Supporting Information

Facile synthesis of 2-iodo-spiro[indene-1,1'-isobenzofuran]-3'-ones

via an iodine-promoted cascade cyclization

Hai-Tao Zhu, Xue Dong, Li-Jing Wang, Mei-Jin Zhong, Xue-Yuan Liu, and

Yong-Min Liang*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University

Lanzhou 730000, Fax: 0086-931-8912582 Tel: 0086-931-8912582

E-mail: liangym@lzu.edu.cn

Table of Contents

1	General Remarks	S2
2	Optimization of the reaction conditions	S2
3	General Procedure A for the Synthsis of Substrates	S 3
4	Characterization Data of 1a-1zc	S4-S13
5	General Procedure B for the Synthsis of Products	S13-S14
6	Characterization Data of 2a, 2f-2v, 2z, 3v, 3y-3zc	S14-S22
7	Typical Procedure for 4a, 5a and 6a Synthesis and	S22-S24
	Characterization Data of 4a, 5a and 6a	
8	Crystallographic data of 2a and 3zb	S25-S26
9	¹ H NMR and ¹³ C NMR Spectra for Substrates	S27-S84
10	¹ H NMR and ¹³ C NMR Spectra for Products and 2D NMR	S85-S141
	spectra for 2u	

General Remarks

ο

Column chromatography was carried out on silica gel. ¹H NMR spectra were recorded on 300/400 MHz in CDCl₃ and ¹³C NMR spectra were recorded on 75/100 MHz in CDCl₃. IR spectra were recorded on a FT-IR spectrometer and only major peaks are reported in cm⁻¹. All compounds were further characterized by high resolution mass spectra (HRMS); copies of their ¹H NMR and ¹³C NMR spectra are provided in the Supporting Information. Room temperature is 23–25°C. THF were distilled over Na/benzophenone, 1,2-dichloroethane, dichloromethane, CH₃CN, CH₃NO₂ and DMF were distilled over CaH₂, other solvents were used without further purification.

		I2 solvent, rt		
Entry	Solvent	I ₂ (equiv.)	Temperature (°C)	$\mathrm{Yield}^{b}\left(\%\right)/\mathbf{2a}$
1	ClCH ₂ CH ₂ Cl	1.5	rt	81
2	ClCH ₂ CH ₂ Cl	2.0	rt	88
3	ClCH ₂ CH ₂ Cl	3.0	rt	87
4	ClCH ₂ CH ₂ Cl	2.0	80	80
5	ClCH ₂ CH ₂ Cl	2.0	0	67
6	CH ₂ Cl ₂	2.0	rt	78
7	CH ₃ CN	2.0	rt	81
8	CH ₃ NO ₂	2.0	rt	28
^{<i>a</i>} All reactions were run under the following conditions, unless otherwise indicated: 0.2 mmol of 1 with I_2 in 4 mL anhydrous solvent at room temperature. ^{<i>b</i>} Isolated yield.				

Table S1 Optimization of reaction conditions for the formation of $2a^{a}$

General Procedure A: Synthesis of 2-(3-hydroxy-3,3-diarylprop-1-yn-

1-yl)benzoate derivatives

To a stirred solution of 2-iodobenzoic acids **a** (10 mmol) in CH₂Cl₂, was added DCC (dicyclohexylcarbodiimide, 11 mmol), DMAP (Dimethylaminopyridine, 2 mmol) and alcohols **b** in sequence. The resulting solution was stirred overnight at room temperature then filtered through a sand core funnel and washed with diethyl ether (2 x 40mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography to obtain the pure product **c** in moderate to good yields.

To a soluton of 2-iodobenzoates **c** in Et₃N (5 mL) was added PdCl₂ (PPh₃)₂ (4 mol %) and CuI (2 mol %) and the reaction vial was flushed with Ar and the reaction mixture was stirred for 5 minutes. A solution of aryl propargyl alcohols **d** in Et₃N (5 mL) were then added dropwise through a syringe for 5 minutes. The resulting solution was stirred at room temperature overnight. When the reaction was considered complete as determined by TLC analysis, the mixture was quenched by addition of saturated aqueous ammonium chloride (10 mL) and extracted with ethyl ether (3 x 40 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography to give **1**.

Characterization Data of 1a-1zc

Benzyl-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzoate **1a** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.97 (d, J = 0.8 Hz, 1H), 7.96-7.66 (m, 4H), 7.56 (dd, J = 7.6, 0.8 Hz, 1H), 7.42 (td, J = 7.2, 1.2 Hz, 1H), 7.36-7.22 (m, 12H), 5.25 (s, 2H), 3.29 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.8, 144.9, 135.7, 134.1, 131.8, 131.7, 130.5, 128.5, 128.3, 128.2, 128.1, 127.5, 126.1, 123.1, 96.9, 85.7, 74.8, 66.9. IR (neat, cm⁻¹): 3426, 3061, 1715, 1251, 755, 698. HRMS (ESI) Calcd for C₂₉H₂₃O₃: M+H = 419.1642. Found: 419.1648.

Methyl-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzoate **1b** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.92 (dd, J = 8.0, 1.2 Hz, 1H), 7.70 (dd, J = 3.2, 1.2 Hz, 4H), 7.56 (dd, J = 7.6, 0.8 Hz, 1H), 7.42 (td, J = 7.6, 1.2 Hz, 1H), 7.36-7.26 (m, 5H), 7.24-7.22 (m, 2H), 3.75 (s, 3H), 3.68 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 166.6, 145.1, 134.0, 131.9, 131.6, 130.4, 128.1, 127.6, 126.1, 122.9, 96.8, 85.7, 74.9, 52.1. IR (neat, cm⁻¹): 3426, 3061, 1718, 1285, 756, 699. HRMS (ESI) Calcd for C₂₃H₁₉O₃: M+H = 343.1329. Found: 343.1335.

Ethyl-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzoate **1c** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.93 (dd, J = 8.0, 0.8 Hz, 1H), 7.71 (d, J = 8.4 Hz, 4H), 7.57 (dd, J = 8.0, 1.2 Hz, 1H), 7.43 (td, J = 7.6, 1.2 Hz, 1H), 7.38-7.26 (m, 5H), 7.25-7.22 (m, 2H), 4.27 (q, J = 7.2 Hz, 2H), 3.55 (s, 1H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 166.1, 145.0, 134.0, 132.3, 131.5, 130.2, 128.2, 127.5, 126.1, 122.8, 96.7, 85.8, 74.9, 61.3, 14.1. IR (neat, cm⁻¹): 3423, 3062, 1713, 1283, 756, 699. HRMS (ESI) Calcd for C₂₄H₂₁O₃: M+H = 357.1485. Found: 357.1484.

Isopropyl-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzoate **1d** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.89 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 4H), 7.55 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.40 (td, *J* = 7.6, 1.2 Hz, 1H), 7.35-7.26 (m, 5H), 7.24-7.21 (m, 2H), 3.52 (s, 1H), 1.51 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.5, 145.1, 134.1, 132.6, 131.3, 130.1, 128.1, 128.0, 127.4, 126.1, 122.8, 96.8, 85.7, 74.9, 68.9, 21.7. IR (neat, cm⁻¹): 3417, 2982, 1702, 1485, 1290, 758. HRMS (ESI) Calcd for C₂₅H₂₃O₃: M+H = 371.1642. Found: 371.1643.

tert-Butyl-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzoate **1e** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.81 (dd, J = 8.0, 1.2 Hz, 1H), 7.73 (q, J = 1.6 Hz, 4H), 7.55 (dd, J = 7.6, 0.8 Hz, 1H), 7.39 (td, J = 7.6, 1.2 Hz, 1H), 7.35-7.29 (m, 5H), 7.25-7.22 (m, 2H), 4.27 (q, J = 7.2 Hz, 2H), 3.55 (s, 1H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.5, 145.1, 134.2, 133.9, 130.9, 129.9, 128.1, 128.0, 127.5, 126.2, 122.4, 96.3, 85.8, 81.7, 74.9, 28.0. IR (neat, cm⁻¹): 3421, 2976, 1708, 1307, 1136, 758, 700. HRMS (ESI) Calcd for C₂₆H₂₅O₃: M+H = 385.1798. Found: 385.1799.

