Supporting Information for

Hydrophobic Core/Hydrophilic Shell-Structured Catalysts: A General Strategy for

Improving the Reaction Rate in Water

Hengquan Yang,* Xuan Jiao, and Shuru Li

Experiment, Tables and Figures	Page
Experimental section	S2-4
Table S1 The results for elemental analysis of the Pd-supported catalysts	S5
Table S2 The results of surface elemental compositions of the Pd-supported catalysts determined by XPS	S6
Table S3 The results of surface elemental compositions of the Pt-supported catalysts determined by XPS	S7
Table S4 The results of hydrogenations over Pd/M@MN and Pd/C	S8
Table S5 The recycling results of hydrogenations of cinnamyl alcohol over Pd/MF@MN	S9
Table S6 The results of the elemental analysis of the reused Pd/MF@MN	S10
Table S7 The results of the aqueous-phase hydrogenations over different Pt catalysts	S11
Fig. S1 The XRD patterns of the synthesized samples	S12
Fig.S2 The ²⁹ Si MAS NMR spectrum of MF@MN	S13
Fig. S3 The ¹³ C CP MAS NMR spectra of of the synthesized samples	S14
Fig. S4 The FT-IR specta of the synthesized samples	S15
Fig. S5 TG curves of the Pd-supported catalysts containing templates and without templates	S16
Fig. S6 The wide angle XRD patterns of the Pd-supported catalysts	S17
Fig.S7 XPS sepectra of the Pd-supported catalysts	S18
Fig. S8 XPS sepectra of the Pt-supported catalysts	S19
Fig.S9 The reaction kinetics of hydrogenation of 4- <i>tert</i> -butoxystyrene over Pd/MFx@MN in water	S20
Fig.S10 N ₂ sorption isotherm of Pd/MF@MN used 5 times	S21

1. Chemicals

Tetramethyl orthosilicate (TMOS), (MeO) $_3$ SiCH $_2$ CH $_2$ CH $_2$ NH $_2$ (APTS), cetyltrimethylammonium chloride (CTAC), most of olefins and nitroarene were purchased from Aladdin Company. (MeO) $_3$ Si(CH $_2$) $_2$ CF $_3$ (TFPS) was obtained from Zhejiang Chem-tech Group CO. Ltd. Pd(OAc) $_2$ was purchased from Shanghai Boka Company (China). H $_2$ PtCl $_6$ was obtained from Tianjin Chemical Reagent Research Institute (China).

2. Material synthesis

Hydrophobic core/hydrophilic shell-structured mesoporous silica nanospheres were synthesized according to the delayed condensation strategy (Ref. 7). The total amount of siliceous precursor was kept at 10.10 mmol. Take **MF@MN** for example, a mixture of tetrame–thyl orthosilicate (TMOS, 42.5 mol%) and 3,3,3–trifluoropropyltrimethoxysilane (7.5 mol%) was added into a cetyltrimethylammonium chloride solution containing 400 mL of deionized water, 505 mL of methanol and 2.5 mL of NaOH (1mol/L) under stirring. After stirring for 2 h, the other mixture of TMOS (47.5 mol%) and 3–aminopropyltrimethoxysilane (2.5 mol%) was added into above system. After further stirring for 12 h and aging overnight, the precipitation was isolated and washed with water. After being dry, the powder was extracted with hot ethanol (12 h, repeated three times), leading to fluoro–functionalized core/mesoporous amine–functionalized shell-structured silica nanospheres (denoted as MF@MN).

For MN@MF. The silica precursors wered added through two steps. A mixture of 0.7315g of TMOS (47.5mol%) and 0.0453 g of APTS (2.5 mol%) was added to above CTAC solution for constructing the core. After stirring for 2 h, a mixture of 0.6545 g of TMOS (42.5 mol%) and 0.1654 g of TFPS (7.5 mol%) was added for constructing the shell. After further stirring for 12 h and then aging overnight, the precipitation was isolated, washed with water and dried under air. Afterward, the solid powder was extracted with hot ethanol (12 h, repeated 3 times), and dried under vaccum.

For **MF/MN**. MF/MN was synthesized through one-step of condensation instead of the delayed condusation. A mixture of 1.3860 g of TMOS (90 mol%), 0.0453 g of APTS (2.5 mol%) and 0.1654 g of TFPS (7.5 mol%) was added into above CTAC solution. After further stirring for 12 h and then aging overnight, the precipitation was isolated, washed with water and dried under air. Afterward, the solid powder was extracted with hot ethanol (12 h, repeated 3 times), and then dried under vaccum.

