# Supporting information for

# Langmuir-Blodgett Monolayer Stabilization Using Supramolecular Clips

# Negar Moridi, Christian Wäckerlin, Vanessa Rullaud, Rolf Schelldorfer, Thomas A. Jung and Patrick Shahgaldian

# EXPERIMENTAL

- General
- Synthesis of 5,11,17,23-Tetrakis[(bis-N-Boc)guanidine]-25,26,27,28-tetradodecyloxycalix[4]arene
- Synthesis of 5,11,17,23-Tetrakisguanidinium-25,26,27,28-tetradodecyloxycalix[4]arene (GC12)
- Langmuir monolayer experiments
- Langmuir-Blodgett transfer procedure
- Spectroscopic ellipsometry
- Contact angle measurement
- Atomic force microscopy
- X-ray photoelectron spectroscopy

# RESULTS

- Figure S1: Synthetic route to GC12
- Figure S2: Π/A isotherm of GC12 measured on water
- Figure S3: 2 successive Π/A isotherms of GC12 Langmuir monolayer on 0.166 g L<sup>-1</sup> *o*-phtalic acid subphase
- Figure S4: Π/A isotherms before and after transfer of GC12 Langmuir monolayer on solid substrate using 0.166 g L<sup>-1</sup> *o*-phtalic acid subphase
- Figure S5: Stability of GC12 monolayers on water and subphases of 1, 2, 3, 5, 6 and 7
- **Table S1:** Surface pressure in function of time for monolayers of **GC12** measured on pure water and subphases of *para*-phthalic, benzoic, fumaric, *ortho*-phthalic, succinic and maleic acids.
- Figure S6: Layer thickness measured for LB bilayers transferred using water as subphase
- Figure S7: Layer thickness measured for LB bilayers transferred using 0.166 g L<sup>-1</sup> *o*-phthalic acid as subphase
- Figure S8: AFM micrograph of OTS-modified Si/SiO<sub>2</sub> substrate
- Figure S9: F1s (a) and N1s (b) XP spectra of references and coated samples before and after wash

# **EXPERIMENTAL**

## General

All reactions were carried out under anhydrous conditions. All solvents were dried according to standard procedures and stored over molecular sieves. <sup>1</sup>H NMR spectra were recorded with a Bruker spectrometer 300MHz. Mass spectra were recorded in ESI mode on a thermoquest LCQ Deca instrument. TLCs were performed on pre-coated silica 0.2 mm. 25,26,27,28-tetrakis(tetradodecoxy)-5,11,17,23-tetramino-calix[4]arene (1) was produced as previously described.<sup>1</sup> N,N'-bis-tert-butoxycarbonylthiourea, was pre-pared according to the procedure reported in the literature.<sup>2</sup>

# Synthesis of 5,11,17,23-Tetrakis[(bis-N-Boc)guanidine]-25,26,27,28-tetradodecyloxycalix[4]arene (2)

To a solution of 1 (5.13 g, 4.43 mmol) in dry  $CH_2Cl_2$  (150 mL), N,N'-bis-tert-butoxycarbonylthiourea (5.14 g, 18.61 mmol), and  $Et_2N$  (6.73 g, 18.61 mmol) were added and the mixture was cooled in an ice bath. 2-chloro-1-methylpyridinium iodide (7.92 g, 31.01 mmol) was added and the mixture stirred 30 min at 0°C. The ice bath was removed and the reaction mixture was stirred overnight at 20 °C. The solvent was evaporated under reduce pressure and the residue was purified by flash column chromatography on silica gel (eluent: heptane/ethyl acetate 9:1 and 6:1) to obtain a pale yellow powder, **2** (4.14 mg, 44 %).

