Electronic Supplementary Information

Pillar[n]arenes ($\mathrm{n}=8$ 8-10) with Two Cavities: Synthesis, Structures and Complexing Properties

Xiao-Bo Hu, ${ }^{1}$ Zhenxia Chen, ${ }^{1}$ Lei Chen,,${ }^{1}$ Ling Zhang, ${ }^{2}$ Jun-Li Hou, ${ }^{*, 1}$ and Zhan-Ting Li ${ }^{1}$${ }^{1}$ Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China${ }^{2}$ Honeywell Integrated Technology (China) Co. Ltd., 430 Li Bing Road, Shanghai, 201203, China*To whom correspondence should be addressed: houj1@fudan.edu.cn
Contents:

1. General S2
2. Synthetic procedure for $\operatorname{PA}[\mathrm{n}](\mathrm{n}=5-10)$ S2
3. Characterization data and spectra for $\operatorname{PA}[\mathrm{n}](\mathrm{n}=5-10)$ S2
4. Comparing the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\operatorname{PA}[\mathrm{n}](\mathrm{n}=5-10)$ S8
5. Variable temperature ${ }^{1} \mathrm{H}$ NMR experiments S9
6. ${ }^{1} \mathrm{H}$ NMR titration experiments S9
7. HR ESI-MS experiments S13
8. 2D ${ }^{1} \mathrm{H}$ NMR NOESY experiment S14
9. References S14

1. General:

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 MHz with a Mercury plus 400 spectrometer at 298 K . Chemical shifts were referenced to CHCl_{3} residue (7.26 ppm for ${ }^{1} \mathrm{H}$ NMR, 77.0 ppm for ${ }^{13} \mathrm{C}$ NMR). Mass spectra were recorded with Bruker MicroTOF II spectrometer. 1,4-diethoxybenzene and paraformaldehyde were obtained from Alfa Aesar. For single crystal growing, PA[8], PA[9] and PA[10] (2-5 mg) were respectively dissolved in acetonitrile, DMF, and acetone (0.3 ml). The single crystals were obtained by slow evaporation the solutions under $20^{\circ} \mathrm{C}$ for $2-4$ weeks. For the all three crystals, the data sets were treated with the SQUEEZE program to remove highly disordered solvent molecules. The crystallographic formulae include the number of solvent molecules suggested by the SQUEEZE program.

2. Synthetic procedure for $\operatorname{PA}[\mathrm{n}](\mathrm{n}=\mathbf{5 - 1 0})$:

To the solution of 1,4-diethoxybenzene ($6.00 \mathrm{~g}, 36 \mathrm{mmol}$) in chloroform (300 ml) was added paraformaldehyde ($1.08 \mathrm{~g}, 36 \mathrm{mmol})$. The suspension was stirred at $25^{\circ} \mathrm{C}$ for 20 min to crush the large paraformaldehyde particles. And then, boron trifluoride diethyl etherate ($4.5 \mathrm{ml}, 36 \mathrm{mmol}$) was added to the solution. After continuing stirred at $25{ }^{\circ} \mathrm{C}$ for 20 min , the reaction was quenched by addition of water. The organic phase was separated and washed with saturated aqueous $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, and brine. The crude product was purified by column chromatograph $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether) to yield PA[5] $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=1: 1, R_{\mathrm{f}}=0.2,1.28 \mathrm{~g}, 20 \%\right)$, PA[6] $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /petroleum ether $\left.=4: 1, R_{\mathrm{f}}=0.3,0.96 \mathrm{~g}, 15 \%\right)$, $\mathrm{PA}[7]\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=10: 1, R_{\mathrm{f}}=0.3,192 \mathrm{mg}, 3 \%\right)$, PA[8] $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $=30: 1, R_{\mathrm{f}}=$ $0.3,64 \mathrm{mg}, 1 \%)$, $\mathrm{PA}[9]\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=50: 1, R_{\mathrm{f}}=0.2,126 \mathrm{mg}, 2 \%\right)$, and $\operatorname{PA}[10]\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ petroleum ether $\left.=100: 0, R_{\mathrm{f}}=0.2,130 \mathrm{mg}, 2 \%\right)$ as white solids.
3. Characterization data and spectra for $\mathbf{P A}[\mathbf{n}](\mathbf{n}=\mathbf{5 - 1 0})$:

PA[5] ${ }^{[1]}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.72(\mathrm{~s}, 10 \mathrm{H}), 3.83(\mathrm{q}, J=6.4 \mathrm{~Hz}, 20 \mathrm{H})$, $3.76(\mathrm{~s}, 10 \mathrm{H}), 1.26(\mathrm{t}, J=6.4 \mathrm{~Hz}, 30 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 149.8$, 128.4, 115.0, 63.7, 29.8, 15.1 .