Benzyl-2-(3-hydroxy-3,3-di-*p*-tolylprop-1-yn-1-yl)benzoate **1f** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.95 (dd, J = 8.0, 1.2 Hz, 1H), 7.57-7.53 (m, 5H), 7.41 (td, J = 7.2, 1.2 Hz, 1H), 7.35-7.31 (m, 3H), 7.30-7.28 (m, 3H), 7.10 (d, J = 8.0 Hz, 4H), 5.26 (s, 2H), 3.08 (s, 1H), 2.30 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.9, 142.3, 137.1, 135.8, 134.1, 131.8, 131.7, 130.5, 128.8, 128.5, 128.3, 128.2, 128.0, 126.0, 123.2, 97.3, 85.4, 74.6, 66.8, 21.0. IR (neat, cm⁻¹): 3433, 2922, 1716, 1250, 1079, 756. HRMS (ESI) Calcd for C₃₁H₂₇O₃: M+H = 447.1955. Found: 447.1959.

Benzyl-2-(3-hydroxy-3,3-bis(4-methoxyphenyl)prop-1-yn-1-yl)benzoate **1g** Oil, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.96 (dd, J = 7.6, 0.8 Hz, 1H), 7.58-7.55 (m, 5H), 7.42 (td, J = 7.6, 1.2 Hz, 1H), 7.36-7.23 (m, 6H), 6.82 (d, J = 8.6 Hz, 4H), 5.28 (s, 2H), 3.76 (s, 6H), 3.15 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.9, 158.9, 137.5, 135.8, 134.1, 132.2, 131.7, 130.5, 128.5, 128.2, 128.1, 128.0, 127.5, 123.2, 113.4, 97.3, 85.3, 74.2, 66.8, 55.2. IR (neat, cm⁻¹): 3438, 2955, 1719, 1507, 1250, 833. HRMS (ESI) Calcd for C₃₁H₂₇O₅: M+H = 479.1853. Found: 479.1855.

Benzyl-2-(3,3-bis(4-chlorophenyl)-3-hydroxyprop-1-yn-1-yl)benzoate **1h** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.98 (dd, J = 8.0, 0.8 Hz, 1H), 7.58-7.53 (m, 4H), 7.51 (d, J = 7.6 Hz, 1H), 7.43 (td, J = 7.6, 1.2 Hz, 1H), 7.37 (d, J = 0.8 Hz, 1H), 7.36-7.29 (m, 5H), 7.23 (d, J = 5.6 Hz, 4H), 5.24 (s, 2H), 3.73 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.5, 143.2, 135.6, 134.2, 133.6, 131.9, 131.5, 130.6, 128.6, 128.5, 128.4, 128.3, 128.2, 127.6, 122.8, 95.8, 86.2, 73.9, 66.9. IR (neat, cm⁻¹): 3412, 3065, 1717, 1486, 1273, 752. HRMS (ESI) Calcd for C₂₉H₂₁Cl₂O₃: M+H = 487.0862. Found: 487.0860.

Benzyl-2-(3,3-bis(4-fluorophenyl)-3-hydroxyprop-1-yn-1-yl)benzoate **1i** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.97 (dd, J = 7.6, 0.8 Hz, 1H), 7.63-7.59 (m, 4H), 7.52 (d, J = 7.6 Hz, 1H), 7.42 (td, J = 7.6, 1.2 Hz, 1H), 7.36-7.28 (m, 6H), 6.98-6.94 (m, 4H), 5.24 (s, 2H), 3.77 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.6, 163.4, 160.9, 140.8, 140.7, 135.6, 134.2, 131.9, 131.5, 130.6, 128.5, 128.3, 128.2, 128.1, 128.0, 127.9, 122.9, 115.1, 114.8, 96.4, 85.9, 73.9, 66.9. IR (neat, cm⁻¹): 3416, 3067, 1716, 1504, 1252, 837. HRMS (ESI) Calcd for C₂₉H₂₁F₂O₃: M+H = 455.1453. Found: 455.1460.

Benzyl-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)-5-methylbenzoate **1j** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.76 (dd, J = 0.8 Hz, 1H), 7.67 (q, J = 1.6 Hz, 4H), 7.44 (d, J = 8.0 Hz, 1H), 7.33-7.21 (m, 12H), 5.24 (s, 2H), 3.22 (s, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 166.1, 145.1, 138.5, 135.8, 134.0, 132.5, 131.6, 131.0, 128.5, 128.3, 128.2, 128.1, 127.5, 126.2, 120.1, 96.0, 85.8, 74.8, 66.8, 21.2. IR (neat, cm⁻¹): 3428, 3060, 1715, 1201, 748, 698. HRMS (ESI) Calcd for C₃₀H₂₅O₃: M+H = 433.1798. Found: 433.1801.

Benzyl-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)-5-methoxybenzoate **1k** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.57 (d, J = 7.6 Hz, 4H), 7.44-7.32 (m, 2H), 7.23-7.12 (m, 11H), 6.87 (dd, J = 8.4, 2.4 Hz, 1H), 5.14 (s, 2H), 3.69 (s, 3H), 3.12 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.8, 159.2, 145.2, 135.7, 135.5, 133.2, 128.5, 128.3, 128.2, 128.1, 127.5, 126.1, 126.0, 118.0, 115.3, 115.1, 95.1, 85.6, 74.8, 66.9, 55.5. IR (neat, cm⁻¹): 3433, 1751, 1603, 1495, 1221, 699. HRMS (ESI) Calcd for C₃₀H₂₅O₄: M+H = 449.1747. Found: 449.1748.

Benzyl-5-chloro-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzoate **11** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.92 (d, J = 3.0 Hz, 1H), 7.65 (d, J = 7.6 Hz, 4H), 7.45 (d, J = 8.4 Hz, 1H), 7.36 (dd, J = 8.0, 2.0 Hz, 1H), 7.32-7.21 (m, 11H), 5.22 (s, 2H), 3.43 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.6, 144.8, 135.4, 135.3, 134.2, 133.0, 131.9, 130.5, 128.6, 128.4, 128.3, 128.2, 127.6, 126.1, 121.6, 97.9, 84.6, 74.8, 67.3. IR (neat, cm⁻¹): 3435, 1720, 1483, 1289, 1238, 698. HRMS (ESI) Calcd for C₂₉H₂₂ClO₃: M+H = 453.1252. Found: 453.1252.

Benzyl-5-fluoro-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzoate **1m** Solid, ¹H NMR (300 MHz, CDCl₃) δ ppm 7.65-7.61 (m, 5H), 7.50 (dd, J = 5.4, 2.4 Hz, 1H), 7.30-7.18 (m, 11H), 7.13-7.07 (m, 1H), 5.25 (s, 2H), 3.26 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 164.6, 163.4, 160.0, 144.9, 136.1, 136.0, 135.4, 133.8, 133.7, 128.4, 128.2, 127.6, 126.1, 119.4, 119.3, 119.2, 119.1, 117.8, 117.4, 96.7, 84.7, 74.8, 67.2. IR (neat, cm⁻¹): 3436, 3062, 1720, 1491, 1192, 699. HRMS (ESI) Calcd for C₂₉H₂₂FO₃: M+H = 437.1547. Found: 437.1550.

