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S1. Preparation and Characterisation of the Indomethacin-Nicotinamide (IND-NIC)

Cocrystal

S1.1 Preparation of IND-NIC Cocrystals

The IND-NIC cocrystal is congruently saturating in ethyl acetate and is thus prepared

by the slurry method in this solvent.1,2 A total of 3.578 g of IND and 1.221 g of NIC in a 1:1

molar ratio in 10 mL of ethyl acetate was taken in a flat bottom flask and stirred for 5 days at

room temperature with the help of a magnetic stir bar on a stir plate. Solids were filtered,

dried and analyzed by differential scanning calorimetry and powder X-ray diffractometry.
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S1.2 Differential scanning calorimetry (DSC)

Thermal analyses of the samples were performed on a DSC Q1000 (TA instrument)

which was calibrated for temperature and enthalpy using an indium standard. The samples (1-

3 mg) were crimped in non-hermetic aluminium pans and scanned at a heating rate of 10

°C/min under a continuously purged dry nitrogen atmosphere (flow rate 50 mL/min). The

instrument was equipped with a refrigerated cooling system.

Fig. S1. DSC heating curves of a) IND (γ-form) as received, b) NIC as received and c) IND-

NIC cocrystal.
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S1.3 Powder X-ray diffraction (PXRD)

PXRD patterns were recorded

radiation (1.54056 Å). The tube voltage and amper

respectively. The divergence slit and anti

illumination of the 20 mm sample si

5 and 40 with a step size of 0.02

was previously calibrated using a silicon standard.

Fig. S2. PXRD patterns of a) IND (γ

five times for clarity) and c) IND

ray diffraction (PXRD)

recorded on a Siemens D5000 powder diffractometer with CuK

56 Å). The tube voltage and amperage were set at 40 kV and 40 mA,

respectively. The divergence slit and anti-scattering slit settings were variable for the

the 20 mm sample size. Each sample was scanned over a range of

with a step size of 0.02 or 0.05 and a time per step of 1 second

was previously calibrated using a silicon standard.

PXRD patterns of a) IND (γ-form) as received, b) NIC as received (intensity reduced

times for clarity) and c) IND-NIC cocrystal.

S3

a Siemens D5000 powder diffractometer with CuKα 

age were set at 40 kV and 40 mA,

scattering slit settings were variable for the

over a range of 2 between

and a time per step of 1 second. The instrument

d, b) NIC as received (intensity reduced
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S2. Full Experimental Solid-State NMR Details

Pulse sequences and coherence transfer pathway diagrams for the (a) 1H DQ MAS3

using BABA (back-to-back) recoupling4,5, (b) 2D 14N-1H HMQC6 and (c) 1H (SQ-DUMBO)

– 13C SQ refocused INEPT (2D INEPT HSQC)7 experiments are shown in Fig. 7 of Ref.8, Fig.

3a of Ref.6 and Fig. 5 of Ref.7, respectively.

2D 1H DQ and 1H–13C experiments were performed on a Bruker Avance III

spectrometer operating at Larmor frequencies of 500.1 MHz for 1H and 125.8 MHz for 13C

(B0 = 11.7 T) using a Bruker 4.0 mm triple-resonance probe, operating in double-resonance

mode, at 12.5 kHz MAS for the 2D INEPT HSQC experiment or a Bruker 2.5 mm triple-

resonance, operating in double-resonance mode, at 30 kHz MAS for the 2D 1H DQ MAS

experiment. In all experiments, the 1H and 13C 90o pulse lengths were 2.5 s and 5.0 s,

respectively.

For the 2D 1H DQ MAS experiment, 16 transients were co-added for each of 88 t1

FIDs (with a rotor-synchronised t1 increment of 33.3 s using the States-TPPI method to

achieve sign discrimination in F1), with a recycle delay of 3 s. A 16-step phase cycle was

used to select p = ±2 on the DQ excitation block and p = 1 on the final 90o pulse, where p

is the coherence order.

For the 2D 1H–13C INEPT HSQC experiment, eDUMBO-122 homonuclear

decoupling,9,10 at a 1H nutation frequency of 100 kHz, was employed during the  and  free-

evolution periods in the refocused INEPT element of the 1H-13C correlation experiments: =

’ equalled 1.28 ms. The 32 s eDUMBO-122 cycle was divided into 320 steps of 100 ns.

