Supporting Information

# Copper-Catalyzed Ortho-Acylation of Phenols with Aryl Aldehydes and Its Application in One-Step Preparation of

### Xanthones

Jun Hu<sup>a</sup>, Enoch A. Adogla<sup>a</sup>, Yong Ju<sup>b</sup>, Daping Fan<sup>c</sup> and Qian Wang<sup>a</sup>\*

<sup>a</sup> Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA

<sup>b</sup> Key Laboratory Of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education,

Department of Chemistry, Tsinghua University, Beijing 100084, China

<sup>c</sup> School of Medicine, University of South Carolina, Columbia, SC, 29209, USA

#### **Table of Contents:**

| 1. | <b>Table S1.</b> Optimization of the reaction conditions for <i>ortho</i> -acylation of 4-methowith 3-methoxybenzaldehyde                 | oxyphenol<br>S2 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 2. | Table S2 Optimization of ratio (CuCl <sub>2</sub> and PPh <sub>3</sub> ) for <i>ortho</i> -acylation of 4-methoxyph 3-methoxybenzaldehyde | enol with<br>S3 |
| 3. | General Procedure for Ortho-Acylation of Phenols with Aldehydes                                                                           | S3              |
| 4. | General Procedure for One-step Preparation of Xanthones                                                                                   | \$3             |
| 5. | Data and MS, <sup>1</sup> H NMR, <sup>13</sup> C NMR spectra                                                                              | S3-S51          |
| 6. | References                                                                                                                                | S52             |

**1. Table S1** Optimization of the reaction conditions for *ortho*-acylation of 4-methoxyphenol with 3-methoxybenzaldehyde



| Entry <sup>a</sup>                                                                                                     | Catalyst             | Ligand               | Base                            | Yield (%) <sup>b</sup> |
|------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|---------------------------------|------------------------|
| 1                                                                                                                      | Pd(OAc) <sub>2</sub> | PPh <sub>3</sub>     | K <sub>2</sub> CO <sub>3</sub>  | 77                     |
| 2                                                                                                                      | Pd(OAc) <sub>2</sub> | PPh <sub>3</sub>     | K <sub>3</sub> PO <sub>4</sub>  | 75                     |
| 3                                                                                                                      | Pd(OAc) <sub>2</sub> | PPh <sub>3</sub>     | Na <sub>2</sub> CO <sub>3</sub> | <5                     |
| 4                                                                                                                      | Pd(OAc) <sub>2</sub> | PPh <sub>3</sub>     | Cs <sub>2</sub> CO <sub>3</sub> | <5                     |
| 5                                                                                                                      | CuCl <sub>2</sub>    | PPh <sub>3</sub>     | K <sub>3</sub> PO <sub>4</sub>  | 91                     |
| 6                                                                                                                      | CuCl <sub>2</sub>    | PPh <sub>3</sub>     | K <sub>2</sub> CO <sub>3</sub>  | 76                     |
| 7                                                                                                                      | CuCl <sub>2</sub>    | PPh <sub>3</sub>     | Na <sub>2</sub> CO <sub>3</sub> | <5                     |
| 8                                                                                                                      | CuCl <sub>2</sub>    | PPh <sub>3</sub>     | Cs <sub>2</sub> CO <sub>3</sub> | <5                     |
| 9                                                                                                                      | CuCl <sub>2</sub>    | <i>t</i> -ButylXPhos | K <sub>3</sub> PO <sub>4</sub>  | 63                     |
| 10                                                                                                                     | CuCl <sub>2</sub>    | <i>t</i> -ButylXPhos | K <sub>2</sub> CO3              | 50                     |
| 11                                                                                                                     | CuCl <sub>2</sub>    | <i>t</i> -ButylXPhos | Na <sub>2</sub> CO <sub>3</sub> | <5                     |
| 12                                                                                                                     | CuCl <sub>2</sub>    | <i>t</i> -ButylXPhos | Cs <sub>2</sub> CO <sub>3</sub> | <5                     |
| 13                                                                                                                     | Pd(OAc) <sub>2</sub> | <i>t</i> -ButylXPhos | K <sub>3</sub> PO <sub>4</sub>  | 73                     |
| 14                                                                                                                     | Pd(OAc) <sub>2</sub> | <i>t</i> -ButylXPhos | K <sub>2</sub> CO <sub>3</sub>  | 66                     |
| 15                                                                                                                     | Pd(OAc) <sub>2</sub> | <i>t</i> -ButylXPhos | Na <sub>2</sub> CO <sub>3</sub> | <5                     |
| 16                                                                                                                     | Pd(OAc) <sub>2</sub> | <i>t</i> -ButylXPhos | Cs <sub>2</sub> CO <sub>3</sub> | <5                     |
| 17                                                                                                                     |                      | PPh <sub>3</sub>     | K <sub>3</sub> PO <sub>4</sub>  | -                      |
| 18                                                                                                                     | CuCl <sub>2</sub>    |                      | K <sub>3</sub> PO <sub>4</sub>  | trace                  |
| <sup>a</sup> Reaction condition: <b>1a</b> (1 equiv), <b>2a</b> (1.3 equiv.), base (2.2 equiv.), catalyst (5 mol%) and |                      |                      |                                 |                        |