Benzyl-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)-5-nitrobenzoate **1n** Solid, ¹H NMR (300 MHz, CDCl₃) δ ppm 8.69-8.68 (m, 1H), 8.12 (dd, J = 8.7, 2.7 Hz, 1H), 7.57-7.54 (m, 5H), 7.25-7.12 (m, 11H), 5.19 (s, 2H), 3.40 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 163.8, 146.6, 144.2, 135.2, 134.9, 132.8, 129.5, 128.7, 128.6, 128.5, 128.3, 127.9, 127.8, 126.0, 125.9, 125.6, 102.8, 84.1, 74.9, 67.7. IR (neat, cm⁻¹): 3438, 1725, 1523, 1347, 1267, 752. HRMS (ESI) Calcd for C₂₉H₂₂NO₅: M+H = 464.1492. Found: 464.1498.

Benzyl-4-chloro-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzoate **10** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.88 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 7.6 Hz, 4H), 7.52 (d, J = 2.0 Hz, 1H), 7.32-7.20 (m, 12H), 5.21 (s, 2H), 3.52 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 164.9, 144.7, 138.1, 135.5, 133.8, 131.9, 129.9, 128.5, 128.4, 128.3, 128.2, 127.6, 126.1, 124.9, 98.4, 84.5, 74.8, 67.1. IR (neat, cm⁻¹): 3428, 1718, 1273, 1103, 753, 698. HRMS (ESI) Calcd for C₂₉H₂₂ClO₃: M+H = 453.1252. Found: 453.1254.

Benzyl-2-chloro-6-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzoate **1p** Oil, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.59-7.57 (m, 4H), 7.37 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.33-7.20 (m, 13H), 5.17 (s, 2H), 2.95 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.9, 144.4, 136.0, 134.9, 130.9, 130.5, 130.2, 129.7, 128.4, 128.3, 128.2, 127.8, 126.0, 121.8, 96.4, 83.1, 74.7, 67.7. IR (neat, cm⁻¹): 3448, 1731, 1450, 1272, 1113, 698. HRMS (ESI) Calcd for C₂₉H₂₂ClO₃: M+H = 453.1252. Found: 453.1249.

Benzyl-4-fluoro-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzoate **1q** Oil, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.98 (dd, J = 8.8, 6.0 Hz, 1H), 7.66-7.64 (m, 4H), 7.32-7.21 (m, 12H), 7.04-6.99 (m, 1H), 5.22 (s, 2H), 3.45 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.5, 164.8, 162.9, 144.7, 135.6, 133.2, 133.1, 128.5, 128.4, 128.3, 128.2, 127.9, 127.8, 127.6, 126.1, 125.9, 125.8, 120.9, 120.7, 115.7, 115.5, 98.3, 84.6, 74.8, 66.9. IR (neat, cm⁻¹): 3428, 1718, 1256, 1125, 743, 698. HRMS (ESI) Calcd for C₂₉H₂₂FO₃: M+H = 437.1547. Found: 437.1548.

Benzyl-2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)-4,5-dimethoxybenzoate **1r** Solid, ¹H NMR (300 MHz, CDCl₃) δ ppm 7.60-7.57 (m, 4H), 7.37 (s, 1H), 7.22-7.10 (m, 11H), 6.85 (s, 1H), 5.13 (s, 2H), 3.76 (s, 3H), 3.71 (s, 3H), 3.39 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 165.5, 151.5, 148.6, 145.1, 135.9, 128.4, 128.2, 128.1, 127.4, 126.1, 124.3, 116.8, 115.8, 112.8, 95.5, 85.8, 74.8, 66.6, 56.0, 55.9. IR (neat, cm⁻¹): 3425, 2937, 1708, 1517, 1165, 700. HRMS (ESI) Calcd for C₃₁H₂₇O₅: M+H = 479.1853. Found: 479.1857.

Benzyl-2-(3-hydroxy-3-(4-methoxyphenyl)-3-phenylprop-1-yn-1-yl)benzoate **1s** Oil, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.95 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.66 (d, *J* = 7.2 Hz, 2H), 7.59-7.53 (m, 3H), 7.39 (td, *J* = 7.6, 1.2 Hz, 1H), 7.33-7.28 (m, 8H), 7.26-7.20 (m, 1H), 6.81 (d, *J* = 6.8 Hz, 2H), 5.25 (s, 2H), 3.73 (s, 3H), 3.44 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.8, 158.9, 145.2, 137.3, 135.7, 134.1, 131.7, 131.6, 130.5, 128.5, 128.2, 128.1, 128.0, 127.5, 127.4, 126.1, 123.1, 113.4, 97.2, 85.5, 74.5, 66.8, 55.2. HRMS (ESI) Calcd for C₃₀H₂₅O₄: M+H = 449.1747. Found: 449.1752.

Benzyl-2-(3-hydroxy-3-phenyl-3-(*p*-tolyl)prop-1-yn-1-yl)benzoate **1t** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.94 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.67 (d, *J* = 7.2 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 3H), 7.40 (td, *J* = 7.6, 1.2 Hz, 1H), 7.33-7.19 (m, 9H), 7.10 (d, *J* = 8.0 Hz, 2H), 5.24 (s, 2H), 3.42 (s, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.8, 145.1, 142.2, 137.2, 135.8, 134.1, 131.7, 130.5, 128.8, 128.5, 128.3, 128.2, 128.1, 128.0, 127.4, 126.2, 126.1, 123.2, 97.2, 85.5, 74.7, 66.8, 21.0. HRMS (ESI) Calcd for C₃₀H₂₅O₃: M+H = 433.1798. Found: 433.1794.

Benzyl-2-(3-(4-chlorophenyl)-3-hydroxy-3-(4-methoxyphenyl)prop-1-yn-1-yl)benzoa te **1u** Solid, ¹H NMR (300 MHz, CDCl₃) δ ppm 7.90 (dd, J = 7.5, 1.5 Hz, 1H), 7.52-7.45 (m, 5H), 7.40-7.30 (m, 1H), 7.26-7.15 (m, 8H), 6.74 (dd, J = 6.9, 2.1 Hz, 2H), 5.19 (s, 2H), 3.68 (s, 3H), 3.31 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 165.7, 159.1, 143.8, 136.9, 135.7, 134.1, 133.2, 131.8, 131.6, 130.5, 128.5, 128.2, 127.6, 127.5, 122.9, 113.5, 96.6, 85.8, 74.1, 66.9, 55.2. HRMS (ESI) Calcd for C₃₀H₂₄ClO₄: M+H = 483.1385. Found: 483.1386.

Benzyl-2-(3-hydroxy-3-phenylbut-1-yn-1-yl)benzoate **1v** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.94 (dd, J = 8.0, 0.8 Hz, 1H), 7.72 (d, J = 7.2 Hz, 2H), 7.53 (dd, J = 7.6, 0.8 Hz, 1H), 7.40 (td, J = 7.6, 1.2 Hz, 1H), 7.35-7.20 (m, 9H), 5.26 (s, 2H), 3.28 (s, 1H), 1.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.8, 145.6, 135.7, 134.1, 131.7, 131.6, 130.5, 128.5, 128.3, 128.2, 128.1, 127.9, 127.5, 125.1, 123.2, 97.8, 83.4, 70.2, 66.8, 33.0. HRMS (ESI) Calcd for C₂₄H₂₁O₃: M+H = 357.1485. Found: 357.1488.