<sup>1</sup>H NMR (CDCl<sub>3</sub>-d ,300MHz):  $\delta = 11.60$  (s, 4 H, BocN*H*), 9.82 (s, 4 H, ArN*H*), 6.91 (s, 8 H, Ar*H*), 4.40 (d, *J*=12.9 Hz, 4 H, ArC*H*<sub>2</sub>Ar), 3.84 (t, *J*=7.5 Hz, 8 H, OC*H*<sub>2</sub>(CH<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>), 3.14 (d, *J*=13.1 Hz, 4 H, ArC*H*<sub>2</sub>Ar), 1.91 (br. s., 8 H, OCH<sub>2</sub>C*H*<sub>2</sub>(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>), 1.42 - 1.54 (m, 72 H, Bu<sup>t</sup>), 1.28 (br. s., 72 H, O(CH<sub>2</sub>)<sub>2</sub>(*CH*<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>), 0.88 ppm (t, *J*=7.3 Hz, 12 H, O(CH<sub>2</sub>)<sub>11</sub>CH<sub>3</sub>)

<sup>13</sup>C NMR (CDCl<sub>3</sub>-d ,75MHz): δ = 163.6, 154.0, 153.5, 153.0, 134.7, 130.7, 123.0, 86.7, 82.9, 79.0, 75.4, 31.9, 31.4, 30.1, 30.0, 29.8, 29.8, 29.7, 29.4, 28.2, 28.1, 26.3, 22.7, 14.1 ppm

MS (ESI) calculated m/z for  $[M-8boc+H_2O+H]^+=1344.07$ ; found  $[M-8boc+H_2O+H]^+=1344.7$ ; calculated  $[M-8boc+2H]^{2+}=663.5$ ; found  $[M-8boc+2H]^{2+}=662.9$ .

## Synthesis of 5,11,17,23-Tetrakisguanidinium-25,26,27,28-tetradodecyloxycalix[4]arene (GC12)

Concentrated HCl (37%) was added drop wise to a solution of 2 (2 g, 0.47 mmol) in 60 mL of 1,4 dioxane. The suspension was stirred 24h at room temperature and the solvent evaporated under vacuum. The obtained powder was triturated with ethyl acetate then filtrated, to give a beige powder in a yield of 69%.

<sup>1</sup>H NMR (MeOD-d ,300MHz):  $\delta = 6.68$  (s, 8 H, Ar*H*), 4.51 (d, *J*=13.3 Hz, 4 H, Ar*CH*<sub>2</sub>Ar), 3.98 (t, *J*=7.2 Hz, 8 H, OCH<sub>2</sub>(CH<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>), 3.28 (br. s., 2 H, Ar*CH*<sub>2</sub>Ar), 2.00 (br. s., 8 H, OCH<sub>2</sub>CH<sub>2</sub>(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>), 1.18 - 1.70 (m, 72 H, O(CH<sub>2</sub>)<sub>2</sub>(*CH*<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>), 0.83 - 0.99 ppm (m, 12 H, O(CH<sub>2</sub>)<sub>11</sub>CH<sub>3</sub>)

<sup>13</sup>C NMR (MeOD-d ,75MHz):  $\delta = 158.0$ , 157.3, 137.8, 130.0, 126.8, 77.1, 33.3, 31.9, 31.5, 31.3, 31.1, 30.8, 28.0, 24.0, 14.6 ppm

TLC heptane/ ethyl acetate (4:1) Rf= 0.4.

MS (ESI) calculated m/z for  $[M-4HCl+2H]^{2+}= 663.53$ , found  $[M-4HCl+2H]^{2+}= 662.9$ .



Figure S1: Synthetic route to GC12; reagents and conditions: (i) Boc-NH-C(S)-NH-Boc, Mukaiyama's reagent in  $CH_2Cl_2$ , rt; (ii) HCl/1,4-dioxane, rt.

#### Langmuir monolayer experiments

Prior to experiments, the Langmuir trough (Nima 112D) and the barriers were cleaned with analytical grade chloroform and nanopure water (resistivity  $\geq 18$  M $\Omega$ .cm). The microbalance was calibrated before each series of runs using a weighing pan and a calibration weight. Clip solutions, at defined concentration in nanopure water, were prepared extemporaneously. The absence of surface-active molecules was controlled by closing the barriers in the absence of GC12; no relevant change in surface tension was observed.  $10\mu$ L of GC12 solution in chloroform (1 mg mL<sup>-1</sup>) was spread on the liquid subphase using a gastight microsyringe. 15 min was allowed for solvent evaporation and monolayer equilibration; barriers were closed in continuous mode at a speed rate of 5 cm<sup>2</sup>min<sup>-1</sup>.

