## **Supporting Information**

# Visual specific luminescent probing of hybrid G-quadruplex DNA by a ruthenium polypyridyl complex

Guo-Liang Liao, Xiang Chen, Liang-Nian Ji and Hui Chao\*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China. E-mail: ceschh@mail.sysu.edu.cn; Fax: 86-20-84112245; Tel: 86-20-84110613

## **Experimental Procedures**

#### Materials

All of the oligonucleotides were purchased from Sangon Biotech (Shanghai, China) and used without further purification. Samples are prepared in different buffers as described in the references: buffer A (Na<sup>+</sup> buffer: 100 mM NaCl, 10 mM NaH<sub>2</sub>PO<sub>4</sub>/Na<sub>2</sub>HPO<sub>4</sub>, 1 mM Na<sub>2</sub>EDTA, pH = 7.0), buffer B (K<sup>+</sup> buffer: 100 mM KCl, 10 mM NaH<sub>2</sub>PO<sub>4</sub>/Na<sub>2</sub>HPO<sub>4</sub>, 1 mM Na<sub>2</sub>EDTA, pH = 7.0) and buffer C (100 mM KCl, 10 mM NaH<sub>2</sub>PO<sub>4</sub>/Na<sub>2</sub>HPO<sub>4</sub>, 1 mM Na<sub>2</sub>EDTA, pH = 5.5).

| Squences                                        | Abb.                      | Expected         | Ref. |
|-------------------------------------------------|---------------------------|------------------|------|
|                                                 |                           | conformations    |      |
| 5'-AGGGTTAGGGTTAGGGTTAGGG-3'                    | $AG_{3}(T_{2}AG_{3})_{3}$ | antiparallel/mix | 1    |
| FAM-5'-AGGGTTAGGGTTAGGGTTAGGG-3'-TRAMA          | F22T                      |                  |      |
| 5'-TGGGGTTGGGGTTGGGGTTGGGGT-3'                  | $d(TG_4T)_4$              | parallel         | 2    |
| 5'-CCCTAACCCTAACCCT-3'                          | $(C_3TA_2)_3C_3T$         | i-motif          | 3    |
| 5'-AAAAAAAAAAAA3'                               | polyd(A)                  | single strand    |      |
| 5'-TTTTTTTTTTTT-3'                              | polyd(T)                  | single strand    |      |
| 5'-AAAAAAAAAAAAA3' and                          | polyd(A)                  | triplex          | 4    |
| 2*5'-TTTTTTTTTTTT-3'                            | $\cdot 2$ polyd(T)        |                  |      |
| 5'-ATATATATATAT-3' and the complementary strand | poly(AT)                  | duplex           |      |
| 5'-GCGCGCGCGCGC-3' and the complementary strand | poly(GC)                  | duplex           |      |
| CT-DNA                                          | CT-DNA                    | duplex           |      |

**Table S1**. DNA sequence introduced in the experiment

**General Methods**. Elemental analyses (C, H, and N) were carried out on a Vario EL elemental analyzer. <sup>1</sup>H NMR spectra were recorded on a Varian INOVA-500 spectrometer with  $(CD_3)_2SO$  as solvent at room temperature and tetramethylsilane (TMS) as the internal standard. All chemical shifts are given relative to TMS. Electrospray mass spectra (ES-MS) were recorded on a LCQ system (Finnigan MAT, USA) and the quoted m/z values are for the major peaks in the isotope distribution.

Luminescent detection. Ru(II) complex (50  $\mu$ M) and DNAs (20  $\mu$ M) were mixed and

after 4 h for equilibrium, luminescent spectra were detected by Perkin Elmer LS55 Spectrofluorometer from 500 to 800 nm, the excitation wavelength was 415 nm.

**Circular Dichroic experiment.** CD spectra were measured using a JASCO J-810 spectropolarimeter, The samples of DNAs were diluted to 10  $\mu$ M and placed in a 1 cm path length quartz cell, then different concentrations of the Ru(II) complex were added. CD spectra were then baseline-corrected and recorded from 200 to 400 nm.

**FRET melting assay.** This was performed with a Roche Lightcycler 2.0 real-time fluorescent quantitative PCR machine. In a 25  $\mu$ L volume system, 200 nM DNA F22T was added together with different concentrations of the Ru(II) complex. The experiments were performed in the machine following the procedure of 37°C for 2 min, then an increase speed of 1°C every minute from 37 to 95°C. During the procedure we measured the FAM after each step.

**Visualization experiment.** 50  $\mu$ M of the Ru(II) complex was mixed with 20  $\mu$ M DNAs and incubated for 4 h. The total volume of each sample was 600  $\mu$ L. Then all the samples were photographed under irradiation of UV light.

**Dialyze assay.** 50  $\mu$ L different DNAs (20  $\mu$ M) were added into 3500 MWCO Thermo Slide-A-Lyzer<sup>®</sup> MINI Dialysis Units, then placed into a 1  $\mu$ M Ru(II) complex environment. After 6 h of equilibration, the units were removed and 10% SDS was added until it reached a concentration of 1%. Agilent Technologies 7700 Series ICP-MS was introduced to quantify the amount of Ru(II) complex in the units as well as dialyzate. The bound complex can be calculated as the difference of the two concentrations.