For **MN.** MN was synthesized through one-step of condensation instead of the delayed condusation. A mixture of 1.5015 g of TMOS (97.5mol%) and 0.0453 g of APTS (2.5 mol%) was added into above CTAC solution. After stirring for 12 h and then aging overnight, the precipitation was isolated, washed with water and dried under air. Afterward, the solid powder was extracted with hot ethanol (12 h, repeated 3 times), and then dried under vaccum.

For M@MN. The silica precursors wered added through two steps. In the first step, 0.7700 g of TMOS (50 mol%) was added dropwise to above CTAC solution for the formation of the core. After stirring for 2 h, the other mixture of 0. 7315 g of TMOS (47.5 mol%) and 0.0453 g of APTS (2.5 mol%) was added for constructing the shell. The hydrolysis and condensation proceed for 12 h under stirring. After aging overnight, the precipitation was isolated and washed with

water. Afterward, the solid powder was extracted with hot ethanol (12 h, repeated 3 times), and then was dry under vaccum.

For MF2.5@MN and MF12.5@MN. The synthesis precedures are similar to MF@MN. A mixture of tetramethyl orthosilicate (47.5mol%) 37.5mol%) or and 3,3,3-trifluoropropyltrimethoxysilane (2.5)mol% 12.5%) added or was into а cetyltrimethylammonium chloride solution containing 400 mL of deionized water, 505 mL of methanol and 2.5 mL of NaOH (1M) under stirring. After stirring for 2 h, the other mixture of TMOS (47.5 mol%) and 3-aminopropyltrimethoxysilane (2.5 mol%) was added into above system. After further stirring for 12 h and aging overnight, the precipitation was isolated and washed with water. After being dry, the powder was extracted with hot ethanol (12 h, repeated three times). The obtained materials were maned as MF2.5@MN and MF12.5@MN, respectively.

Loading Pd. 0.3 g of MF@MN was added to a toluene solu-tion containing 0.0108 g of $Pd(OAc)_2$. After stirring for 4 h, the toluene was removed. The Pd-adsorbed solid was reduced with NaBH₄ in a mixture of toluene and ethanol (V/V=20/1). After being washed with ethanol and being dry, the catalyst with a Pd loading of 1.70 wt% was obtained (denoted as Pd/MF@MN). The Uv-vis spectroscopy measurement of the Pd(OAc)₂ concentration in solution before and after adsorption revealed that Pd(OAc)₂ was completely adsorbed by the solid materials. ICP-AES analysis of the metal-supported catalysts also disclosed that the used Pd(OAc)₂ was fully loaded on the supports.

Loading Pt. 0.3 g of MF@MN was added to 9 mL of H_2PtCl_6 aqueous solution. Other procedures are the same as the Pd catalysts.

Recyling test. A typical hydrogenation was set up. At the end of reaction, the product was extracted with ether and then analyzed with GC. The catalyst was recovred through centrifugation and repeatedly washed with ether. After being dry under vacumm, the solid catalyst was weighted again (It was found the weight of the solid catalyst decreased during the recovery to some extent. To obtain the reused catalyst, the other set of reaction was simultaneously carried out to provide the resued catalyst each reaction cycle). In the next reaction cycle, the amounts of substrate, catalyst and solvent, and reaction conditions were all kept constant (as the same as the first reaction).

3. Characterization

The small-angle X-ray powder diffraction analysis was performed on Rigaku D/max rA X-Ray diffractometer (at 40 kV and 30 mA with CuK α radiation). N₂ physical adsorption was measured by using an ASAP2020 volumetric adsorption analyzer. Before measuring, all samples were outgassed at 120 °C under vacuum for 6 h. Surface area was calculated from the adsorption branch in the relative pressure range of 0.05–0.15 using Brunauer-Emmett-Teller (BET) equation. Pore diameters were determined from the adsorption branch of the isotherm using BJH method. The total pore volume was calculated at a relative pressure of P/P_o>0.99. FT-IR spectra were performed on Thermo-Nicolet-Nexus 470 infrared spectrometer. Transmission electron microscope (TEM) images were obtained on a JEM-2000EX (operated at 200 kV). 300 MHz spectrometer: for ¹³C CP-MAS NMR experiments, 75.4 MHz resonant frequency, 4 kHz spin rate,