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PA}[5]$ in CDCl_{3}.

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{PA}[5]$ in CDCl_{3}.
PA[6] ${ }^{[1]}:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.69(\mathrm{~s}, 12 \mathrm{H}), 3.83(\mathrm{q}, J=6.4 \mathrm{~Hz}, 24 \mathrm{H})$, $3.79(\mathrm{~s}, 12 \mathrm{H}), 1.28(\mathrm{t}, J=6.4 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 150.4$, 127.8, 115.2, 64.0, 30.9, 15.2.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PA}[6]$ in CDCl_{3}.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{PA}[6]$ in CDCl_{3}.

PA[7]: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.63(\mathrm{~s}, 14 \mathrm{H}), 3.83(\mathrm{~s}, 14 \mathrm{H}), 3.79(\mathrm{q}, \mathrm{J}=6.4$ $\mathrm{Hz}, 28 \mathrm{H}), 1.22(\mathrm{t}, J=6.4 \mathrm{~Hz}, 42 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 150.6,127.9$, 115.2, 64.2, 31.0, 15.1. MS (ESI): m/z $1269[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI-TOF): Calcd. for $\mathrm{C}_{77} \mathrm{H}_{98} \mathrm{O}_{14} \mathrm{Na}: 1269.6854$. Found: 1269.6822.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PA}[7]$ in CDCl_{3}.

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{PA}[7]$ in CDCl_{3}.

Figure S7. HR ESI-MS of PA[7].
PA[8]: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.61(\mathrm{~s}, 16 \mathrm{H}), 3.84(\mathrm{~s}, 16 \mathrm{H}), 3.80(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 32 \mathrm{H}), 1.23(\mathrm{t}, J=6.8 \mathrm{~Hz}, 48 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 150.6,127.8$, 114.9, 64.2, 30.4, 15.0. MS (ESI): m/z $1448[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI-TOF): Calcd. for $\mathrm{C}_{88} \mathrm{H}_{112} \mathrm{O}_{16} \mathrm{Na}: 1447.7848$. Found: 1447.7841.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PA}[8]$ in CDCl_{3}.

Figure S9. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{PA}[8]$ in CDCl_{3}.

Figure S10. HR ESI-MS of PA[8].

PA[9]: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.64(\mathrm{~s}, 18 \mathrm{H}), 3.83(\mathrm{~s}, 18 \mathrm{H}), 3.82(\mathrm{q}, \mathrm{J}=6.8$ $\mathrm{Hz}, 36 \mathrm{H}), 1.26(\mathrm{t}, J=6.8 \mathrm{~Hz}, 54 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 150.4,127.9$, 114.9, 64.1, 30.0, 15.1. MS (ESI): m/z 1627 [M+Na] ${ }^{+}$, HR-MS (ESI-TOF): Calcd. for $\mathrm{C}_{99} \mathrm{H}_{126} \mathrm{O}_{18} \mathrm{Na}: 1626.8875$. Found: 1626.8860 .

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PA}[9]$ in CDCl_{3}.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{PA}[9]$ in CDCl_{3}.

Figure S13. HR ESI-MS of PA[9].

PA[10]: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 6.65(\mathrm{~s}, 20 \mathrm{H}), 3.83(\mathrm{~s}, 20 \mathrm{H}), 3.82(\mathrm{q}, \mathrm{J}=6.6$ $\mathrm{Hz}, 40 \mathrm{H}), 1.26(\mathrm{t}, J=6.6 \mathrm{~Hz}, 60 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 150.5,127.9$, 114.9, 64.2, 30.0, 15.1. MS (ESI): m/z $1805[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI-TOF): Calcd. for $\mathrm{C}_{110} \mathrm{H}_{140} \mathrm{O}_{20} \mathrm{Na}: 1804.9869$. Found: 1804.9894 .

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PA}[10]$ in CDCl_{3}.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{PA}[10]$ in CDCl_{3}.

Figure S16. HR ESI-MS of PA[10].
4. Comparing the ${ }^{1} H$ NMR and ${ }^{13} C$ NMR spectra of $P A[n](n=5-10)$:

Figure S17. Partial (a) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 2.0 \mathrm{mM}$) and (b) ${ }^{13} \mathrm{C}$ NMR (100 MHz , $10.0 \mathrm{mM})$ spectra of $\mathrm{PA}[\mathrm{n}] \mathrm{s}(\mathrm{n}=5-10)$ in CDCl_{3} at $25^{\circ} \mathrm{C}$.

5. Variable temperature ${ }^{1} \mathrm{H}$ NMR experiments:

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{PA}[10]$ at (a) $25{ }^{\circ} \mathrm{C}$ and (b) $-50{ }^{\circ} \mathrm{C}$, indicating no signal splitting or broadening.

