Electronic Supplementary Information

Palladium-catalyzed mono and double carbonylation of indole with amine controllably leading to amide and α-ketoamide

Qi Xing, Lijun Shi, Rui Lang, Chungu Xia and Fuwei Li

fuweili@licp.cas.cn

Electronic Supplementary Information Contents:

- 1) General Information
- 2) General Procedures for the Synthesis of N-substituted Indoles
- 3) Experimental Procedure for Pd-catalyzed Carbonylation
- 4) Characterization Data for Products
- 5) ¹H NMR and ¹³C NMR Copies of Products
- 6) The Crystal Structure of 3t and 4v
- 7) References

1) General Information

The reagents, free (NH)-indoles, 7-zazindole, and *N*-methyl indole were purchased and used as received without further purification. NMR spectra of the products were recorded using a Bruker Avance TM spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C in CDCl₃ unless otherwise noted. High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOFspectrometer. High-performance liquid chromatography (HPLC) analysis (methanol/H₂O = 60/40, 0.8 mL/min, λ = 254 nm) was performed by Agilent 1260 Infinity with an Agilent ZORBAX C₁₈ column using *N*-ethylbenzamide as inner standard for mono-carbonylated products. X-ray Single Crystal Diffraction measurement was conducted at 296 K on a Bruker APEX II diffractometer using Mo Ka radiation (γ = 0.71073Å). The data were corrected for Lorentz and polarization effects with the SMART suite of programs and for absorption effects with SADABS. The structure was solved by direct methods using the SHELXS program. Isolated yield was obtained by column chromatography (200-300 mesh), and Ethyl acetate/ Petroleum ether was used as the eluent.

2) General Procedures for the Synthesis of N-substituted Indoles

All of the N-substituted indoles were prepared according to literatures with slight modification.

General procedure for the preparation of N-methyl indoles¹

To a stirred solution of 5-methyl indole (1 mol) in ether (10 mL) was slowly added potassium *tert*-butanolate (2 mol) and iodomethane (2 mol) at 0 °C, after 24 hours the reaction mixture was poured into saturated aqueous NaHCO₃ solution (25 mL) and extracted with ether (10 mL) three times. The combined organic layers were dried over anhydrous Na_2SO_4 and concerntrated *in vacuo*. The crude product was purified by column chromatography (silica gel, pure hexane). The product was characterized and compared with the previously reported literature. Other *N*-methyl indoles were synthesized according to the above method.

General procedure for the preparation of N-allyl indole²

To a stirred solution of 1*H*-indole (1 mol) in DMF (10 mL) was slowly added potassium hydroxide (1.2 mol) and allyl bromide (1.2 mol). After 12 hours at 50 °C, the reaction mixture was cooled to room temperature, poured into saturated aqueous NaHCO₃ solution (10 mL) and extracted with ether (20 mL) three times. The combined organic layers were dried over anhydrous Na_2SO_4 and concerntrated *in vacuo*. The crude product was purified by column chromatography (silica gel, pure hexane). The product was characterized and compared with the previously reported literature. Other *N*-allyl indoles were synthesized according to the above method.

General procedure for the preparation of N-benzyl indoles

To a stirred solution of 1*H*-indole (1 mol) in tetrahedrofuran (10 mL) was slowly added potassium hydroxide (4 mol) and benzyl bromide (1 mol) at 0 °C. After 24 hours, the mixture was poured into saturated aqueous NaHCO₃ solution (10 mL) and extracted with ether (20 mL) three times. The combined organic layers were dried over anhydrous Na_2SO_4 and concerntrated *in vacuo*. The crude product was purified by column chromatography (silica gel, pure hexane). The product was characterized and compared with the previously reported literature. Other *N*-benzyl indoles were synthesized according to the above method.

General procedure for the preparation of N-phenyl indole⁴

A mixture of iodobenzene (1 mol), 1*H*-Indole (1.5 mol), cuprous oxide (0.1 mol), potassium hydroxide (2 mol) and DMSO (2 mL) was stirred at 120 °C under N₂ atmosphere for 24 hours. Then the mixture was poured into 15 mL H₂O and extracted with ether (20 mL) three times. The combined organic layers were dried over anhydrous Na₂SO₄ and concerntrated *in vacuo*. The crude product was purified by column chromatography (silica gel, hexane:ethyl acetate = 50:1). The product was characterized and compared with the previously reported literature.

