Electronic Supplementary Information

Complexation between triptycene-based macrotricyclic host and π -extended viologens: formation of supramolecular poly[3]pseudorotaxanes

Ying Han,^{*a,b*} Ya-Kun Gu,^{*a,b*} Jun-Feng Xiang^{*a*} and Chuan-Feng Chen^{*a*,*}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^bGraduate University of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: cchen@iccas.ac.cn

Contents

1. Synthetic procedure for π -extended viologens 2 and 3S	\$2
2. ¹ H NMR and ¹³ C NMR spectra of π -extended viologens 2 and 3	54
3. ¹ H NMR spectroscopic titrations of complexesS	6
4. Determination of the association constantsS	7
5. ESI-MS spectra of poly[3]pseudorotaxanesS1	.0
6. Crystal structures and data of poly[3]pseudorotaxanesS1	1

1. Synthetic procedure for π -extended viologens 2 and 3

Melting points, taken on an electrothermal melting point apparatus, are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a DMX300 NMR. MALDI-TOF mass spectra were obtained on a BIFLEXIII mass spectrometer. Materials obtained commercially were used without further purification. Compounds **2** and **3** were prepared according to the same method as literature procedure.^{S1}

Scheme 1. Synthesis of compound 2.

Synthesis of π -extended viologen 2. A mixture of (*E*)-1,2-di(pyridin-4-yl)ethene (0.45 g, 2.5 mmol) and 3-bromopropan-1-ol (1.04 g, 7.5 mmol) in CH₃CN (150 mL) was refluxed for 48 h. The resulting mixture was concentrated under reduced pressure, and yellow oil was obtained, which was dissolved in acetone and treated with NH₄PF₆, the solution was stirred at ambient temperature until clear. Then acetone was removed, the solid precipitate was collected by filtration, washed with water, and dried under vacuum to yield 32.3% of compound 2 as a white solid. Mp: 257-259 °C. ¹H NMR (300 MHz, CD₃CN): δ 2.16-2.20 (m, 4H), 3.57 (t, *J* = 5.4 Hz, 4H), 4.64 (t, *J* = 6.9 Hz, 4H), 7.84 (s, 2H), 8.17 (d, *J* = 6.8, 4H), 8.73 (d, *J* = 6.8 Hz, 4H). ¹³C NMR (75 MHz, CD₃CN): δ 32.5, 57.1, 58.7, 125.5, 133.5, 144.8, 150.8. ESI-MS: *m*/*z* 150.2 [M-2PF₆⁻]²⁺. Anal. Calcd for C₁₈H₂₄F₁₂N₂O₂P₂·0.5H₂O: C, 36.07; H, 4.20; N, 4.67. Found: C, 36.37; H, 4.34; N, 4.77.

Scheme 2. Synthesis of compound 3.

Synthesis of π -extended viologen 3. A mixture of 4^{S2} (0.284 g, 1.2 mmol) and 3-bromopropan-1-ol (1.69 g, 12.2 mmol) in DMF (30 mL) was refluxed for 48 h. The resulting mixture was concentrated under reduced pressure, and yellow oil was washed with CH₃CN, the crude product was dissolved in acetone and treated with NH₄PF₆, the solution was stirred at ambient temperature until clear. Then acetone was removed, the solid precipitate was collected by filtration, washed with water, and dried under vacuum to yield 53.4% of compound 3 as a white solid. Mp: 252-254 °C. ¹H NMR (300 MHz, CD₃CN): δ 2.15-2.20 (m, 4H), 3.59 (t, *J* = 5.4 Hz, 4H), 4.67 (t, *J* = 7.2 Hz, 4H), 8.14 (s, 2H), 8.33 (d, *J* = 7.0, 4H), 8.79 (d, *J* = 7.0 Hz, 4H). ¹³C NMR (75 MHz, CD₃CN): δ 32.6, 57.2, 58.5, 125.2, 129.0, 136.8, 144.6, 154.6. ESI-MS: *m*/z 175.2 [M-2PF₆⁻]²⁺. Anal. Calcd for C₂₂H₂₆F₁₂N₂O₂P₂·0.25NH₄PF₆: C, 38.79; H, 4.00; N, 4.63. Found: C, 38.60; H, 3.89; N, 4.36.

2. ¹H NMR and ¹³C NMR spectra of π -extended viologens 2 and 3

Fig. S5 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3 = 1:1$, 298 K) of (a) free 1, (b) 1 and 1.0 equiv of 3, and (c) free 3. $[1]_0 = 3.0$ mM.