4 s pulse delay. 1.0 ms contact time, hexamethyl benzene as a reference compound; for ¹³Si MAS NMR experiments, 79.6 MHz resonant frequency, 4 kHz spin rate, 4.0 s pulse delay, TMS as a reference compound. Thermal gravimetric analysis (TG) was performed with a NETZSCH TG analyzer (Germany) under nitrogen atmosphere from room temperature to 900 °C with a heating rate of 20 °C/min. Pd content was analyzed with an inductively coupled plasma-atomic emission spectrometry (ICP-AES, AtomScan16, TJA Co.). C and N content analysis was conducted on Vario EL (Elementar). Metal content analysis was carried out on an inductively coupled plasma-atomic emission spectrometry (ICPAES, AtomScan16, TJA Co.).X-ray photoelectron spectra (XPS) were recorded on a Kratos Axis Ultra DLD, and the C1S line at 284.8 eV was used as a reference. GC analysis was conducted on Agilent 7890A.

Samples	N (wt%)		C (wt)%	
	Found	Cacul.	Found	Cacul.
Pd/MN	0.96	0.56	17.47	1.94
Pd/M@MN	1.04	0.56	18.10	1.94
Pd/MF/MN	0.97	0.49	18.55	6.83
Pd/MF@MN	0.92	0.49	17.74	6.83
Pd/MN@MF	0.98	0.49	17.88	6.83

Table S1. The results for elemental analysis of the Pd-supported catalysts

Notes: Due to the template molecules residing in the mesopores, the specific surface areas and pore voumes of these composites detemined by N₂ soprtion are as low as 30-40 m²/g. It should be noted that N₂ sorption analysis is conducted at -196 °C. Template molecules are so rigid (frozen) that N₂ may not access the unique interior of template-containing mesopores under the measuring conditions. It should be also noted that the pore volume of the template-free mesoporous materials is *ca.* 0.6~0.80 g/cm³, determined by N₂ sorption. Assuming that the template molecules inside mesopores stack closely like them in solid state (without void), the whole weight contributed by templates would reach as high as ca.40~50 wt% (considering the density of template in solid state is 0.97 g/cm³). However, in fact, elemental analysis indicates that the weight contributed by the template is only 18-20 wt%. These differences suggest that there must be some void spaces in the template-containing mesopores, which cannot be determined by N₂ sorption. In spite of containing template molecules, the pores still exhibits good adsorption of organic coumpounds.^{7b-e}

In our experiments, it was found that the template-containing mesopores owned high adsorption capacity toward $Pd(OAc)_2$ and H_2PtCl_6 , and the added $Pd(OAc)_2$ and H_2PtCl_6 were completely adsorbed by template-containing mesoporous materials.

Moreover, the presence of templates in the mesopore is proven to be helpful to stabilize metal nanoparticles.^{7a} We also found that although the extration with NH₄NO₃ ethanol or aqueous NaCl methanol solution could remove most of the templates, the activity of the solid catalyst considerably decreased. It is possible that the NH₄NO₃, NaCl affect the the metal dispersion or surface properties of metal nanoparticles.

Molar ratios	Pd/MN	Pd/MF/MN	Pd/MF@MN	Pd/MN@MF
F/Si (%)		36	29	42
Pd/Si (%)	1.86	1.60	1.66	1.43
N/Si (%)	6.37	5.85	5.95	5.77

Table S2. The results of surface elemental compositions of the Pd-supported catalysts determined by XPS

Molar ratios	Pt/MN	Pt/MF/MN	Pt/MF@MN	Pt/MN@MF
F/Si (%)	-	18.8	17.1	20.4
Pt/Si (%)	1.70	1.51	1.53	1.30
N/Si (%)	4.95	4.27	5.63	3.61

Table S3. The results of surface elemental compositions of the Pt-supported catalysts determined by XPS

Entry	Substrate	Product	Conv.(%) over Pd/M@MN	Conv.(%) ^f over Pd/C
1 <i>ª</i>	<pre></pre>	<pre></pre>	61	37
2^b	он Х	он С	26	37
3 ^{<i>c</i>}	OCH ₃	OCH ₃	67	39
4^d	Cl OH	OH	72	60
5 ^e	Cl Cl	OH	73	59