Benzyl-2-(3-hydroxy-3-(4-methoxyphenyl)but-1-yn-1-yl)benzoate **1w** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.94 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.41 (td, *J* = 7.6, 0.8 Hz, 1H), 7.36-7.22 (m, 6H), 6.85 (d, *J* = 8.8 Hz, 2H), 5.27 (s, 2H), 3.76 (s, 3H), 3.21 (s, 1H), 1.79(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.8, 158.9, 137.8, 135.7, 134.1, 131.7, 131.6, 130.4, 128.5, 128.2, 127.9, 126.4, 123.3, 113.4, 98.0, 83.2, 69.8, 66.8, 55.2, 32.9. HRMS (ESI) Calcd for C₂₅H₂₃O₄: M+H = 387.1591. Found: 387.1598.

Benzyl-2-(3-hydroxy-3-(3-methoxyphenyl)but-1-yn-1-yl)benzoate **1x** Oil, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.95 (dd, J = 8.0, 1.2 Hz, 1H), 7.54 (dd, J = 7.6, 0.8 Hz, 1H), 7.94 (td, J = 7.6, 1.2 Hz, 1H), 7.37-7.29 (m, 8H), 7.28-7.23 (m, 1H), 6.82 (ddd, J = 8.0, 2.4, 1.8 Hz, 1H), 5.27 (s, 2H), 3.80 (s, 3H), 3.13 (s, 1H), 1.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.8, 159.5, 147.3, 135.8, 134.1, 131.7, 131.6, 130.5, 129.2, 128.5, 128.2, 127.9, 123.3, 117.5, 113.1, 110.8, 97.7, 83.4, 70.3, 66.8, 55.2, 33.0. HRMS (ESI) Calcd for C₂₅H₂₃O₄: M+H = 387.1591. Found: 387.1590.

Benzyl-2-(3-hydroxy-3-(2-methoxyphenyl)but-1-yn-1-yl)benzoate **1y** Oil, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.92 (d, *J* = 7.6 Hz, 1H), 7.67 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.43-7.39 (m, 3H), 7.35-7.23 (m, 5H), 6.98-6.93 (m, 2H), 5.29 (s, 2H), 4.49 (s, 1H), 3.91 (s, 3H), 1.94 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.9, 156.8, 135.9, 134.1, 132.4, 132.0, 131.5, 130.3, 128.9, 128.5, 128.2, 128.1, 127.7, 126.6, 123.5, 120.9, 111.6, 97.8, 82.2, 69.7, 66.6, 55.6, 29.6. HRMS (ESI) Calcd for C₂₅H₂₃O₄: M+H = 387.1591. Found: 387.1595.

Benzyl-2-(3-(2-chlorophenyl)-3-hydroxybut-1-yn-1-yl)benzoate **1z** Oil, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.95 (dd, J = 8.0, 0.8 Hz, 1H), 7.86 (dd, J = 8.0, 1.2 Hz, 1H), 7.56 (dd, J = 8.0, 0.8 Hz, 1H), 7.43 (td, J = 7.6, 1.2 Hz, 1H), 7.39-7.30 (m, 7H), 7.29-7.19 (m, 3H), 5.29 (s, 2H), 3.41 (s, 1H), 1.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.9, 141.5, 135.8, 133.9, 131.7, 131.6, 131.1, 130.5, 128.8, 128.6, 128.3, 128.2, 127.9, 126.9, 126.8, 123.3, 97.0, 83.2, 69.2, 66.8, 29.4. HRMS (ESI) Calcd for C₂₄H₂₀ClO₃: M+H = 391.1095. Found: 391.1096.

Benzyl-2-(3-(4-chlorophenyl)-3-hydroxybut-1-yn-1-yl)benzoate **1za** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.96 (dd, J = 7.6, 0.8 Hz, 1H), 7.65-7.63 (m, 2H), 7.53 (dd, J = 7.6, 0.8 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.35-7.23 (m, 8H), 5.27 (s, 2H), 3.41 (s, 1H), 1.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.8, 144.2, 135.7, 134.1, 133.3, 131.8, 131.6, 130.5, 128.5, 128.3, 128.2, 128.1, 126.7, 123.1, 97.3, 83.7, 69.8, 66.9, 33.1. HRMS (ESI) Calcd for C₂₄H₂₀ClO₃: M+H = 391.1095. Found: 391.1101.

Methyl-2-(3-hydroxy-3-methylbut-1-yn-1-yl)benzoate **1zb** Oil, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.90 (dd, J = 8.0, 1.2 Hz, 1H), 7.49 (dd, J = 8.0, 1.2 Hz, 1H), 7.42 (td, J = 7.2, 1.2 Hz, 1H), 7.32 (td, J = 8.0, 1.2 Hz, 1H), 3.89 (s, 3H), 3.45 (s, 1H), 1.64 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 166.6, 133.8, 131.8, 131.5, 130.2, 127.7, 123.3, 99.1, 80.6, 65.4, 52.0, 31.2. HRMS (ESI) Calcd for C₁₃H₁₅O₃: M+H = 219.1016. Found: 219.1018.

Benzyl-2-(3-hydroxy-3-methylbut-1-yn-1-yl)benzoate **1zc** Oil, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.94-7.92 (m, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.43-7.24 (m, 7H), 5.34 (s, 2H), 2.95 (s, 1H), 1.55 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.9, 135.8, 134.0, 131.6, 131.5, 130.4, 128.5, 128.3, 128.2, 127.7, 123.4, 99.2, 80.7, 66.8, 65.3, 31.0. HRMS (ESI) Calcd for C₁₉H₁₉O₃: M+H = 295.1329. Found: 295.1333.

General Procedure B: Synthesis of 2-iodo-spiro [indene-1,1'-isobenz-

ofuran]-3'-ones and (E)-3-(1-iodo-2-allylidene)isobenzofuran-1-ones

To a solution of 2-(3-hydroxy-3,3-diarylprop-1-yn-1-yl)benzoate derivatives 1 (0.20 mmol) in anhydrous $ClCH_2CH_2Cl$ (4.0 mL) was added I₂ (0.4 mmol, 101.6 mg) at room temperature. When the reaction was considered complete as determined by

TLC analysis, the reaction mixture was quenched by addition of saturated aqueous sodium thiosulfate and diluted with ethyl acetate (3 x 15 mL), washed with water, saturated brine, dried over Na₂SO₄ and evaporated under reduced pressure. The residue was purified by chromatography on silica gel to afford corresponding 2-iodo-spiro[indene-1,1'-isobenzofuran]-3'-one derivatives **2** and (*E*)-3-(1-iodo-2-allylidene)isobenzofuran-1-one derivatives **3**.

Characterization Data of 2a, 2f-2v, 2z, 3v, 3y-3zc

2-iodo-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2a** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.04-8.02 (m, 1H), 7.64-7.57 (m, 4H), 7.55-7.46 (m, 3H), 7.32-7.25 (m, 2H), 7.17-7.13 (m, 1H), 7.09-7.07 (m, 1H), 7.03 (d, *J* = 6.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.8, 151.5, 148.3, 142.9, 142.6, 134.8, 133.4, 129.9, 129.8, 129.1, 128.7, 128.5, 127.2, 126.9, 125.8, 123.9, 121.7, 120.9, 103.0, 94.7. IR (neat, cm⁻¹): 2920, 1774, 1462, 1383, 1096, 750. HRMS (ESI) Calcd for C₂₂H₁₄IO₂: M+H = 437.0033. Found: 437.0029.