4. Determination of the association constants

Fig. S6 Mole ratio plot for the complexation of 1 and 2 in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S7 Determination of Δ_0 of H₁ for the complexation of 1 and 2 in CD₃CN/ CDCl₃ = 1:1 at 298 K.

Fig. S8 Scatchard plot for the complexation of **1** and **2** in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S9 Mole ratio plot for the complexation of 1 and 3 in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S10 Determination of Δ_0 of H₁ for the complexation of 1 and 3 in CD₃CN/ CDCl₃ = 1:1 at 298 K.

Fig. S11 Scatchard plot for the complexation of 1 and 3 in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

5. ESI-MS spectra of poly[3]pseudorotaxanes

Fig. S12 MOLDI-TOF MS spectrum of poly[3] pseudorotaxane $(1\cdot 2)_n$.

Fig. S13 MOLDI-TOF MS spectrum of poly[3] pseudorotaxane $(1\cdot 3)_n$.

6. Crystal structures and data of poly[3]pseudorotaxanes

Fig. S14 (a) Packing of supramolecular poly[3]pseudorotaxane $(1\cdot 2)_n$. (b) Single crystal of complex $1\cdot 2$. PF₆⁻ counterions, and hydrogen atoms are omitted for clarity.

Because of the lack of heavy atoms in the complex and the presence of disordered PF_6^- , crown ether chains and solvent molecules, we need to restrain the bond length of O3–C27, O3'–C27', C27–C28, C27'–C28 by DFIX, and restrain the Uiso of O3, C27, O3' and C27' by SIMU and ISOR.

Identification code	a
Empirical formula	$C_{94}H_{116}F_{12}N_2O_{22}P_2$
Formula weight	1915.83
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 13.650(3) Å alpha = 82.751(12)°
	b = 18.189(4) Å beta = 72.674(7)°
	$c = 19.264(4)$ Å gamma = $80.096(10)^{\circ}$
Volume	4483.5(15) $Å^3$
Z, Calculated density	2, 1.419 Mg/m ³
Absorption coefficient	0.149 mm ⁻¹
F(000)	2016

Table S1. Crystal data for complex 1.2

Crystal size	0.46 x 0.29 x 0.18 mm
Theta range for data collection	1.11 to 25.00°
Limiting indices	-15<=h<=16, -21<=k<=21, -22<=l<=22
Reflections collected / unique	33579/15710 [R(int) = 0.0541]
Completeness to theta $= 25.00$	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.7929
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	15710/42/1212
Goodness-of-fit on F ²	1.140
Final R indices [I>2sigma(I)]	$R_1 = 0.1189, wR_2 = 0.2636$
R indices (all data)	$R_1 = 0.1529, wR_2 = 0.2869$
Largest diff. peak and hole	1.000 and -0.671 e.Å ⁻³

Fig. S15 Top view (a) and side view (b) of the crystal structure of complex 1.3. (c) Packing of the supramolecular poly[3]pseudorotaxane $(1\cdot3)_n$. PF₆⁻ counterions, and hydrogen atoms are omitted for clarity.

Table S2. Crystal data for complex 1.3

Identification code	a
Empirical formula	$C_{98}H_{118}F_{12}N_2O_{22}P_2$
Formula weight	1965.88
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 12.768(3) Å alpha = 72.17(3)°
	b = 13.623(3) Å beta = 88.99(3)°
	$c = 14.010(3)$ Å gamma = $83.52(3)^{\circ}$
Volume	2304.6(8) Å ³
Z, Calculated density	1, 1.416 Mg/m ³
Absorption coefficient	0.147 mm ⁻¹
F(000)	1034
Crystal size	0.45 x 0.35 x 0.13 mm
Theta range for data collection	1.53 to 27.49°
Limiting indices	-15<=h<=15, -16<=k<=16, -16<=l<=16
Reflections collected / unique	17391/8092 [R(int) = 0.0489]
Completeness to theta $= 25.00$	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0. 6796
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8092/262/719
Goodness-of-fit on F ²	1.116
Final R indices [I>2sigma(I)]	$R_1 = 0.0969, wR_2 = 0.2247$
R indices (all data)	$R_1 = 0.1116, wR_2 = 0.2374$
Largest diff. peak and hole	0.653 and -0.474 e.Å ⁻³

References

- S1. J.-M. Zhao, Q.-S. Zong, T. Han, J.-F. Xiang and C.-F. Chen, J. Org. Chem., 2008, 73, 6800.
- S2. K. Biradha, Y. Hongo and M. Fujita, Angew. Chem. Int. Ed., 2000, 39, 3843.