ligand (7.5 mol%); <sup>b 1</sup>H NMR yield. The reaction time was not optimized.

**2.** Table S2 Optimization of ratio (CuCl<sub>2</sub> and PPh<sub>3</sub>) for *ortho*-acylation of 4-methoxyphenol with 3-methoxybenzaldehyde<sup>a</sup>

| OMe<br>1a | CHO<br>+<br>OMe<br>2a                                          | CuCl <sub>2</sub> ,<br>PPh <sub>3</sub> , K <sub>3</sub> PO <sub>4</sub><br>toluene, 110 °C, air, 24 h | O OH<br>OMe OMe<br>3aa |
|-----------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------|
|           | CuCl <sub>2</sub> /PPł                                         | N <sub>3</sub> Yields % <sup>b</sup>                                                                   |                        |
|           | 1:1                                                            | 65                                                                                                     |                        |
|           | 2:3                                                            | 91                                                                                                     |                        |
|           | 1:2                                                            | 90                                                                                                     |                        |
|           | <sup>a</sup> K <sub>3</sub> PO <sub>4</sub> (2.2 equ<br>yield. | iv.), CuCl <sub>2</sub> (5 mol%); <sup>b 1</sup> H-NI                                                  | MR                     |

- **3.** General Procedures for Ortho-Acylation of Phenols with Aldehydes: Phenols (1.3 equiv), aryl aldehydes (1 equiv.), K<sub>3</sub>PO<sub>4</sub> (2.2 equiv.), CuCl<sub>2</sub> (5 mol%) and PPh<sub>3</sub> (7.5 mol%) were added in 3 mL toluene, and then the reaction solution was stirred at 110 °C for 24 h. The mixture was extracted with DCM, washed by water, brine, and then the combined organic layer was dried by anhydrous Na<sub>2</sub>SO<sub>4</sub>. After evaporation of solvents, the crude product was purified by flash chromatography to afford the products.
- 4. General Procedure for One-step Preparation of Xanthones: Phenols (1.3 equiv), 2-nitrobenzaldehydes (1 equiv.), K<sub>3</sub>PO<sub>4</sub> (2.2 equiv.), CuCl<sub>2</sub> (5 mol%) and PPh<sub>3</sub> (7.5 mol%) were added in 3 mL toluene, and then the reaction solutions was stirred at 110 °C for 24 h. The mixture was extracted with DCM, washed by water, brine, and then the combined organic layer was dried by anhydrous Na<sub>2</sub>SO<sub>4</sub>. After evaporation of solvents, the crude product was purified by flash chromatography to afford the products.
- 5. Data and MS, <sup>1</sup>H NMR, <sup>13</sup>C NMR spectra



V(hexane):V(EtOAc)=10:1 as the mobile phase; yellow solid, mp.  $40-41^{\circ}$ C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  11.82 (s, 1H, OH), 7.28-7.68 (m, 7H, Ph-H), 3.95, 4.11 (2\*s, 2\*3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz,):  $\delta$  201.04, 159.69, 157.64, 151.54, 139.23, 129.49, 124.32, 121.69, 119.35, 118.76, 118.29, 116.30, 113.90, 56.04, 55.60; MS-El(m/z) = 258. [1]





3ba

V(hexane):V(EtOAc)=10:1 as the mobile phase; white solid, mp. 92-95°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHZ):  $\delta$  11.58 (s, 1H, OH), 7.00-7.63 (m, 7H, Ph-H), 3.71 (s, 3H, OCH<sub>3</sub>), 2.45 (s, 3H, CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz,):  $\delta$ 201.01, 157.51, 151.52, 142.95, 136.14, 135.29, 135.21, 129.54, 129.21, 119.00, 118.82, 116.32, 56.08, 21.78; MS-EI(m/z) = 242. [2]





V(hexane):V(EtOAc)=8:1 as the mobile phase; white solid, mp. 82-84°C [84-85.5 °C[3]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHZ):  $\delta$  11.60 (s, 1H, OH), 7.05-7.70 (m, 8H, Ph-H), 3.69 (s, 3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz,):  $\delta$ 200.26, 156.59, 150.51, 136.96, 131.11, 128.20, 127.50, 123.15, 118.33, 117.79, 115.20, 55.00; MS-EI (m/z) = 228.