2-iodo-6-methyl-3-(*p*-tolyl)-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2f** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.04-8.02 (m, 1H), 7.64-7.59 (m, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 2H), 6.85 (s, 1H), 2.44 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.9, 151.5, 148.7, 142.8, 140.5, 139.1, 137.4, 134.7, 130.6, 130.1, 129.9, 129.3, 128.5, 127.1, 125.8, 124.8, 121.7, 120.7, 100.9, 94.7, 21.5, 21.2. IR (neat, cm⁻¹): 2919, 1776, 1383, 1096, 1019, 949. HRMS (ESI) Calcd for C₂₄H₁₈IO₂: M+H = 465.0346. Found: 465.0345.

2-iodo-6-methoxy-3-(4-methoxyphenyl)-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2g** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.03-8.01 (m, 1H), 7.64-7.61 (m, 2H), 7.60-7.54 (m, 2H), 7.18 (d, *J* = 8.4 Hz, 1H), 7.08 (dd, *J* = 5.6, 1.6 Hz, 1H), 7.04 (d, *J* = 8.8 Hz, 2H), 6.80-6.60 (m, 1H), 6.59 (s, 1H), 3.88 (s, 3H), 3.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.9, 160.0, 159.4, 150.8, 148.7, 144.5, 135.8, 134.8, 129.9, 129.8, 126.9, 125.8, 121.8, 121.7, 114.2, 113.9, 110.9, 98.1, 94.4, 55.6, 55.3. IR (neat, cm⁻¹): 2921, 1773, 1609, 1249, 1095, 1028. HRMS (ESI) Calcd for C₂₄H₁₈IO₄: M+H = 497.0244. Found: 497.0241.

6-chloro-3-(4-chlorophenyl)-2-iodo-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2g** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.06-8.04 (m, 1H), 7.68-7.63 (m, 2H), 7.51 (s, 4H), 7.29 (dd, J = 8.0, 1.6 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.09-7.07 (m, 1H), 7.02 (d, J = 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.3, 149.7, 147.4, 144.3, 141.0, 135.3, 135.0, 133.7, 131.4, 130.4, 129.9, 129.8, 129.2, 126.8, 126.1, 124.7, 121.6, 121.5, 103.9, 94.0. IR (neat, cm⁻¹): 2919, 1778, 1383, 1093, 1018, 949. HRMS (ESI) Calcd for C₂₂H₁₂Cl₂IO₂: M+H = 504.9254. Found: 504.9259.

6-chloro-3-(4-chlorophenyl)-2-iodo-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2g** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.06-8.04 (m, 1H), 7.68-7.62 (m, 2H), 7.59-7.55 (m, 2H), 7.25-7.17 (m, 3H), 7.10-7.08 (m, 1H), 7.03-6.98 (m, 1H), 6.79 (dd, J = 7.6, 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.4, 164.2, 163.5, 161.7, 161.0, 149.8, 147.6, 144.9, 144.8, 138.8, 138.7, 135.0, 130.5, 130.4, 130.3, 129.2, 129.1, 126.9, 126.1, 121.8, 121.7, 121.6, 116.5, 116.3, 116.1, 115.9, 112.6, 112.4, 102.4, 102.3, 93.9. IR (neat, cm⁻¹): 2919, 1779, 1472, 1383, 1228, 1094. HRMS (ESI) Calcd for C₂₂H₁₂F₂IO₂: M+H = 472.9845. Found: 472.9841.

2-iodo-5'-methyl-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2j** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.82 (s, 1H), 7.59-7.57 (m, 2H), 7.53-7.47 (m, 3H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.30-7.23 (m, 2H), 7.14 (td, *J* = 8.4, 0.8 Hz, 1H), 7.02 (d, *J* = 7.2 Hz, 1H), 6.96 (d, *J* = 7.6 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.9, 151.3, 145.5, 142.9, 142.8, 140.4, 135.9, 133.5, 129.7, 129.0, 128.6, 128.5, 127.2, 127.1, 125.8, 123.9, 121.4, 120.9, 103.4, 94.6. IR (neat, cm⁻¹): 2921, 1773, 1383, 1068, 1025, 768. HRMS (ESI) Calcd for C₂₃H₁₆IO₂: M+H = 451.0189. Found: 451.0193.

2-iodo-5'-methoxy-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2k** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.51-7.49 (m, 2H), 7.45-7.39 (m, 3H), 7.37 (d, *J* = 2.0 Hz, 1H), 7.22-7.15 (m, 1H), 7.10 (d, *J* = 2.4 Hz, 1H), 7.08-7.05 (m, 2H), 6.96 (d, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.9, 161.3, 151.3, 142.9, 142.6, 140.2, 133.5, 129.7, 129.1, 128.7, 128.6, 128.5, 127.1, 123.9, 123.8, 122.6, 120.1, 107.6, 103.6, 94.6, 55.8. IR (neat, cm⁻¹): 2921, 1774, 1490, 1383, 1283, 1067. HRMS (ESI) Calcd for C₂₃H₁₆IO₃: M+H = 467.0139. Found: 467.0139.

5'-chloro-2-iodo-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2l** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.99 (d, *J* = 1.6 Hz, 1H), 7.59-7.48 (m, 6H), 7.31 (t, *J* = 7.2 Hz, 1H), 7.25 (d, *J* = 6.8 Hz, 1H), 7.18-7.14 (m, 2H), 7.05-7.02 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 168.3, 151.9, 146.6, 142.9, 142.1, 136.3, 135.1, 133.2, 130.0, 129.2, 128.8, 128.7, 128.5, 127.3, 125.7, 123.9, 123.0, 121.1, 102.2, 94.6. IR (neat, cm⁻¹): 2920, 1779, 1463, 1383, 1218, 1107. HRMS (ESI) Calcd for C₂₂H₁₃CIIO₂: M+H = 470.9643. Found: 470.9641.

5'-fluoro-2-iodo-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2m** Solid, ¹H NMR (300 MHz, CDCl₃) δ ppm 7.59 (d, J = 1.8 Hz, 1H), 7.57-7.44 (m, 5H), 7.42-7.16 (m, 3H), 7.11-7.00 (m, 1H), 6.98-6.95 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ ppm 168.6, 165.3, 161.9, 151.8, 143.8, 142.9, 142.1, 130.0, 129.2, 128.7, 128.5, 127.3, 123.9, 123.6, 123.5, 123.0, 122.7, 121.0, 112.4, 112.1, 102.5, 94.6. IR (neat, cm⁻¹): 2921, 1777, 1486, 1382, 1272, 1060. HRMS (ESI) Calcd for C₂₂H₁₃FIO₂: M+H = 454.9939. Found: 454.9934.

2-iodo-5'-nitro-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2n** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.76 (d, J = 1.6 Hz, 1H), 8.39 (dd, J = 8.4, 2.0 Hz, 1H), 7.52-7.42 (m, 5H), 7.29-7.17 (m, 4H), 7.11 (td, J = 7.6, 0.8 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 167.3, 154.2, 152.8, 149.6, 142.9, 141.4, 132.9, 130.5, 129.7, 129.5, 128.8, 128.7, 128.4, 127.6, 123.9, 123.2, 121.5, 121.4, 100.6, 94.8. IR (neat, cm⁻¹): 2920, 1784, 1535, 1347, 1107, 739. HRMS (ESI) Calcd for C₂₂H₁₃INO₄: M+H = 481.9884. Found: 481.9885.