6. ${ }^{1} \mathrm{H}$ NMR titration experiments:

To determine the association constants $\left(K_{a}\right)$ for $\mathrm{PA}[\mathrm{n}] \mathrm{s}(\mathrm{n}=5,6,9,10)$ binding with OTA, ${ }^{1} \mathrm{H}$ NMR titration experiments were done with CDCl_{3} solutions which had a constant concentration of PA[n] (1.0 mM) and varying concentration of OTA.

From the molar ratio plot, a 1:1 stoichiometry was obtained for PA[5], PA[6] and PA[9] binding with OTA. The association constants $\left(K_{a}\right)$ of them were estimated by a non-linear curve-fitting method with the equation: ${ }^{[2]}$

$$
\Delta \delta=\left(\Delta \delta_{\infty} /[\mathrm{H}]\right)\left\{0.5\left([\mathrm{G}]+[\mathrm{H}]+1 / K_{a}\right)-\left(\left([\mathrm{G}]+[\mathrm{H}]+1 / K_{a}\right) 2+4[\mathrm{H}][\mathrm{G}]\right)^{0.5}\right\} \quad \text { Eq. } 1
$$

Where $\Delta \delta$ is the chemical shift change of ArH on $\mathrm{PA}[\mathrm{n}] \mathrm{s}(\mathrm{n}=5,6,9)$ at $[\mathrm{G}], \Delta \delta_{\infty}$ is the chemical shift change of ArH when $\mathrm{PA}[\mathrm{n}]$ s is completely complexed, $[\mathrm{H}]$ is the fixed initial concentration of the host, and [G] is the concentration of OTA.

From the molar ratio plot, a 1:2 stoichiometry was obtained for PA[10] binding with OTA. The association constant $\left(K_{a}\right)$ was estimated by a non-linear curve-fitting method with the equation: ${ }^{[2]}$

$$
\begin{equation*}
\Delta \delta=\left(\Delta \delta_{\mathrm{HG}} K_{1}[\mathrm{G}]+\Delta \delta_{\mathrm{HG} 2} K_{1} K_{2}[\mathrm{G}]^{2}\right) /\left(1+K_{1}[\mathrm{G}]+K_{1} K_{2}[\mathrm{G}]^{2}\right) \tag{Eq. 2}
\end{equation*}
$$

Where $\Delta \delta$ is the chemical shift change of ArH on $\mathrm{PA}[10]$ at [G], $\Delta \delta_{\mathrm{HG}}$ is the chemical shift change of ArH when $\mathrm{PA}[10]$ is completely complexed by the first $\mathrm{OTA}, \Delta \delta_{\mathrm{HG} 2}$ is the chemical shift change of ArH when $\mathrm{PA}[10]$ is completely complexed by the second OTA, $[\mathrm{H}]$ is the fixed initial concentration of the host, and [G] is the
concentration of OTA.

Figure S19. Changes of the chemical shift changes of ArH on $\mathrm{PA}[5]$ with addition of OTA. The red solid line was obtained from the non-linear curve-fitting with Eq. 1.

Figure S20. Changes of the chemical shift changes of ArH on $\mathrm{PA}[6]$ with addition of OTA. The red solid line was obtained from the non-linear curve-fitting using Eq. 1.

Figure S21. Molar ratio plot for the binding of OTA with (a) PA[9], (b) PA[10] in chloroform- d at $25^{\circ} \mathrm{C}$.

Figure S22. Changes of the chemical shift changes of ArH on $\mathrm{PA}[9]$ with addition of OTA. The red solid line was obtained from the non-linear curve-fitting using Eq. 1.

Figure S23. Changes of the chemical shift changes of ArH on $\mathrm{PA}[10]$ with addition of OTA. The red solid line was obtained from the non-linear curve-fitting using Eq. 2.

7. HR ESI-MS experiments:

Figure S24. ESI-MS of the mixture of OTA (3.0 mM) with (a) PA[8] (0.5 mM), (b) PA[9] (0.5 mM) and (c) PA[10] (0.5 mM) in chloroform.

8. $2 \mathrm{D}{ }^{1} \mathrm{H}$ NMR NOESY experiment:

PA[10]

OTA
$\mathrm{H}^{1} \mathrm{H}^{2}-\mathrm{H}^{6}$

Figure S25. 2D ${ }^{1} \mathrm{H}$ NMR NOESY spectrum (mixing time $=500 \mathrm{~ms}$) of $\mathrm{PA}[10](6.0$ mM) and OTA (48 mM) in CDCl_{3} at 298 K .

9. References:

(1) Tao, H. Q.; Cao, D. R.; Liu, L. Z.; Kou, Y. H.; Wang, L. Y.; Meier, H. Sci. China: Chem. 2012, 55, 223-228.
(2) Thordarson, P. Chem. Soc. Rev. 2011, 40, 1305-1323.