3da

V(hexane):V(EtOAc)=8:1 as the mobile phase; yellow solid, mp. 56-59°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHZ):  $\delta$  11.42 (s, 1H, OH), 6.98-7.67 (m, 7H, Ph-H), 3.70 (s, 3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz,):  $\delta$  199.62, 157.71, 151.66, 139.55, 134.81, 132.06, 129.81, 129.12, 127.23, 124.67, 119.56, 118.42, 115.95, 56.04; MS-EI (m/z) = 262; HRMS(EI): m/z calcd for C14H11ClO3: 262.0397; found: 262.0392.





3ea

V(hexane):V(EtOAc)=8:1 as the mobile phase; white solid, mp. 76-78°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHZ):  $\delta$  11.42 (s, 1H, OH), 7.00-7.76 (m, 7H, Ph-H), 3.71 (s, 3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz,):  $\delta$  199.67, 166.82, 163.46, 157.51, 151.61, 131.92, 131.80, 124.16, 119.48, 118.71, 116.16, 115.90, 115.61, 56.05; MS-EI (m/z) = 246.[4]

## Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012





3fa

V(hexane):V(EtOAc)=10:1 as the mobile phase; white solid, mp. 67-70°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHZ):  $\delta$  11.74 (s, 1H, OH), 6.82-7.13 (m, 6H, Ph-H), 3.64, 3.73, 3.78 (3\*s, 3\*3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz,):  $\delta$  201.37, 157.47, 153.55, 151.68, 150.63, 124.59, 119.70, 118.99, 117.34, 116.40, 114.75, 113.98, 113.02, 56.43, 56.00; MS-EI (m/z) = 288; HRMS(EI): m/z calcd for C16H16O5: 288.0998; found: 288.0994.





V(hexane):V(EtOAc)=8:1 as the mobile phase; yellow solid, mp. 71-72°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHZ):  $\delta$  11.85 (s, 1H, OH), 7.00-7.47 (m, 7H, Ph-H), 3.85 (s, 3H, OCH<sub>3</sub>), 2.85 (m, 1H, C<u>H</u>(CH<sub>3</sub>)<sub>2</sub>), 1.18 (d, 2\*3H, J= 6.92Hz, CH(C<u>H<sub>3</sub>)<sub>2</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz,):  $\delta$  201.31, 161.40, 159.54, 139.31, 138.99, 134.91, 130.87, 129.35, 121.75, 118.70, 118.18, 113.89, 55.44, 33.21, 24.03; MS-EI (m/z) = 270; HRMS(EI): m/z calcd for C17H18O3: 270.1256; found: 270.1259.</u>





V(hexane):V(EtOAc)=8:1 as the mobile phase; white solid, mp. 64-66°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHZ):  $\delta$  11.88 (s, 1H, OH), 7.00-7.62 (m, 7H, Ph-H), 2.84 (m, 1H, C<u>H</u>(CH<sub>3</sub>)<sub>2</sub>), 2.46 (s, 3H, CH<sub>3</sub>), 1.19 (d, 2\*3H, J= 6.88 Hz, CH(C<u>H<sub>3</sub></u>)<sub>2</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz,):  $\delta$  201.40, 161.25, 142.78, 138.96, 135.40, 134.65, 130.90, 129.60, 129.10, 118.98, 118.21, 33.30, 24.09, 21.72; MS-EI (m/z) = 254; HRMS(EI): m/z calcd for C17H18O2: 254.1307; found: 254.1308..



Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012



3cb

V(hexane):V(EtOAc)=8:1 as the mobile phase; yellow solid, mp. 70-73°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHZ):  $\delta$  11.87 (s, 1H, OH), 7.00-7.70 (m, 8H, Ph-H), 2.85 (m, 1H, C<u>H</u>(CH<sub>3</sub>)<sub>2</sub>),1.19 (d, 2\*3H, J= 6.90 Hz, CH(C<u>H<sub>3</sub>)<sub>2</sub></u>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz,):  $\delta$  201.67, 161.48, 139.08, 138.19, 134.90, 131.99, 130.96, 129.32, 128.43, 118.86, 118.32, 33.31, 24.09; MS-EI (m/z) = 240. [5]





3db

V(hexane):V(EtOAc)=8:1 as the mobile phase; yellow solid, mp. 44-46°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ 11.70 (s, 1H, OH), 7.02-7.67 (m, 7H, Ph-H), 2.83 (m, 1H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.19 (d, 2\*3H, J= 6.92 Hz, CH(C<u>H<sub>3</sub>)</u><sub>2</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz,): δ 199.92, 161.47, 139.65, 139.26, 135.34, 134.69, 131.89, 130.55, 129.67, 129.24, 127.31, 118.46, 118.44, 33.23, 24.01; MS-EI (m/z) = 274; HRMS(EI): m/z calcd for C16H15ClO2: 274.0761; found: 274.0762.





V(hexane):V(EtOAc)=7:1 as the mobile phase; yellow solid, mp.  $53-55^{\circ}$ C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  11.62 (s, 1H, OH), 8.38 (d, 2H, J= 8.56Hz, Ph-H), 7.83 (d, 2H, J=8.56Hz, Ph-H), 7.04-7.47 (m, 3H, Ph-H), 2.83 (m, 1H, C<u>H(CH\_3)\_2)</u>, 1.17 (d, 2\*3H, J= 6.88Hz, CH(C<u>H\_3)\_2</u>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz,):  $\delta$  199.64, 161.80, 143.53, 139.68, 136.07, 130.24, 130.01, 123.78, 120.46, 118.85, 118.31, 33.32, 24.07; MS-EI (m/z) = 285; HRMS(EI): m/z calcd for C16H15NO4: 285.1001; found: 285.1000.





Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012



#### 3ac

V(hexane):V(EtOAc)=8:1 as the mobile phase; white solid, mp. 60-62°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  12.00 (s, 1H, OH), 6.85-7.63 (m, 8H, Ph-H), 3.86 (s, 3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz,):  $\delta$  201.55, 163.32, 159.62, 139.23, 136.53, 133.75, 129.48, 121.79, 119.21, 118.79, 118.50, 118.14,





3bc

V(hexane):V(EtOAc)=8:1 as the mobile phase; white solid, mp.  $60-62^{\circ}C$  [ $61-62^{\circ}C$ [7]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  12.05 (s, 1H, OH), 6.89-7.48 (m, 8H, Ph-H), 2.45 (s, 3H, CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  201.25, 163.21, 142.88, 136.24, 135.25, 133.66, 129.59, 128.00, 119.38, 118.68, 118.45, 21.75; MS-EI (m/z) = 212.





V(hexane):V(EtOAc)=7:1 as the mobile phase; white solid, mp. 74-75°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz):  $\delta$  11.86 (s, 1H, OH), 6.80-7.65 (m, 8H, Ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz,):  $\delta$  200.05, 163.39, 139.54, 138.00, 134.79, 133.40, 131.99, 129.80, 129.14, 127.32, 120.02, 119.00, 118.80; MS-EI (m/z) = 232. [8]



Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012



3gc

V(hexane):V(EtOAc)=7:1 as the mobile phase; white solid, mp. 90-93°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  11.77 (s, 1H, OH), 6.88-8.37 (m, 8H, Ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz,):  $\delta$ 199.70, 163.56, 149.60, 143.31, 137.48, 133.12, 130.00, 123.75, 120.54, 119.27, 118.95, 118.58; MS-EI (m/z) = 243. [9]



S23



V(hexane):V(EtOAc)=7:1 as the mobile phase; white solid, mp. 82-84°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  11.69 (s, 1H, OH), 8.39 (d, 2H, J=8.24 Hz, Ph-H), 7.80 (m, 3H, ph-H), 7.70 (m, 1H, ph-H), 6.90 (m, 1H, Ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz,):  $\delta$  198.54, 163.05, 149.85, 145.67, 142.50, 140.99, 130.01, 123.98, 121.39, 120.75, 80.06; MS-EI (m/z) = 369; HRMS(EI): m/z calcd for C13H8INO4: 368.9498; found: 368.9498.