**Fluorescence polarization anisotropy**. The experiment was performed as described in reference<sup>5</sup>. 20  $\mu$ M of the Ru(II) complex was mixed with 320  $\mu$ M DNAs and incubated for 4 h. The total volume of every sample was 800  $\mu$ L. Then the samples were excited at 415 nm and the fluorescence signal was monitored at 600 nm through crossed polarizers.

#### Synthesis of Ru(II) complex

Compounds  $[Ru(bpy)_2(1,10-phenanthroline-5,6-diamine)]^{2+6}$  and 3,4-benzo[a]phenazine quinone<sup>7</sup> were prepared as described previously.

### Synthesis of [Ru(bpy)<sub>2</sub>(bqdppz)](ClO<sub>4</sub>)<sub>2</sub> (1).

A mixture of  $[Ru(bpy)_2(1,10\text{-phenanthroline-5,6-diamine})]^{2+}$  (0.411 g, 0.5 mmol) and 3,4-benzo[a]phenazine quinone (0.130 g, 0.5 mmol) was suspended in 30 mL of acetic acid, the solution was then heated at 135 °C for 4 h under Ar. It was cooled to room temperature, and 50 cm<sup>3</sup> water were added. After filtration, a dark red precipitate was obtained by dropwise addition of aqueous NaClO<sub>4</sub> solution. The product was purified by column chromatography on alumina with acetonitrile-toluene (1:1 v/v) as eluent. Yeild: 62%. Anal. Calc. C<sub>48</sub>H<sub>30</sub>Cl<sub>2</sub>N<sub>10</sub>O<sub>8</sub>Ru: C, 55.07; H, 2.89; N, 13.38%. Found: C,

54.93; H, 3.03; N, 13.18%. ES–MS [CH<sub>3</sub>CN, m/z]: 423.9 ([M-2ClO<sub>4</sub>]<sup>2+</sup>). <sup>1</sup>H NMR (500 MHz,  $d_6$ -DMSO):  $\delta$  9.92 (d, J = 8 Hz, 1H), 9.77 (d, J = 8 Hz, 1H), 9.51 (d, J = 6 Hz, 1H), 9.29 (d, J = 6 Hz, 1H), 8.93 – 8.87 (m, 4H), 8.52 (t, J = 5 Hz, 1H), 8.41 (t, J = 5 Hz, 1H), 8.33 (t, J = 5 Hz, 2H), 8.27 (t, J = 5 Hz, 2H), 8.17 – 8.05 (m, 8H), 7.90 (d, J = 6 Hz, 3H), 7.82 (d, J = 5 Hz, 1H), 7.65 (t, J = 4.5 Hz, 2H), 7.43 (dd, J<sub>1</sub> = 5 Hz, J<sub>2</sub> = 3 Hz, 2H).

#### **ES MS Spectrum**



Fig. S1 ES-MS Spectrum of complex 1

#### <sup>1</sup>H NMR Spectrum



**Fig. S2** <sup>1</sup>H NMR Spectrum of complex 1 in DMSO- $d_6$ 



**Fig. S3** Job-Plot using luminescence data for complex **1** with  $AG_3(T_2AG_3)_3$  in Na<sup>+</sup> buffer (a) and K<sup>+</sup> buffer (b), X = mole fraction of Ru(II) complex added to DNA, and the total concentration was maintained at 10  $\mu$ M.

The result shows that binding stoichiometries of complex 1 with G-quadruplex is 2:1. We propose that complex 1 interacts with G-quadruplex through a stacking mode, which means the molecules stack on the top and bottom G-tetrad of the quadruplex.



**Fig. S4** CD spectra of  $AG_3(T_2AG_3)_3$  in K<sup>+</sup> buffer (a), Na<sup>+</sup> buffer (b) and H<sub>2</sub>O (c) upon increasing addition of complex. Arrows indicate the increasing concentrations of complex. The concentration of G-quadruplex was 10  $\mu$ M.



**Fig. S5** FRET melting curves detected with G-quadruplex DNA F22T (sequence: FAM-AG<sub>3</sub>(T<sub>2</sub>AG<sub>3</sub>)<sub>3</sub>-TRAMA, mimicking the human telomeric repeat) alone and different concentrations of complex **1** (0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 3.0  $\mu$ M) in Na<sup>+</sup> buffer (a), K<sup>+</sup> buffer (b), the concentration of G-quadruplex is 200 nM.

#### Reference

- 1. K. N. Luu, A. T. Phan, V. Kuryavyi, L. Lacroix and D. J. Patel, J. Am. Chem. Soc., 2006, **128**, 9963.
- 2. I. N. Rujan, J. C. Meleney and P. H. Bolton, Nucleic Acids Res., 2005, 33, 2022.
- 3. X. Li, Y. H. Peng, J. S. Ren and X. G. Qu, *Proc. Natl. Acad. Sci. U. S. A.*, 2006, **103**, 19658.
- 4. P. A. Rachwal, T. Brown and K. R. Fox, *Biochemistry*, 2007, 46, 3036.
- 5. C. V. Kumar, J. K. Barton and N. J. Turro, J. Am. Chem. Soc., 1985, 107, 5518.
- 6. S. Bodige and F. M. MacDonnell, *Tetrahedron Lett.*, 1997, **38**, 8159.
- 7. B. M. Zeglis and J. K. Barton, *Nature Protocols*, 2007, 2, 357.