high vacuum before use when necessary. Unless otherwise noted, all starting materials were commercially available and were used without further
- ²⁰ purification. Ir(IMes)₂(H)₂Cl (1), Na[BAr^f₄] and ⁱPr₂NH·BH₃ were prepared via literature routes;^{s1-s3} Me₃N·BH₃ was supplied by Sigma Aldrich.

Techniques: The following instruments were used for physical characterization of the compounds: IR: Nicolet Magna-IR 560;

- ²⁵ NMR: Bruker AVC500 (¹H: 500 MHz; ¹³C: 125 MHz); Bruker DRX500 (¹¹B: 160 MHz), Varian Unity500 (¹H: 500 MHz; ¹³C: 125 MHz, ¹¹B: 160 MHz), Varian Mercury VX-300 (³¹P: 122 MHz, ¹⁹F: 282 MHz, ¹¹B: 96 MHz). Mass spectra were measured by the EPSRC National Mass Spectrometry Service Centre,
- ³⁰ Swansea University. Elemental microanalysis was carried out at London Metropolitan University. For all crystallographic studies, diffaction data were collected at 150 K using an Enraf Nonius Kappa CCD diffractometer;^{s4} structures were solved with SIR92,^{s5} or SuperFlip,^{s6} and refined using the CRYSTALS ³⁵ software suite,^{s7} as per the information contained in the CIF.

Syntheses and characterizing data for new compounds

2: To a mixture of **1** (0.43 g, 0.51 40 mmol) and Na[BAr $_{4}^{f}$] (1.0 equiv.) in THF (50 mL) at -30°C was added excess iPr₂NH·BH₃ (20 equiv.) and the reaction mixture warmed to room temperature with stirring over a period

temperature, with stirring, over a period of 1 h. After a further 12 ⁴⁵ h at room temperature the resulting deep yellow solution was filtered, concentrated in *vacuo* and very light yellow crystals suitable for X-ray diffraction obtained by layering with pentane and storage at room temperature. Isolated yield 0.19 g, 21 %.

Spectroscopic data: ¹H NMR (300 MHz, toluene- d_8 , 20°C): δ_H

⁵⁰ -21.12 (s, 2H, IrH), 0.49 (br, 3H, BH₃), 0.82 (d, ${}^{3}J_{HH} = 6.9$ Hz, 12H, CH₃ of ⁱPr), 1.71 (s, 24H, *ortho*-CH₃ of IMes), 2.28 (s, 12H, *para*-CH₃ of IMes), 2.88 (m, 2H, CH of ⁱPr), 3.41 (br s, 1H NH), 6.74 (s, 4H, NCH of IMes), 6.81 (s, 8H, *meta*-CH of IMes), 7.47 (s, 4H, *para*-CH of [BAr^f₄]⁻), 7.63 (s, 8H, *ortho*-CH of [BAr^f₄]⁻).

- ⁵⁵ ¹³C NMR (126 MHz, toluene- d_8 , 20°C): (i) signals due to cation: δ_C 18.8 (*ortho*-CH₃ of IMes), 21.5 (CH₃ of ⁱPr), 24.5 (*para*-CH₃ of IMes), 49.9 (CH of *i*Pr), 122.7 (NCH of IMes), 129.8 (*ortho*-C of IMes), 137.3 (*meta*-CH of IMes), 139.5 (*para*-C of IMes), 157.8 (*ipso*-C of IMes), 170.8 (carbene quaternary of IMes); (ii)
- ⁶⁰ signals due to $[BAr_4^f]^-$ anion: 118.0 (s, *para*-CH), 124.8 (q, ${}^{1}J_{CF} =$ 271.8 Hz, CF₃), 129.5 (${}^{2}J_{CF} =$ 32.7 Hz, *meta*-C), 135.4 (*ortho*-CH), 162.7 (q, ${}^{1}J_{CB} =$ 50.2 Hz, *ipso*-C). ${}^{11}B$ NMR (96 MHz, toluene- d_8 , 20°C): δ_B 6.4 (br, BH₃), -6.1 ($[BAr_4^f]^-$). ${}^{19}F$ NMR (282 MHz, toluene- d_8 , 20°C): δ_F -62.9. Elemental microanalysis: (calc.
- ⁶⁵ for C₈₀H₈₀N₅IrB₂F₂₄) C, 53.94; H, 4.53 N, 3.93; (meas.) C, 54.06; H, 4.48; N, 4.02.

