Supplementary Information

Imbalanced Tunneling Ready States in Alcohol Dehydrogenase Model Reactions: Rehybridization Lags behind H-Tunneling

Blake Hammann, Mortezaali Razzaghi, Sadra Kashefolgheta and Yun Lu*

Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL 62025, USA

General procedures

9-Phenylxanthylium tetrafluoroborate (PhXn⁺BF₄⁻) and xanthylium perchlorate (Xn⁺ClO₄⁻) were synthesized from the reactions of the corresponding alcohol precursors with HBF₄ or HClO₄ in propionic anhydride or acetic anhydride according to a published procedure.¹ 2-Propanol- β -d₆ ((CD₃)₂CHOH), 2-Propanol- α -d₁ ((CH₃)₂CDOH) and 2-Propanol- α -d₁- β -d₆ ((CD₃)₂CDOH) were prepared by the reduction of acetone or acetone-d₆ with NaBH₄ or NaBD₄ according to a procedure described in literature.² 2-propanol-O-d ((CH₃)₂CHOD) was prepared by deuterium exchange of the OH group in the normal 2-propanol with DCl in D₂O in the N₂ atmosphere. The D content was determined by NMR to be 99.4% per C-D bond. In order to perform direct kinetic comparison, normal 2-propanol was also synthesized by reduction of acetone with NaBH₄. The 9-deuterated xanthylium ion (Xn(D)⁺) was synthesized from 9-deuterated xanthydrol that was made from the reduction of xanthone by NaBD₄ in methanol/THF (v/v = 1). The D-content was found to be 96% by NMR. Acetonitrile was distilled over KMnO₄/K₂CO₃ and then P₂O₅ before use.

Kinetic measurement and data analysis

The procedure for the kinetic determination of the reactions of PhXn⁺ was reported previously,³ and that for the reactions of Xn⁺ is as follows. 2 mL of alcohol solution of certain concentration (e.g. 0.012 M) in MeCN was placed in a cuvette sitting in a thermostated UV-Vis cell holder. 32 µL of 0.0025 M Xn⁺ stock solution (in MeCN) was rapidly transferred to the alcohol solution and the decay in absorbance (*A*) at 372 nm due to Xn⁺ with time (*t*) was recorded for about 2 half-lives (Figure S1). The obtained $\ln(A) - t$ data were fitted to the pseudo-first-order rate law and the slope of the linear correlation (R² > 0.997, mostly > 0.999) was taken as the pseudo-first-order rate constant (k^{pfo}). Second-order rate constant ($k = k^{pfo}$ /[alcohol]) and KIE (= k_{H}/k_{D}) were calculated. For the determination of small secondary KIEs, a back to back determination of kinetics of the reactions of H- and D- compounds was carried out in order to keep the consistent kinetic conditions. Typical determinations of the second-order rate constants and the 1° and 2° KIEs for each reaction are shown in Table S1.

Figure S1. Kinetic scans for the reaction of 2-propanol (0.012 M) and Xn^+ (4 x 10⁻⁵ M) in MeCN at 60 °C. The inset shows the first-order exponential fit of the decay of absorbance at 372 nm with time.

Table S1. A typical determination of the $1^{\rm o}$ and $2^{\rm o}$ KIEs for the reactions in MeCN at 60°C a

	$k (M^{-1}s^{-1})$	1° KIE	β -D ₆ 2° KIE on 2-propanol	α -2° KIE on Xn ⁺	
Determination of the	3-D ₆ 2° KIEs on	2-propanol ^b			
For the reaction of CL	$L_3C\overline{Y}(OH)CL_3 w$	$ith PhXn^+$			
Y = H, L = H	3.26 x 10 ⁻⁴	3.39 (L = H)	1.05 (Y = H)		
Y = H, L = D	3.10 x 10 ⁻⁴				
Y = D, L = H	9.63 x 10 ⁻⁵		0.97 (Y = D)		
Y = D, L = D	9.64 x 10 ⁻⁵				
For the reaction of $CL_3CY(OH)CL_3$ with Xn^+					
Y = H, L = H	0.256	2.76 (L = H)	1.05 (Y = H)		
Y = H, L = D	0.244				
Y = D, L = H	0.0927		1.06 (Y = D)		
Y = D, L = D	0.0870				

Determination of the α -2° KIEs on Xn(L) ^{+ c}					
For the reaction of $CH_3CY(OH)CH_3$ with $Xn(L)^+$					
Y = H, L = H	0.282	2.50 (L = H)	0.98 (Y = H)		
Y = D, L = H	0.113		0.97 (Y = D)		
Y = H, L = D	0.289				
Y = D, L = D	0.116				
For the reaction of $CH_3CY(OH)CH(CH_3)_2$ with $Xn(L)^+$					
Y = H, L = H	0.289	2.59 (L = H)	1.01 (Y = H)		
Y = D, L = H	0.112		0.99 (Y = D)		
Y = H, L = D	0.287				
Y = D, L = D	0.113				
For the reaction of cyclo- $(CH_2)_5$ CYOH with $Xn(L)^+$					
Y = H, L = H	0.825	2.26 (L = H)	1.00 (Y = H)		
Y = D, L = H	0.365		0.97 (Y = D)		
Y = H, L = D	0.823				
Y = D, L = D	0.373				

^a from 3 to 4 repetitions under the consistent reaction conditions (same solutions and at the same day, back to back determinations of the reactions of H- and D- substrates), the KIEs reported in the *Communication* (Table 1) are the average of many (4 to 8) such determinations; ^b by Blake Hammann; ^c by Mortezaali Razzaghi.

Correction of 2° KIE_{obs} on Xn^+

Since 9-deuterated xanthylium ion $(Xn(D)^{+})$ contains 4% normal $Xn^{+}(Xn^{+}(H))$

(from ¹H NMR), a correction of the observed 2° KIE_{obs} needs to be made. Using $k_{H(D)}$ to

represent the rate constants of the reactions with $Xn(H)^+$ and $Xn(D)^+$, respectively,

according to 2° KIE_{obs} = $k_{\rm H}/(0.04k_{\rm H} + 0.96k_{\rm D})$, 2° KIE = $k_{\rm H}/k_{\rm D}$ was calculated and

reported.

- Dauben Jr, H. J.; Honnen, L. R.; Harmon, K. M. J. Org. Chem. 1960, 25, 1442-1445.
- 2. Thompson, M. S.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4106-4115.

Lu, Y.; Qu, F; Zhao, Y.; Small, A. M. J.; Bradshaw, J.; Moore, B. J. Org. Chem.
2009, 74, 6503-6510.