6'-chloro-2-iodo-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **20** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.96 (d, J = 8.4 Hz, 1H), 7.60-7.47 (m, 6H), 7.32 (t, J = 7.2 Hz, 1H), 7.26 (d, J = 7.2 Hz, 1H), 7.18 (td, J = 7.6, 1.2 Hz, 1H), 7.06-7.05 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 168.6, 152.0, 150.1, 142.9, 142.1, 141.5, 133.2, 130.8, 130.1, 129.2, 128.7, 128.5, 127.3, 126.9, 125.5, 123.9, 121.9, 121.1, 102.0, 94.2. IR (neat, cm⁻¹): 2920, 1776, 1603, 1382, 1070, 1025. HRMS (ESI) Calcd for C₂₂H₁₃CIIO₂: M+H = 470.9643. Found: 470.9643.

4'-chloro-2-iodo-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2p** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.58-7.46 (m, 7H), 7.31 (d, *J* = 7.6 Hz, 1H), 7.26-7.24 (m, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.98-6.94 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 166.8, 151.9, 150.8, 142.9, 142.3, 135.7, 133.3, 133.2, 131.4, 129.9, 129.2, 128.7, 128.5, 127.3, 123.9, 123.6, 121.1, 120.2, 102.3, 93.4. IR (neat, cm⁻¹): 2920, 1776, 1594, 1462, 1383, 966. HRMS (ESI) Calcd for C₂₂H₁₃CIIO₂: M+H = 470.9643. Found: 470.9645.

6'-fluoro-2-iodo-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2q** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.03 (dd, J = 8.4, 4.8 Hz, 1H), 7.58 (dd, J = 8.4, 1.6 Hz, 2H), 7.55-7.48 (m, 3H), 7.33-7.31 (m, 2H), 7.29-7.25 (m, 1H), 7.17 (td, J = 7.6, 1.2 Hz, 1H), 7.06 (d, J = 7.2 Hz, 1H), 6.75 (dd, J = 7.6, 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 168.6, 168.2, 165.6, 151.9, 151.4, 151.3, 142.9, 142.2, 133.2, 130.0, 129.2, 128.7, 128.5, 128.3, 128.2, 127.3, 123.9, 123.2, 123.1, 121.1, 118.5, 118.2, 109.1, 108.8, 102.1, 94.1, 94.0. IR (neat, cm⁻¹): 2921, 1776, 1382, 1279, 1083, 1025. HRMS (ESI) Calcd for C₂₂H₁₃FIO₂: M+H = 454.9939. Found: 454.9943.

2-iodo-5',6'-dimethoxy-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2r** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.52 (d, *J* = 6.8 Hz, 2H), 7.46-7.37 (m, 3H), 7.33 (s, 1H), 7.24-7.17 (m, 2H), 7.08 (t, *J* = 7.6 Hz, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.32 (s, 1H), 3.89 (s, 3H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.9, 155.4, 151.2, 151.1, 142.9, 142.6, 142.2, 133.4, 129.7, 129.1, 128.6, 128.5, 127.1, 123.9, 120.9, 119.3, 106.1, 103.6, 102.6, 94.2. IR (neat, cm⁻¹): 2920, 1768, 1600, 1383, 1307, 1070. HRMS (ESI) Calcd for C₂₄H₁₈IO₄: M+H = 497.0244. Found: 497.0243.

2-iodo-3-(4-methoxyphenyl)-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2s** and 2-iodo-6-methoxy-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2's**, **2s**:**2's** = 2.7:1.0. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.04-8.02 (m, 1.3H), 7.65-7.44 (m, 8.4H), 7.29-7.25 (m, 1.1H), 7.15 (d, J = 8.0 Hz, 1.3H), 7.09 (d, J = 6.4 Hz, 1.1H), 7.07-7.01 (m, 1.3H), 6.79 (dd, J = 8.4, 2.4 Hz, 1H), 6.61 (d, J = 2.0 Hz, 1H), 3.88 (s, 1.1H), 3.71 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.9, 160.1, 159.5, 151.3, 151.1, 148.6, 148.5, 144.4, 143.1, 142.7, 135.7, 134.8, 134.7, 133.6, 130.0, 129.9, 129.7, 129.0, 128.6, 128.5, 127.0, 126.9, 125.8, 125.5, 123.8, 121.7, 121.6, 120.9, 114.3, 114.0, 111.0, 102.1, 99.0, 94.7, 94.4, 55.6, 55.3. IR (neat, cm⁻¹): 2926, 1774, 1476, 1283, 1096, 949. HRMS (ESI) Calcd for C₂₃H₁₅INaO₃: M+Na = 488.9958. Found: 488.9973.

2-iodo-3-(*p*-tolyl)-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2t** and 2-iodo-6-methyl-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2't**, **2t**:**2't** = 3.5:1.0. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.04-8.02 (m, 1.2H), 7.65-7.60 (m, 4.4H), 7.59-7.44 (m, 3.6H), 7.34-7.25 (m, 1.4H), 7.16-7.01 (m, 3.8H), 6.86 (s, 1H), 2.43 (s, 0.8H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.9, 151.5, 148.6, 148.4, 143.0, 142.8, 142.7, 140.3, 139.1, 137.4, 134.7, 133.6, 130.4, 130.2, 129.9, 129.7, 129.4, 129.0, 128.6, 128.5, 128.4, 127.1, 127.0, 125.7, 124.8, 123.8, 121.7, 120.9, 120.7, 102.4, 101.3, 94.7, 21.5, 21.2. IR (neat, cm⁻¹): 2923, 1768, 1472, 1220, 1010, 875. HRMS (ESI) Calcd for C₂₃H₁₅INaO₂: M+Na = 473.0009. Found: 473.0027.

6-chloro-2-iodo-3-(4-methoxyphenyl)-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2u** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.04-8.02 (m, 1H), 7.65-7.59 (m, 2H), 7.54-7.48 (m, 4H), 7.13-7.07 (m, 2H), 6.79 (dd, J = 8.4, 2.4 Hz, 1H), 6.61 (d, J = 2.4Hz, 1H), 3.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.8, 159.6, 150.3, 148.4, 144.4, 135.3, 135.0, 134.9, 132.1, 130.0, 129.9, 129.0, 126.9, 125.9, 121.7, 121.5, 114.4, 111.2, 99.8, 94.3, 55.6. IR (neat, cm⁻¹): 2920, 1775, 1606, 1482, 1282, 1094. HRMS (ESI) Calcd for C₂₃H₁₅CIIO₃: M+H = 500.9749. Found: 500.9745.

2-iodo-3-methyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2v** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.02-7.98 (m, 1H), 7.60-7.56 (m, 2H), 7.35-7.29 (m, 2H), 7.11 (td, *J* = 7.2, 1.6 Hz, 1H), 6.97-6.94 (m, 2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.9, 148.8, 148.4, 143.3, 142.6, 134.6, 129.8, 126.9, 125.7, 123.3, 121.6, 119.5, 102.2, 94.4, 15.5. IR (neat, cm⁻¹): 2921, 1774, 1463, 1220, 1087, 754. HRMS (ESI) Calcd for C₁₇H₁₁INaO₂: M+Na = 396.9696. Found: 396.9708.

4-chloro-2-iodo-3-methyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2z** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.01-7.99 (m, 1H), 7.62-7.57 (m, 2H), 7.26-7.25 (m, 1H), 7.06-6.98 (m, 2H), 6.82 (dd, *J* = 7.6, 0.8 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 169.5, 148.3, 147.9, 145.3, 139.2, 134.8, 131.6, 130.1, 128.2, 127.1, 126.8, 125.8, 122.1, 121.6, 105.5, 93.7, 19.6. IR (neat, cm⁻¹): 2922, 1777, 1457, 1282, 1088, 948. HRMS (ESI) Calcd for C₁₇H₁₀ClINaO₂: M+Na = 430.9306. Found: 430.9319.