Crystallographic data: C₈₀H₈₀N₅B₂F₂₄Ir, $M_r = 1781.3$, triclinic, $P\overline{1}$, a = 12.4528(1), b = 16.8943(2), c = 19.4968(2) Å, $\alpha = 84.630(1)$, $\beta = 87.249(1)$, $\gamma = 89.442(1)^\circ$, V = 4079.0(1) Å³, Z = 2,

- ⁷⁰ $\rho_c = 1.45$ Mg m⁻³, T = 150(2) K, $\lambda = 0.71073$ Å. 30117 reflections collected, 18572 independent [R(int) = 0.032], which were used in all calculations. $R_1 = 0.0475$, $wR_2 = 0.1028$ for observed unique reflections [$F^2 > 2\sigma(F^2)$] and $R_1 = 0.0631$, $wR_2 =$ 0.1100 for all unique reflections. Max. and min. residual electron
- ⁷⁵ densities 2.35 and –1.47 e Å⁻³. CSD ref.: 840395

Fig. S1 Molecular structure of the cationic component of **2**; mesityl methyl groups shown in wireframe format for clarity and thermal ellipsoids set at the 40% probability level.

5: To a suspension of Na[BAr^f₄] (1.06 g, 1.19 mmol) in THF (50 mL) at -30°C was added 1 (1.0 equiv.) and the reaction mixture warmed to room temperature over 1 h. After stirring for a further 48 h, the resulting deep red solution

¹⁰⁰ was filtered, concentrated *in vacuo* and bright red crystals suitable for X-ray diffraction obtained by layering with pentane and storage at room temperature. Isolated yield 1.54 g, 78 %.

Spectroscopic data: ¹H NMR (300 MHz, dichloromethane-*d*₂, 20°C): $\delta_{\rm H}$ 1.82 (s, 6H, *ortho*-CH₃ of IMes"), 1.88 (s, 6H, *para*-¹⁰⁵ CH₃ of IMes"), 1.94 (s, 24H, *ortho*-CH₃ of IMes), 2.28 (s, 12H, *para*-CH₃ of IMes), 2.32 (br, 2H, CH₂ of IMes"), 2.42 (br, 2H, CH₂ of IMes"), 6.80, 6.88 (s, 4H, NCH of IMes and IMes"), 6.90 (s, 2H, *meta*-CH of IMes"), 7.05 (s, 4H, *meta*-CH of IMes), 7.31 (s, 2H, *meta*-CH of IMes"), 7.47 (s, 4H, *para*-CH of [BAr^f₄]), ¹¹⁰ 7.63 (s, 8H, *ortho*-CH of [BAr^f₄]). ¹¹B NMR (96 MHz, toluene-*d*₈, 20°C): $\delta_{\rm B}$ -6.1. ¹⁹F NMR (282 MHz, toluene-*d*₈, 20°C): $\delta_{\rm F}$ - 62.7. Elemental microanalysis: (calc. for C₇₄H₅₈N₄BF₂₄Ir) C, 53.44; H, 3.52; N, 3.37; (meas.) C, 53.75; H, 3.63; N, 3.18. *Crystallographic data*: C₇₄H₅₈N₄BF₂₄Ir, *M*_r = 1662.3, monoclinic, *P* 2₁/*c*, *a* = 16.9900(2), *b* = 20.4349(2), *c* = 21.0342(3) Å, β = 104.898(1)^o, *V* = 7057.4(2) Å³, *Z* = 4, ρ_c = 1.56 Mg m⁻³, T = 150(2) K, λ = 0.71073 Å. 31364 reflections collected, 16000 independent [R(int) = 0.039], which were used in all calculations.

- $s R_1 = 0.0440$, $wR_2 = 0.0854$ for observed unique reflections $[F^2 > 2\sigma(F^2)]$ and $R_1 = 0.0662$, $wR_2 = 0.0923$ for all unique reflections. Max. and min. residual electron densities 2.04 and -1.13 e Å⁻³. CSD ref.: 840397.
- 10 References
- J. Huang, E.D. Stevens and S.P. Nolan, Organometallics, 2000, 19, 1194.
- D.L. Reger, T.D. Wright, C.A. Little, J.J.S. Lamba and M.D. Smith, *Inorg. Chem.*, 2001, 40, 3810.
- ¹⁵ s3. L. Euzenat, D. Horhant, Y. Ribourdouille, C. Duriez, G. Alcaraz and M. Vaultier, *Chem. Commun.*, 2003, 2280.
 - s4. Z. Otwinowski and W. Minor, *Methods Enzymol.*, 1997, 276, 307.
 - s5. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi,
- ²⁰ M.C. Burla, G. Polidori and M. Camalli, *J. Appl. Cryst.*, 1994, **27**, 435.
 - s6. L. Palatinus and G. Chapuis, J. Appl. Cryst., 2007, 40, 786.
 - P.W. Betteridge, J.R. Carruthers, R.I. Cooper, C.K. Prout and D.J. Watkin, J. Appl. Cryst., 2003, 36, 1487.
- 25