Pulse sequences employing 1H homonuclear decoupling use pre-pulses to take into account

the tilting of the effective field away from the x, y plane of the rotation frame:11 A pre-pulse

duration of 0.7 s was used. For acquisition under 1H homonuclear decoupling, a short

detection window was inserted after every eDUMBO-122 cycle in t2 in order to acquire a

complex point. The scaling factor was determined experimentally (by using the 1H chemical

shifts of the resolved resonances in a 1H 30 kHz MAS spectrum) as 1.77. During the

acquisition of the 13C FID in t2,
1H SPINAL-64 heteronuclear decoupling12 with a pulse

length of 4.6 s was applied at a 1H nutation frequency of 100 kHz. 128 transients were co-

added for each of 112 t1 FIDs (with a t1 increment of 64 s, using the States method to

achieve sign discrimination in F1), with a recycle delay of 3 s. A 16-step phase cycle was

used as described in Ref.7.

2D 14N-1H HMQC experiments were recorded using a Bruker Avance III
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spectrometer operating at Larmor frequencies of 850.2 MHz for 1H and 61.4 MHz for 14N (B0

= 20.0 T) using a Bruker 1.3 mm triple-resonance probe, operating in double-resonance mode,

at 60 kHz MAS. 1H 90o pulses of duration 1.9 s were used, while 14N pulses of duration 8.0

s at a nutation frequency of 125 kHz were used. Rotary resonance recoupling (R3)13 was

applied at the n = 2 condition with a phase inversion (0, 180)14 on each pair of rotor-

synchronised pulses which are each of duration 16.7 s. For a rotor-synchronised t1

increment of 16.7 s using the States method to achieve sign discrimination in F1, 68

transients were co-added for each of 48 t1 FIDs (recoupling time equal to 130 s) or 42 t1

FIDs (recoupling time equal to 670 s). A recycle delay of 10 s was used. A 4-step nested

phase cycle was used to select changes in coherence order p = ±1 (on the first 1H pulse, 2

steps) and p = ±1 (on the last 14N pulse, 2 steps).

13C and 1H chemical shifts are referenced with respect to neat TMS using adamantane

as a secondary reference (38.5 ppm for the higher-ppm 13C resonance15 and 1.85 ppm for the

1H resonance16 – note the small correction to the 1H referencing as compared to previous

papers). Experimental 13C and 1H chemical shifts are stated to an accuracy of ±0.1 or 0.2 ppm,

respectively. 14N shifts were referenced to a saturated NH4Cl aqueous solution at 352.9 ppm,

corresponding to a primary reference of CH3NO2 at 0 ppm. To convert to the corresponding

15N chemical shift scale frequently used in protein NMR, where the reference is liquid

ammonia at 50C, it is necessary to add 379.5 to the given values.17
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S3. 1H and 13C Chemical Shifts

Table S1. 1H & 13C chemical shifts for the indomethacin-nicotinamide cocrystal

Site (1H) (ppm) (13C) (ppm)
Indomethacin

1 133.5
2 112.6
3 130.8
4 6.8 103.6
5 156.3
6 5.5 106.5
7 7.3 113.1
8 128.8
9 (a&b) 3.4 30.4
10 176.0
11 2.9 55.2
12 0.9 12.9
13 167.7
14 130.8
15 6.4 130.8
16 6.0 127.9
17 134.2
18 6.0 128.8
19 6.4 130.8
OH 16.3

Nicotinamide
1 9.8 147.0
2 130.8
3 7.7 139.5
4 8.3 125.8
5 9.8 149.7
6 167.7
NH2 a 9.0
NH2 b 7.3
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S4. Complete 1H DQ MAS Spectrum

Fig. S3. Complete 1H DQ MAS spectrum, corresponding to the zoomed region presented in

Fig. 1a of the main text.
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S5. Complete 14N-1H Spectrum

Fig. S4. Complete 14N-1H spectrum, corresponding to the zoomed region presented in Fig.

1c of the main text.
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S6. Complete 1H-13C Spectrum

Fig. S5. Complete 1H-13C spectrum, corresponding to the zoomed region presented in Fig.

1d of the main text.
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