(*E*)-3-(1-iodo-2-phenylallylidene)isobenzofuran-1(3*H*)-one **3v** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.91-7.88 (m, 1H), 7.85-7.83 (m, 1H), 7.54-7.50 (m, 4H), 7.39-7.37 (m, 3H), 5.88 (s, 1H), 5.69 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.6, 148.8, 146.7, 136.3, 135.8, 134.6, 130.3, 129.0, 128.8, 126.6, 126.5, 125.7, 123.5, 117.8, 80.3. IR (neat, cm⁻¹): 2921, 1788, 1466, 1253, 1020, 966. HRMS (ESI) Calcd for C₁₇H₁₁INaO₂: M+Na = 396.9696. Found: 396.9708.

(*E*)-3-(1-iodo-2-(2-methoxyphenyl)allylidene)isobenzofuran-1(3*H*)-one **3y** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.14 (d, *J* = 7.2 Hz, 1H), 7.89-7.88 (m, 1H), 7.58-7.51 (m, 2H), 7.37-7.31 (m, 2H), 6.99-6.92 (m, 2H), 5.79 (s, 2H), 3.66 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.9, 157.8, 148.1, 144.7, 136.8, 134.1, 130.7, 130.1, 130.0, 126.7, 126.6, 125.4, 124.2, 121.6, 120.6, 111.4, 84.5, 55.4. IR (neat, cm⁻¹): 2930, 1783, 1464, 1252, 1024, 745. HRMS (ESI) Calcd for C₁₈H₁₃INaO₃: M+Na = 426.9802. Found: 426.9811.

(*E*)-3-(2-(2-chlorophenyl)-1-iodoallylidene)isobenzofuran-1(3*H*)-one **3z** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 8.27 (d, *J* = 7.6 Hz, 1H), 7.91 (d, *J* = 7.6 Hz, 1H), 7.64-7.55 (m, 2H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.36-7.29 (m, 3H), 5.95 (s, 1H), 5.69 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.5, 148.7, 145.3, 137.3, 136.6, 134.3, 133.0, 131.5, 130.4, 130.3, 129.9, 126.9, 126.8, 125.7, 124.0, 123.1, 83.8. IR (neat, cm⁻¹): 2924, 1784, 1467, 1257, 1024, 970. HRMS (ESI) Calcd for C₁₇H₁₀ClINaO₂: M+Na = 430.9306. Found: 430.9318.

(*E*)-3-(2-(4-chlorophenyl)-1-iodoallylidene)isobenzofuran-1(3*H*)-one **3za** Solid, ¹H NMR (400 MHz, CDCl₃) δ ppm 7.91-7.89 (m, 1H), 7.80-7.78 (m, 1H), 7.54 (t, *J* = 4.0 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 5.87 (s, 1H), 5.71 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.4, 149.0, 145.7, 136.2, 135.0, 134.7, 134.3, 130.5, 129.1, 127.9, 126.6, 125.8, 123.3, 118.2, 79.4. IR (neat, cm⁻¹): 2923, 1784, 1465, 1255, 1086, 1018. HRMS (ESI) Calcd for C₁₇H₁₀ClINaO₂: M+Na = 430.9306. Found: 430.9314.

4-iodo-3-(prop-1-en-2-yl)-1*H*-isochromen-1-one **3zb** Solid. The procedure is the same as the general procedure B, except that the reaction temperature is 80 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.26-8.24 (m, 1H), 7.83-7.76 (m, 2H), 7.54 (td, *J* = 8.0, 1.6 Hz, 1H), 5.50-5.47 (m, 2H), 2.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 161.4, 156.4, 139.5, 138.0, 135.5, 131.5, 129.6, 129.0, 122.7, 120.3, 74.6, 20.7. HRMS (ESI) Calcd for C₁₂H₉INaO₂: M+Na = 334.9539. Found: 334.9547.

(*E*)-3-(1-iodo-2-methylallylidene)isobenzofuran-1(3*H*)-one **3zc** Solid. The procedure is the same as the general procedure B, except that the reaction temperature is 80 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.99 (d, *J* = 7.6 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.65-7.62 (m, 1H), 7.55 (td, *J* = 7.6, 0.8 Hz, 1H), 5.40 (d, *J* = 0.4 Hz, 1H), 5.31-5.30 (m, 1H), 2.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 165.6, 146.5, 143.3, 136.4, 134.5, 130.1, 126.4, 125.6, 123.2, 118.7, 84.3, 21.6. IR (neat, cm⁻¹): 2921, 1779, 1647, 1464, 1029, 684. HRMS (ESI) Calcd for C₁₂H₉INaO₂: M+Na = 334.9539. Found: 334.9548.

Typical Procedure for 4a, 5a and 6a Synthesis and Characterization

Data of 4a, 5a and 6a

3-phenyl-2-(phenylethynyl)-3'*H***-spiro[indene-1,1'-isobenzofuran]-3'-one 4a:** To a solution of 2-iodo-3-phenyl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one **2a** (87.4 mg, 0.20 mmol) in anhydrous CH₃CN (2 mL) was added PdCl₂(PPh₃)₂ (5.6 mg, 4 mol%), CuI (0.76 mg, 2 mol%) and K₂CO₃ (55.2 mg, 2.0 equiv.). The reaction vial was flushed with Ar and the reaction mixture was stirred for 5 minutes at room temperature. A solution of ethynylbenzene (30.6 mg, 1.5 equiv.) in anhydrous CH₃CN

(2 mL) were then added dropwise through a syringe. The resulting solution was stirred at room temperature for 36 h. When the reaction was considered complete as determined by TLC analysis, the mixture was quenched by addition of saturated aqueous ammonium chloride (5 mL) and extracted with ethyl ether (3 x 20 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography to give **4a** (yield 74%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.99-7.97 (m, 1H), 7.80 (d, *J* = 7.2 Hz, 2H), 7.53-7.46 (m, 5H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.20-7.16 (m, 2H), 7.14-7.10 (m, 2H), 7.09-7.03 (m, 3H), 6.99 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 170.3, 148.4, 148.3, 142.2, 142.1, 134.6, 132.8, 131.5, 131.4, 130.0, 129.7, 129.3, 128.6, 128.5, 128.2, 128.0, 126.7, 125.6, 125.2, 123.8, 122.5, 122.1, 121.8, 99.4, 93.6, 82.9. IR (neat, cm⁻¹): 2920, 2851, 1773, 1605, 1382, 1075, 1022, 757. HRMS (ESI) Calcd for C₃₀H₁₉O₂: M+H = 411.1380. Found: 411.1378.