6.8916 6.9135

7.2600 7083 7801 8071 8283

V(hexane):V(EtOAc)=12:1 as the mobile phase; white solid, mp. 132-134°C [130-131°C[10]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ 8.35 (d, 1H, J=7.76 Hz, ph-H), 7.71 (m, 2H, ph-H), 7.50-7.32 (m, 4H, ph-H), 3.92 (s, 3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz,): δ 177.27, 156.25, 156.11, 151.14, 134.74, 126.82, 125.09, 123.87, 122.24, 121.37, 119.57, 118.12, 105.91, 56.08; MS-EI (m/z) = 226.



Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012



V(hexane):V(EtOAc)=12:1 as the mobile phase; white solid, 100-103°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.36 (d, 1H, J=7.76 Hz, ph-H), 8.18 (m, 1H, ph-H), 7.35-7.73 (m, 5H, ph-H), 3.05 (m, 1H, -C<u>H</u>(CH<sub>3</sub>)<sub>2</sub>), 1.32 (d, 2\*3H, J = 6.8 Hz, CH(C<u>H<sub>3</sub></u>)<sub>2</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  177.59, 156.33, 154.74, 144.85, 134.78, 133.94, 126.90, 123.85, 123.59, 121.66, 121.37, 121.05, 111.08, 33.84, 24.13; MS-EI (m/z) = 238. [11]





V(hexane):V(EtOAc)=12:1 as the mobile phase; white solid, mp.172-174°C [175-176°C[12]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.33 (d, 2H, J=7.84 Hz, ph-H), 7.72 (m, 2H, ph-H), 7.48 (m, 2H, ph-H), 7.38 (m, 2H, ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  177.31, 156.26, 134.93, 126.83, 124.02, 121.93, 118.09; MS-EI (m/z) = 196.





V(hexane):V(EtOAc)=12:1 as the mobile phase; white solid, mp. 171-174°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.62 (s, 1H, ph-H), 8.30 (d, 1H, J=7.68 Hz, ph-H), 7.95 (d, 1H, J=8.56 Hz, Ph-H), 7.73 (m, 1H, Ph-H), 7.47 (d, 1H, J=8.24Hz, Ph-H), 7.38 (m, 1H, Ph-H), 7.25 (d, 1H, J=8.52Hz, Ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz):  $\delta$  175.88, 156.09, 155.70, 143.40, 135.61, 135.31, 126.95, 124.39, 123.61, 121.70, 120.28, 118.19, 87.32; MS-EI (m/z) = 322. [13]

## Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012



| 28 | 288 <b>48</b> 8888882 |
|----|-----------------------|
|    | 77 <b>7</b>           |



Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012



V(hexane):V(EtOAc)=15:1 as the mobile phase; white solid, mp. 172-173°C [172-173.5°C[14]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm):  $\delta$  8.30 (m, 2H, ph-H), 8.16 (d, 1H, J=8.64 Hz, ph-H), 7.73 (m, 1H, Ph-H), 7.60 (d, 1H, J=8.40 Hz, ph-H), 7.38 (m, 1H, ph-H), 7.13 (t, 1H, J=7.76Hz, Ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm):  $\delta$  176.83, 156.07, 155.11, 145.02, 135.34, 126.88, 125.00, 124.59, 124.02, 123.00, 121.12, 118.36.; MS-EI (m/z) = 322.







V(hexane):V(EtOAc)=15:1 as the mobile phase; white solid, mp.175-177°C [176°C[15]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm):  $\delta$  8.40 (d, 1H, J=1.76 Hz, ph-H), 8.29 (d, 1H, J=10.76 Hz, ph-H), 7.70-7.77 (m, 2H, ph-H), 7.46 (d, 1H, J=8.40 Hz, ph-H), 7.37 (m, 2H, ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm):  $\delta$  176.06, 156.09, 154.98, 137.77, 135.30, 129.31, 126.89, 124.39, 123.12, 121.54, 120.08, 118.15, 117.14; MS-EI (m/z) = 274.





V(hexane):V(EtOAc)=15:1 as the mobile phase; white solid, mp.  $169-171^{\circ}C$  [174-175 $^{\circ}C$ [16]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm):  $\delta$  8.30 (m, 2H, ph-H), 7.74 (t, 1H, J=9.56Hz, ph-H), 7.65 (d, 1H, J=10.8Hz, ph-H), 7.37-7.50 (m, 3H, ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm): 177.10, 155.92, 136.68, 134.50, 129.72, 128.28, 127.06, 126.75, 124.62, 124.20, 123.07, 121.68, 118.21; MS-EI (m/z) = 230.





Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012



V(hexane):V(EtOAc)=13:1 as the mobile phase; white solid, mp. 131-134°C [135-136°C[17]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz, ppm): δ 8.28 (d, 1H, J=9.06Hz, ph-H), 8.21 (d, 1H, J=8.01Hz, ph-H), 7.74 (t, 2H, J=8.01Hz, ph-H), 7.56 (d, 1H, J=8.40Hz, ph-H), 7.39 (t, 1H,J=7.62Hz, ph-H), 7.30 (m, 1H, ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz, ppm): 176.58, 155.91, 151.87, 135.31, 135.07, 126.82, 125.44, 124.64, 123.95, 123.23, 122.94, 121.51, 118.35. MS-EI (m/z) = 230.





V(hexane):V(EtOAc)=15:1 as the mobile phase; white solid, mp.  $163-165^{\circ}C$ ; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm):  $\delta$  8.33 (m, 2H, ph-H), 7.72 (t, 1H, J=7.00Hz, ph-H), 7.46 (d, 1H, J=8.4Hz, ph-H), 7.38 (t, 1H, J= 7.68Hz, ph-H), 7.07-7.16 (m, 2H, ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm): 176.15, 167.75, 165.20 (d, J<sub>C-F</sub>=255Hz), 157.41, 157.27 (d, J<sub>C-F</sub>=17Hz), 156.24, 134.89, 129.43, 129.32 (d, J<sub>C-F</sub>=11Hz), 126.75, 124.30, 121.67, 118.75, 117.84, 112.86, 112.63 (d, J<sub>C-F</sub>=23Hz), 104.70, 104.45 (d, J<sub>C-F</sub>=25Hz); MS-EI (m/z) = 214. [18]



Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012



V(hexane):V(EtOAc)=13:1 as the mobile phase; white solid, mp. 148-150°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm):  $\delta$  8.32 (d, 1H, J=7.92 Hz, ph-H), 7.96 (m, 1H, ph-H), 7.73 (m, 1H, ph-H), 7.37-7.51 (m, 4H, ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm):  $\delta$  176.73, 176.67 (d, J<sub>C-F</sub>=6Hz), 160.05, 157.61 (d, J<sub>C-F</sub>=244Hz), 156.25, 152.50, 152.48 (d, J<sub>C-F</sub>=2Hz), 135.24, 126.82, 124.28, 123.21, 122.96 d, J<sub>C-F</sub>=25Hz), 121.13, 120.17, 120.09 (d, J<sub>C-F</sub>=8Hz), 118.13, 111.64, 111.44 (d, J<sub>C-F</sub>=2OHz); MS-EI (m/z) = 214. [19]



7,7,3736 7,4412 7,4412 7,4412 7,4412 7,4412 7,4411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 7,74411 8,3303



Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012



V(hexane):V(EtOAc)=15:1 as the mobile phase; white solid, mp. 130-132°C [131-132°C[20]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz, ppm): δ 8.33 (t, 2H, J=6.57 Hz, ph-H), 7.64-7.75 (m, 4H, ph-H), 7.33-7.547 (m, 6H, ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz, ppm): δ 177.35, 156.00, 152.98, 136.38, 135.88, 134.81, 131.46, 129.72, 128.46, 127.97, 126.67, 126.67, 124.06, 123.89, 122.31, 121.56, 118.19; MS-EI (m/z) = 272.





V(hexane):V(EtOAc)=10:1 as the mobile phase; white solid, mp. 156-158°C [159-160°C[12]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm): δ 8.70 (d, 1H, J=7.40 Hz, ph-H), 8.42 (d, 1H, J=7.92Hz, ph-H), 8.29 (d, 1H, J=8.76Hz, ph-H), 7.95 (d, 1H, J=8.64Hz, ph-H), 7.70-7.81 (m, 5H, ph-H), 7.46 (t, 1H, J=7.44Hz, ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm): δ 177.15, 155.97, 155.26, 153.83, 136.72, 134.55, 129.70, 128.30, 127.10, 126.76, 124.60, 124.21, 123.11, 122.60, 121.67, 118.22, 117.79; MS-EI (m/z) = 246.