#### Langmuir-Blodgett transfer procedure

Langmuir-Blodgett transfers were performed using a vertical dipping system (speed rate 5 mm min<sup>-1</sup>). Experiments were carried out in surface tension controlled mode (35 mN m<sup>-1</sup>). Silicon wafers were used as solid substrates for LB deposition. After cutting the silicon wafers, they have been first pre-cleaned using soap, nanopure water, acetone and methanol respectively. Pre-cleaned silicon wafers were places 20 min in a UV/ozone chamber consecutively rinsed with methanol and dried under a nitrogen stream. The so-cleaned substrates were immersed for 30 min in 3.9 g L<sup>-1</sup> anhydrous heptane solution of octadecyltrichlorosilane, rinsed and submitted to an ultrasonic treatement for 10 min in heptane and chloroform respectively. **GC12** LB monolayer was transferred on hydrophobic Si/SiO<sub>2</sub> wafer at controlled dipping speed rate (5 mm min<sup>-1</sup>) and surface tension (35 mN m<sup>-1</sup>). After 60 min of equilibration time in the subphase, the monolayer at the interface was removed by suction and the substrate was removed at a speed rate of 50 mm min<sup>-1</sup>. Coated Si/SiO<sub>2</sub> wafers were rinsed after 2 hours with nanopure water (pH 8).

## Spectroscopic ellipsometry

Ellipsometry measurements were carried out using an imaging and spectroscopic system (EP<sup>3</sup> Ellipsometer, Accurion) in a nulling PCSA (polarizer-compensator-sample-analyzer) set-up. In this system, the incident beam that is elliptically polarized with a linear polarizer (P) and a quarter-wave plate (C) is reflected from the sample (S) to the analyzer (A) and finally imaged with a CCD camera using 10× objective. The nulling conditions, related to the optical properties of each sample, were obtained by tuning the angles of P, C and A. Measured data were then converted to the  $\Delta$  (relative phase shift of *p*- and *s*-polarized light upon reflection on the sample) and  $\Psi$  (relative amplitude ratio of the reflection coefficients of *p*- and *s*- polarization). Measurements were performed with a fixed angle of incidence (50°) at five different wavelengths ( $\lambda$ =629.1, 710.2, 791.2, 880.7, 1000.8 nm). Transferring measured  $\Delta$  and  $\Psi$  as a function of wavelength lambda to the EP<sup>4</sup> model, thickness of transferred layers could be calculated. A model with four layers

 $(Si/SiO_2/OTS/LB/air)$  was created. Using data base of EP<sup>4</sup> software, dispersion functions of SiO<sub>2</sub>, Si and air as ambient were defined. A Cauchy model with predefined refractive index and extinction coefficient (n= 1.5, k=0) has been designated for the LB and OTS layers. Thickness of 30 Å and 28 Å was measured for SiO<sub>2</sub> and OTS layer, respectively. A system control was done prior to each set of experiments using standard Si/SiO<sub>2</sub> samples.

# Contact angle measurement

The contact angle was measured using a commercial Krüss Easy drop optical system (Krüss, GmbH, Germany).  $5\mu$ L of nanopure water drops were used for measuring static water contact angle on coated samples. To ensure reproducibility, the measurements were repeated at 5 different positions on each sample.

# Atomic force microscopy

Coated samples, after rinsing with nanopure water (pH 8), were imaged by atomic force microscopy in tapping mode using a Multimode 5 instrument (Bruker AXS) equipped with a Nanoscope IIIa controller; MicroMash NSC15 silicon tips were used.