(*E*)-3-phenyl-2-styryl-3'*H*-spiro[indene-1,1'-isobenzofuran]-3'-one 5a: To а solution of 2-iodo-3-phenyl-3'H-spiro[indene-1,1'-isobenzofuran]-3'-one 2a (87.4 mg, 0.20 mmol) in DMF (2 mL) was added K_2CO_3 (138.0 mg, 5.0 equiv), tetrabutylammonium bromide (128.8 mg, 2.0 equiv.), Pd(OAc)₂ (1.34 mg, 3 mol%). The reaction vial was flushed with Ar and the reaction mixture was stirred for 5 minutes at room temperature. A solution of styrene (208 mg, 10 equiv.) in DMF (2 mL) were then added dropwise through a syringe. The resulting solution was stirred at 100 °C for 12 h. When the reaction was considered complete as determined by TLC analysis, the mixture was quenched slowly by addition of aqueous 1M HCl (5 mL) and extracted with ethyl ether (3 x 20 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography to give 5a (yield 96%) as a solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.02 (s, 1H), 7.49 (s, 6H), 7.42 (d, J = 2.8 Hz, 1H), 7.21 (s, 2H), 7.08-7.03 (m, 5H), 6.98 (d, J = 7.2 Hz, 2H), 6.86-6.82 (m, 2H), 5.90 (d, J = 16.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 170.6, 150.5, 145.6, 143.4, 142.7, 137.8, 136.9, 134.9, 133.1, 130.9, 129.7, 129.6, 129.4, 128.8, 128.7, 128.4, 127.8, 127.5, 126.4, 126.2, 125.9, 122.6, 121.7, 121.4, 119.8, 93.4. IR (neat, cm⁻¹): 2920, 1769, 1624, 1426, 1383, 1072, 756, 696. HRMS (ESI) Calcd for $C_{30}H_{21}O_2$: M+H = 413.1536. Found: 413.1536.

2-(4-methoxyphenyl)-3-phenyl-3'H-spiro[indene-1,1'-isobenzofuran]-3'-one **6a**: To a solution of 2-iodo-3-phenyl-3'H-spiro[indene-1,1'-isobenzofuran]-3'-one 2a (87.4 mg, 0.20 mmol) in DMF : H₂O (1 mL : 0.25 mL) was added (4-methoxyphenyl)boronic acid (39.5 mg, 1.3 equiv), Na₂CO₃ (63.6 mg, 3.0 equiv), Pd(OAc)₂ (0.90 mg, 2 mol%). The reaction vial was flushed with Ar and the reaction mixture was stirred for 20 h at 40°C. When the reaction was considered complete as determined by TLC analysis, the mixture was quenched slowly by addition of aqueous 1M HCl (5 mL) and extracted with ethyl ether (3 x 20 mL). The combined organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography to give **6a** (yield 99%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.80 (d, J = 7.6 Hz, 1H), 7.46-7.43 (m, 1H), 7.39-7.31 (m, 1H), 7.29-7.21 (m, 7H), 7.10-7.05 (m, 2H), 6.88 (d, J = 7.2 Hz, 1H), 6.73 (d, J = 8.8 Hz, 2H), 6.45 (d, J =8.8 Hz, 2H), 3.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 170.6, 158.9, 149.3, 143.4, 142.8, 142.6, 141.1, 134.5, 133.6, 130.1, 129.6, 129.3, 129.2, 128.5, 128.1, 127.0, 126.6, 125.8, 125.0, 122.9, 121.6, 121.2, 113.6, 94.9, 54.9. IR (neat, cm⁻¹): 2921, 1770, 1605, 1510, 1383, 1250, 1091, 753. HRMS (ESI) Calcd for C₂₉H₂₁O₃: M+H = 417.1485. Found: 417.1485.

Crystallographic data

structure of 2a

Datablock:

Bond precisi	ton: $C-C = C$.0053 A	Wavelength=0.71073	
Cell:	a=9.369(2)	b=9.971(2)	c=10.815(4)	
	alpha=98.526(3)	beta=93.088(3)	gamma=117.892(2)	
Temperature:	293 K			
	Calculate	ed	Reported	
Volume	874.3(4)		874.3(4)	
Space group	P -1		P-1	
Hall group	-P 1		?	
Moiety form	ıla C22 H13	I 02	?	
Sum formula	C22 H13	I 02	C22 H13 I O2	
Mr	436.22		436.22	
Dx,g cm-3	1.657		1.657	
Z	2		2	
Mu (mm-1)	1.843		1.843	
F000	428.0		428.0	
F000'	427.22			
h,k,lmax	11, 12, 13		11, 12, 13	
Nref	3247		3182	
Tmin, Tmax	0.661,0.	705	0.677,0.721	
Tmin'	0.648			
Correction m	nethod= MULTI-SC	AN		
Data complet	eness= 0.980	Theta(max)	= 25.500	
R(reflection	ns) = 0.0278(277)	1) wR2(ref	lections)= 0.0624(3182)	
S = 1.045	Npar=	226		

structure of 3zb

Datablock:

Bond precision:		C-C = 0.0073 A		Wavelength=0.71073	
Cell:	a=7.714	(4) b=	18.219(10)	c=8.198	8(5)
	alpha=9	0 be	eta=97.004(5)	gamma=9	90
Temperature: 569 K					
	(Calculated			Reported
Volume]	1143.6(11)			1143.5(11)
Space group	F	P 21/a			P 1 21/a 1
Hall group		-P 2yab			-P 2yab
Moiety formula		C12 H9 I O2		C12 H9 I O2	
Sum formula		C12 H9 I O2		C12 H9 I O2	
Mr	ć	312.09			312.09
Dx,g cm-3]	1.813			1.813
Z	Z	1			4
Mu (mm-1)	2 2	2.777			2.777
F000	6	600.0			600.0
F000'	Ę	598.35			
h,k,lmax	Ç	9, 22, 9			9, 22, 9
Nref	2 2	2129			2120
Tmin, Tmax		0. 536, 0. 678		0.379,0.746	
Tmin'	(). 523			
Correction method= MULTI-SCAN					
Data completeness= 0.996 Theta(max)= 25.500					
R(reflections) = 0.0410(1603) wR2(reflections) = 0.0972(2120					s) = 0.0972(2120)
S = 1.060		Npar= 1	38		

_____3.291

143.24 135.63 134.18 13.61 131.53 130.63 128.57 128.46 128.38 128.57 128.49 127.57 122.80

---- 66.95

-85.98

77.32 77.00 76.68 73.93

---- 66.91

S44

.217

- 165.86

145.60 135.73 134.12 131.62 130.46 128.48 128.21 128.18 128.14 127.95 127.47 125.11 123.26

- 97.87

83.40

77.32 77.00 76.68 70.25

---- 66.85

_

141.52 135.81 131.74 131.65 131.14 130.50 128.82 128.57 128.23 127.98 126.94 126.82 126.94 126.82

---- 97.00

- 83.26

77.31 77.00 76.68

---- 69.24 ---- 66.85

_____29.42

-0.000

 $\begin{array}{c} 8.033\\ 8.027\\ 8.018\\ 8.013\\ 7.629\\ 7.629\\ 7.619\\ 7.614\\ 7.608\\ 7.614\\ 7.608\\ 7.614\\ 7.598\\ 7.614\\ 7.598\\ 7.614\\ 7.598\\ 7.061\\ 7.598\\ 7.061\\ 7.598\\ 7.061\\ 7.598\\ 7.061\\ 7.598\\ 7.061\\ 7.097\\ 7.$

— 3.878 — 3.712

S90

-0.000

_

S93

S94

7.648 7.644

7.626 7.621

7.615 7.608 7.603

7.587 7.570

7.529 7.524

7.511 7.496

7.493 7.478

7.460 7.452 7.446

7.442 7.339

7.290

7.270 7.266

7.246 7.157 7.152

7.144

7.134

7.125

7.117

7.084

7.014

6.856

The ¹H–¹H COSY spectrum and HMBC correlations from $\delta_{\rm H}$ 3.72 (3H, s) to $\delta_{\rm C}$ 159.6 (C-1) and from $\delta_{\rm H}$ 7.11 (1H, d, J = 8.4 Hz, H₅), 6.79 (1H, dd, J = 8.4, 2.4 Hz, H₆) and 6.61 (1H, d, J = 2.4 Hz, H₂) to $\delta_{\rm C}$ 159.6 (C-1) confirmed the structure of **2u**.

