Mesoporous SnO₂ agglomerates with hierarchical structures as an efficient dual-functional material for dye-sensitized solar cells

Peining Zhu^{*a, b*}, M.V.Reddy^{*c,d*}^{*s,d*}^{*s,d*}, Yongzhi Wu^{*b*}, Shengjie Peng^{*b e*}^{*s*}, Shengyuan Yang^{*b*}, A. Sreekumaran Nair^{*b*}, K.P.Loh^{*d*}, B. V. R. Chowdari^{*c*}, and S. Ramakrishna^{*b*}^{*s*}

a Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore

^b Center for Nanofibers & Nanotechnology, National University of Singapore, 117581, Singapore. cDepartment of Physics, National University of Singapore, Singapore, 117542

d Department of Chemistry, National University of Singapore, Singapore, 117542

e School of Materials Science and Engineering, Nanyang Technology University, 50 Nanyang Avenue, Singapore, 639798

Corresponding authors: phymvvr@nus.edu.sg (M. V. Reddy) sjpeng@ntu.edu.sg (Shengjie Peng), Seeram@nus.edu.sg (S. Ramakrishna)

Supporting Information (SI) 1

Experimental Details:

(a) Fabrication of SnO₂ by molten salt method: Tin oxide, (SnO_2) mesoporous aggregates were prepared by a Molten Salt Method (MSM) through reacting one mole Tin chloride Tetrahydrate $(SnCl_4 \cdot 4H_2O, Merck, purity 99\%)$ and 8.8 moles of Lithium Nitrate (LiNO₃, Alfa aesar) and 1.2 moles Lithium Chloride (LiCl, Merck) in a Alumina crucible. The mixture was heated in a box furnace (Carbolyte box furnace) at 280°C for 2 hours in air and then washed with water to remove excess Li-salts. Finally, the powder was dried in vacuum oven.

(b) Fabrication of Dye-Sensitized Solar Cells: Dye-Sensitized Solar Cells (DSCs) were fabricated by a method of screen-printing. First, FTO plates were cleaned with actone, ethanol and water, respectively and treated with 50 mM TiCl₄ aqueous solution at 70 °C for 30 min. The as-obtained MSM SnO₂ aggregates and commercial SnO₂ nanoparticles were made into paste with ethyl cellulose and terpinol under certain ratio, and fabricated on FTO substrate FTO by screen-printing on an area of ~ 0.25 cm². The films were then heated at 450 °C in air for 30 min. The obtained electrodes were immersed into a 1:1 volume mixture of acetonitrile and tert-butanol solution of Ru dye ((Bu₄N)₂[Ru(Hdcbpy)₂(NCS)₂] 0.3mM, N719, Solaronix) for 24h to get dye attached. The counter electrodes were prepared by spincoating H₂PtCl₆ (50 mM in isopropyl alcohol) on the FTO substrates with following sintering process at 390 °C in air for 30 min. Acetonitrile containing 0.1 M lithium iodide, 0.03 M iodine, 0.5 M 4-tertbutylpyridine, and 0.6 M 1-propyl 2,3- dimethyl imidazolium iodide was used as the electrolyte.

(C) Characterization: The as-prepared MSM SnO₂ aggregates were characterized by scanning electron microscopy (SEM, JEOL JSM-6701F microscope operated at 10 kV), high-resolution transmission electron microscopy (HRTEM, JEOL 3010 operated at 300 kV), BET surface area (NOVA 4200E Surface Area and Pore Size Analyzer, Quantachrome, USA), powder X-ray diffraction (XRD, Bruker-AXS D8 ADVANCE). And the UV-Vis diffuse reflectance spectra of electrodes were measured with UV-visible spectroscopy (Schimadzu UV-3600 UV-VIS-NIR spectrophotometer). Photocurrent measurements were carried out using a XES-151 S solar simulator (San-Ei, Japan) under AM1.5 G condition.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Supporting Information (SI) 2

TEM image of commercial SnO₂ nanoparticles

Nitrogen sorption isotherms and pore size distribution of MSM SnO₂ agglomerates

Electrodes	Thickness of the electrode	J_{sc} (mA/cm ²)	V_{oc} (V)	FF(%)	η (%)
MSM SnO ₂	6 µm	7.55±0.1	0.562±0.01	57±0.5	2.41±0.1
MSM SnO ₂	8 µm	9.53±0.1	0.562±0.01	57±0.5	3.05 ±0.1
MSM SnO ₂	10 µm	8.22±0.1	0.505±0.015	51±0.5	2.12±0.1
Commercial SnO ₂	8 µm	5.23±0.1	0.55±0.015	56±0.5	1.61±0.1
MSM SnO ₂ +TiCl ₄	8 µm	13.18±0.1	0.723±0.005	65±0.5	6.23±0.1

I-V parameters of solar cells with different electrodes

UV-vis spectra of dye solutions detached from and SnO₂ electrodes

I-V curve of the MSM SnO_2 electrode after the TiCl₄ post treatment