\mathbf{I}

^{*a*} 2 mmol of substrate, 0.1 mol% Pd (with respect to substrate), 4.5 mL of water, 25 °C, 0.15 MPa of H₂, 1.5 h. ^{*b*} 1 mmol of substrate, 0.2 mol% Pd, 2 mL of water, 40 °C, ambient H₂ pressures, 1.5 h. ^{*c*} 1 mmol of substrate, 0.2 mol% Pd, 4.5 mL of water, 50 °C, 0.3 MPa of H₂, 1 h. ^{*d*} 1.6 mm of substrate, 0.1 mol% Pd, 4.5 ml of water, 50 °C, 0.3 MPa of H₂, 1 h. ^{*e*} 1 mmol substrate, 0.2 mol% Pd, 10 mL of water 50 °C, 0.3 MPa of H₂, 1 h. ^{*f*} The results were obtained over Pd/C (1 wt% Pd, Sigma), and the reaction conditions were the same as theose for other catalysts.

Reaction cycles	Run1	Run 2	Run3	Run4	Run5
Conv. ^{<i>b</i>} (%)	84	79	83	85	74

Table S5. The recycling results of hydrogenations of cinnamyl alcohol over Pd/MF@ MN^a

^a1 mmol of substrate, 0.2 mol% Pd, 2 mL of water, 40 °C, ambient H₂ pressures, 1.5 h. ^bdetermined by GC.

D4/ME@MN	fresh catalyst		After being	g used twice	After being used five times	
Pu/MF@MIN	N (wt%)	C (wt)%	N (wt%)	C (wt)%	N (wt%)	C (wt)%
Weight %	0.92	17.74	0.69	11.63	0.68	9.8

Table S6. The results of the elemental analysis of the reused Pd/MF@MN

Entry	substrates	product	Conversions over different Pt catalyst(%)				
	substrates	product	Pt/MN	Pt/M@MN	Pt/MN/MF	Pt/MF@MNN	Pt/MN@MF
1 ^{<i>a</i>}		OH OH	38	49	64	87	73
2^b	NO ₂	NH ₂	29	73	67	94	25
3 ^c	NO ₂ CH ₃	NO ₂ CH ₃	41	45	56	78	49
4^d	CH ₃	NH2 CH3	43	48	58	99	43

Table S7.	The results	of the aqu	ieous-phase	hydrogenation	s over different	Pt catalys	sts

 $\overline{}^{a}$ 1.5 mmol of substrate, 0.1 mol% Pt (with respect to substrate), 4.5 mL of water, 40 °C, 0.3 MPa of H₂, 3 h. $\overline{}^{b}$ 1 mmol of substrate, 0.2 mol% Pt, 4.5 mL of water, 35°C, 0.6 MPa of H₂, 4 h. $\overline{}^{c}$ 1 mmol of substrate, 0.2 mol% Pt, 5 mL of water, 25 °C, 0.6 MPa of H₂, 40 min. $\overline{}^{d}$ 1 mmol of substrate, 0.2 mol% Pt, 5 mL of water, 25 °C, 0.6 MPa of H₂, 2 h.

Fig.S1. The XRD patterns of the synthesized samples.

Fig. S2. The ²⁹Si MAS NMR spectrum of MF@MN.

Fig. S3. The ¹³C CP MAS NMR spectra of the synthesized samples.

Fig. S4. The FT-IR specta of the synthesized materials.

Fig. S5. TG curves of the synthesized materials containing templates and without templates (treated with a CH₃OH/H₂O solution containing NaCl).

Fig. S6. Wide angle XRD patterns of the Pd-supported catalysts.

Fig. S7. XPS sepectra of the Pd-supported catalysts.

Fig. S8. XPS sepectra of the Pt-supported catalysts.

Fig. S9. The reaction kinetics of the hydrogenation of 4-*tert*-butoxystyrene over Pd/MFx@MN in water. Reaction conditions: 3.2 mmol of 4-*tert*-butoxystyrene, 8 mL of water as solvent, 0.15 MPa of H₂ pressure, 0.2 mol% Pd with respect to substrate, fixing stirring rate. K represents the slope of the pressure drop.

Fig.S10 N₂ sorption isotherm of Pd/MF@MN used 5 times. The specific surface area and pore volume are as high as 195 m2/g and 0.18 cm3/g, respectively.