V(hexane):V(EtOAc)=14:1 as the mobile phase; white solid, mp.155-157°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz, ppm):  $\delta$  8.30 (m, 1H, ph-H), 8.18 (d, 1H, J=2.1Hz, ph-H), 7.76 (m, 2H, ph-H), 7.58 (m, 1H, ph-H), 7.46 (t, 1H, J=7.44Hz, ph-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz, ppm):  $\delta$  175.63, 155.85, 150.56, 135.69, 134.83, 129.46, 126.95, 125.01, 124.91, 124.19, 123.60, 121.23, 118.44; MS-EI (m/z) = 264. [19]







V(hexane):V(EtOAc)=10:1 as the mobile phase; white solid, mp. 152-154°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm):  $\delta$  8.20 (d, 1H, J=7.92Hz, ph-H), 8.00 (s, 1H, ph-H), 7.76 (t, 1H, J=7.84Hz, ph-H), 7.41 (d, 1H, J=8.44Hz, ph-H), 7.32 (t, 1H, J=7.04Hz, ph-H), 7.18 (s, 1H, ph-H), 2.34 (s, 3H, CH<sub>3</sub>), 2.31 (s, 3H, CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm):  $\delta$  177.02, 156.17, 154.68, 145.53, 134.41, 133.08, 126.69, 126.28, 123.65, 121.94, 119.67, 118.18, 117.97, 20.64, 19.27; MS-EI (m/z) = 224. [21]





V(hexane):V(EtOAc)=10:1 as the mobile phase; white solid, mp. 159-161°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm):  $\delta$  8.31 (d, 1H, J=7.96Hz, ph-H), 7.93 (s, 1H, ph-H), 7.68 (t, 1H, J=8.76Hz, ph-H), 7.48 (d, 1H, J=8.40Hz, ph-H), 7.34 (m, 2H, ph-H), 2.49 (s, 3H, CH<sub>3</sub>), 2.40 (s, 3H, CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm):  $\delta$  177.70, 156.12, 152.85, 137.17, 134.57, 133.14, 127.02, 126.74, 123.73, 123.66, 121.66, 121.37, 118.11, 20.90, 15.83; MS-EI (m/z) = 224. [19]





V(hexane):V(EtOAc)=10:1 as the mobile phase; white solid, mp. 125-126°C [124-126°C[22]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz, ppm):  $\delta$  8.26 (d, 1H, J=9.15Hz, ph-H), 7.63 (t, 1H, J=7.14Hz, ph-H), 7.36 (d, 1H, J=8.34Hz, ph-H), 7.30 (t, 1H, J=7.80Hz, ph-H), 7.11 (s, 1H, ph-H), 2.89 (s, 3H, CH<sub>3</sub>), 2.39 (s, 3H, CH<sub>3</sub>), 2.24 (s, 3H, CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz, ppm):  $\delta$  179.14, 155.71, 155.14, 144.31, 139.52, 133.92, 132.07, 126.96, 123.41, 118.51, 118.18, 117.32, 116.43, 22.01, 17.97, 15.40; MS-EI (m/z) = 238.







.OMe MeO 4q

V(hexane):V(EtOAc)=15:1 as the mobile phase; white solid, mp. 165-167°C [174-176°C[23]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm):  $\delta$  7.55 (s, 2×1H, ph-H), 7.27 (d, 2×1H, J = 9.1 Hz, ph-H), 7.17 (d, 2×1H, 9.2 Hz), 3.80 (s, 2×3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm):  $\delta$  177.11, 156.07, 151.19, 125.07, 121.68, 119.64, 105.78, 56.18; MS-EI (m/z) = 256.



S47



V(hexane):V(EtOAc)=14:1 as the mobile phase; white solid, mp. 102-104°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm):  $\delta$  8.18 (s, 1H, ph-H), 7.71 (s, 1H, ph-H), 7.60 (d, 1H, J= 8.56 Hz, ph-H), 7.43 (d, 2H, J = 8.64 Hz ph-H), 7.32 (d, 1H, J=9.12Hz, ph-H), 3.92 (s, 3H, OCH<sub>3</sub>), 3.06 (m, 1H, C<u>H</u>(CH<sub>3</sub>)<sub>2</sub>), 1.32 (d, 2×3H, J=6.36 Hz, CH(C<u>H<sub>3</sub>)<sub>2</sub></u>; <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm):  $\delta$  177.42, 154.97, 154.69, 151.16, 144.63, 133.73, 124.92, 123.47, 122.18, 121.04, 119.51, 117.98, 105.92, 56.08, 33.85, 24.15; MS-EI (m/z) = 268. HRMS(EI): m/z calcd for C17H16O3: 268.1099; found: 268.1090





V(hexane):V(EtOAc)=12:1 as the mobile phase; white solid, mp. 130-133°C [130-133°C[24]]; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm):  $\delta$  8.29 (d, 1H, J=2.36Hz, ph-H), 7.66 (m, 2H, ph-H), 7.43 (m, 2H, ph-H), 7.34 (m, 1H, ph-H), 3.66 (s, 3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm):  $\delta$  176.15, 156.34, 154.54, 151.01, 134.84, 129.62, 126.06, 125.50, 122.16, 121.87, 119.87, 119.61, 105.84, 56.09; MS-EI (m/z) = 260.

## Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012



Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012

MeO

4t

V(hexane):V(EtOAc)=15:1 as the mobile phase; white solid, mp. 176-179°C; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, ppm):  $\delta$  8.20 (d, 1H, J=2.40Hz, ph-H), 7.75 (d, 2H, J=2.44Hz, ph-H), 7.64 (d, 1H, J=3.00Hz, ph-H), 7.54 (m, 1H, ph-H), 7.37 (m, 1H, ph-H), 3.45 (s, 3H, OCH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz, ppm):  $\delta$  175.57, 156.76, 150.72, 150.46, 134.61, 129.22, 125.84, 124.85, 124.16, 122.97, 121.60, 119.91, 105.85, 56.13; MS-EI (m/z) = 294; HRMS(EI): m/z calcd for C14H8Cl2O3: 293.9850; found: 293.9841





#### **References:**

- 1. H. Sharghi, F. Tamaddon, *Tetrahedron*, **1996**, *52*, 13623.
- 2. W. B. Motherwell, S. Vazquez, Tetrahedron Lett., 2000, 41, 9667.
- 3. M. T. Bogert, H. P. Howells, J. Am. Chem. Soc., 1930, 52, 837.
- 4. V. V. Percec, J. Bae, M. Zhao, D. H. Hill, J. Org. Chem., 1995, 60, 1066.
- 5. D. Avnir, P. De Mayo, I. Ono, Chem. Commun., 1978, 1109.
- 6. F. Weng, C. Wang, B. Xu, Tetrahedron Lett., 2010, 51, 2593.
- 7. D. F. DeTar, D. I. Relyea, J. Am. Chem. Soc., 1954, 76, 1680.
- 8. G. A. Olah, M. Arvanaghi, V. V. Krishnamurthy, J. Org. Chem., 1983, 48, 3359.
- 9. T. B. Nguyen, H. Bousserouel, Q. Wang, F. Gueritte, Adv. Synth. Catal., 2011, 353, 257.
- 10. G. E. Bonvicino, H. G. Arlt, K. M. Pearson, R. A Hardy, J. Org. Chem., 1961, 26, 2383.
- 11. C. Zhou, R.C. Larock, J. Org. Chem., 2006, 71, 3551.
- 12. J. Li, C. Jin, W. Su, Heterocycles, 2011, 83, 855.
- 13. F. G. Mann, J. H. Turnbull, J. Chem. Soc., 1951, 747.
- 14. M. R. Odrowaz-Sypniewski, P. G. Tsoungas, G. Varvounis, P. Cordopatis, *Tetrahedron Lett.*, **2009**, *50*, 5981.
- 15. Y. Gardikis, P. G. Tsoungas, C. Potamitis, M. Zervou, P. Cordopatis, *Heterocycles*, **2011**, *83*, 1077.
- 16. K. Okuma, A. Nojima, N. Matsunaga, K. Shioji, Org. Lett., 2009, 11, 169.
- 17. J. F. Bunnet, T. Kato, R. R. Flynn, J. Org. Chem., 1963, 28, 1.
- 18. N. A. Starkowsky, N. Badran, J. Org. Chem., 1958, 23, 1818.
- 19. P. Wang, H. Rao, R. Hua, C. Li, Org. Lett., 2012, 14, 902.
- 20. A. T. Troshchenko, Zhurnal Obshchei Khimii, 1957, 27, 967.
- 21. J. Zhao, R. C. Larock, Org. Lett., 2005, 7, 4273.
- 22. G. Mross, H. Reinke, C. Fischer, P. Langer, Tetrahedron, 2009, 65, 3910.
- 23. N. M. A. Mahfouz, H. Hambloch, N. M. Omar, A. W. Frahm, *Archiv der Pharmazie*, **1990**, *323*, 163.
- 24. M. M. Johnson, J. M. Naidoo, M. A. Fernandes, E. M. Mmutlane, W. A. van Otterlo, C. B. de Koning, *J. Org. Chem.*, **2010**, *75*, 8701.