# X-ray photoelectron spectroscopy

XPS was measured in normal emission using monochromatic Al K $\alpha$  (hv = 1486.7 eV) excitation (Specs FOCUS 500) in normal emission using a Specs PHOIBOS 150 electron analyzer. The full with half maximum of the instrumentation was 0.8 eV. To reduce sample charging, a flood-gun was used to provide free electrons. The Si2p core level of the substrate was used as reference for the binding energies and was assigned to 99.3 eV for Si<sup>0</sup> respectively. The intensities and thus the stoichiometric ratios were calibrated using an in-situ prepared reference containing C, N and F. The measurements were performed in ultra-high vacuum (~ 10<sup>-10</sup> mbar).





Figure S2:  $\Pi$ /A isotherm of GC12 measured on water



**Figure S3:** Surface pressure vs surface area of **GC12** Langmuir monolayer measured on 0.166 g  $L^{-1}$  ortho-phthalic acid, compressed at a speed rate of 5 cm<sup>2</sup> min<sup>-1</sup> with a target pressure (35 mN m<sup>-1</sup>)



**Figure S4:** Surface pressure vs surface area measurement (—) before and ( $-\cdot$ -) after transfer of **GC12** Langmuir monolayer on solid substrate using 0.166 g L<sup>-1</sup> *ortho*-phthalic acid solution.



**Figure S5:** Surface pressure in function of time for monolayers of **GC12** measured on pure water (—) and subphases of *para*-phthalic (0.1mM, —), benzoic (1mM, —), fumaric (1mM, —), *ortho*-phthalic (1mM, —), succinic (1mM, --) and maleic (1mM, --) acids subphases. Compressions were carried out at a speed rate of 5 cm<sup>2</sup>min<sup>-1</sup> and stopped when the surface pressure reached a value of 30 mN m<sup>-1</sup>.

| Subphase additive | Additive concentration<br>(mM) | Average measured decay mN/(m.min) |
|-------------------|--------------------------------|-----------------------------------|
| -                 | 0                              | 0.33                              |
| 1                 | 1                              | 0.077                             |
| 2                 | 0.1                            | 0.31                              |
| 2*                | 1                              | n.d.                              |
| 3                 | 1                              | 0.29                              |
| 5                 | 1                              | 0.26                              |
| 6                 | 1                              | 0.041                             |
| 7                 | 1                              | 0.052                             |

Table S1 Average decay measured for the isotherms of GC12 prepared on water and subphases of 1, 2, 3, 5, 6 and 7.

\*Average decay using 2 at 1mM could not be measured (*n.d.*) because of the poor solubility of this compound in water.



Figure S6: Layer thickness measured for LB bilayers transferred using water as subphase.



**Figure S7:** Layer thickness measured for LB bilayers transferred using 0.166 g L<sup>-1</sup> ortho-phthalic acid as subphase.



Figure S8: AFM tapping mode micrograph of OTS-modified Si/SiO<sub>2</sub> substrate (RMS roughness: 0.17 nm)



**Figure S9:** F1s (a) and N1s (b) XP spectra: The core level signals are used to track the composition and stoichiometry of the **GC12** LB films (N1s) and 4-trifluoromethyl-*ortho*-phthalic acid (F1s), respectively.

NB: In the bare SiO<sub>2</sub>/Si substrate and in the octadecyltrichlorosilane (OTS) monolayer on SiO<sub>2</sub>/Si, no N1s and F1s signal was observed. In the GC12 + 4 LB film prior to washing, the observed N/F ratio of 1.39 indicated an excess of the 4 molecule. After wash with H<sub>2</sub>O, the N/F ratio is 2.11. This is in good agreement with the ideal value of 2 for a 2:1 complex of 4 (3 F) and GC12 (12 N).

- (1) Shahgaldian, P.; Sciotti, M. A.; Pieles, U. Langmuir 2008, 24, 8522.
- (2) Bianco, A.; Brufani, M.; Dri, D. A.; Melchioni, C.; Filocamo, L. Lett. Org. Chem. 2005, 2, 83.