3) Experimental Procedure for Pd-catalyzed Carbonylation

Pd-catalyzed double carbonylation of indoles with amines (Scheme 1)

indole (0.5 mmol), I_2 (0.6 mmol), Cs_2CO_3 (0.25 mmol), and THF (5.0 mL) were introduced into an 100 mL stainless steel autoclave and stirred at room temperature for 3 h, then amine (2.0 mmol), PdCl₂(dppf) (0.025 mmol), and dppf (0.05 mmol), DBU (1.5 mmol), CuI (0.1mmol), LiCl (0.2 mmol) in THF (5.0 mL) were consecutively added. The autoclave was closed and purged three times with CO before it was finally pressurized with 40 atm CO gas. Then the reactor was immersed in an oil bath preheated at 60 °C for 36 h. After cooling to room temperature, excess CO was discharged and the resultant reaction mixture was purified by flash chromatography using silica gel (petroleum ether and ethyl acetate) to afford the corresponding product.

Pd-catalyzed monocarbonylation of indoles with amines (Scheme 2)

Indole (0.5 mmol), I_2 (1.0 mmol), K_2CO_3 (1.5 mmol), and THF (2.0 mL) were added to a 50 mL Schlenk tube with a magnetic bar. After stirring at room temperature for 0.5 h, amine (2.0 mmol), PdCl₂(dppf) (0.025 mmol), dppf (0.05 mmol), and THF (1.0 mL) were charged into the tube. The glass tube was vacuumed and purged with CO three times before it was finally pressurized with 1.0 atm CO gas. Then, the tube was tightly screw-capped, immersed in an oil bath preheated at 100 °C for 24 h. After cooling to room temperature, excess CO was discharged and the resultant reaction mixture was purified by the silica gel chromatography using petroleum ether and ethyl acetate as the eluent to afford the corresponding product.

Pd-catalyzed double carbonylation of indoles with N-benzoylpiperazine (Scheme 3)

A mixture of indole (0.5 mmol), I_2 (0.6 mmol), Cs_2CO_3 (0.25 mmol), in THF (5.0 mL) was stirred in an 100 mL stainless steel autoclave at room temperature for 3 h, then *N*-benzoylpiperazine (2.0 mmol), $PdCl_2(PhCN)_2$ (0.025 mmol), and Xantphos (0.05 mmol), DBU (1.5 mmol), CuI (0.1 mmol), LiCl (0.2 mmol) and THF (5.0 mL) were added. The autoclave was closed and purged three times with CO before it was finally pressurized with 40 atm CO gas. After stirring at 60 °C for 48 h, the autoclave was cooled to room temperature and excess CO was discharged. Isolated yields of the desired product were obtained by silica gel chromatography using petroleum ether and ethyl acetate as the eluent. Table S1 Optimization of double-carbonylation of indole with amines^a

Entry	Catalyst	Base	Additive	Solvent	Yield(%)	
					3a 4a	
1	PdCl ₂ (dppf)	Cs ₂ CO ₃ /DBU	dppf	THF	74 16	
2	PdCl ₂ (dppf)	Cs ₂ CO ₃ /DBU	dppf-CuI	THF	75 14	
3	PdCl ₂ (dppf)	Cs ₂ CO ₃ /DBU	dppf- CuI/LiCl	THF	81 trace	
4	PdCl ₂	Cs ₂ CO ₃ /DBU	CuI/LiCl	THF	trace trace	
5	PdCl ₂	Cs ₂ CO ₃ /DBU	bipyridine/CuI/LiCl	THF	37 6	
6	PdCl ₂ (PPh ₃) ₂	Cs ₂ CO ₃ /DBU	PPh ₃ -CuI/LiCl	THF	64 trace	
7	PdCl ₂ (dppp)	Cs ₂ CO ₃ /DBU	dppp-CuI/LiCl	THF	59 trace	
8	PdCl ₂ (dppf)	Cs_2CO_3	dppf- CuI/LiCl	THF	60 10	
9	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DABCO	dppf- CuI/LiCl	THF	73 12	
10	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DMAP	dppf- CuI/LiCl	THF	42 15	
11	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DBU	dppf- CuI/LiCl	1,4-Dioxane	48 5	
12	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DBU	dppf- CuI/LiCl	DCE	trace trace	
13	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DBU	dppf- CuI/LiCl	Toluene	46 5	
14	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DBU	dppf- CuI/LiCl	acetonitrile	trace trace	
15^{b}	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DBU	dppf- CuI/LiCl	THF	76 8	
16 ^c	PdCl ₂ (dppf)	Cs ₂ CO ₃ /DBU	dppf- CuI/LiCl	THF	21 trace	
17^{d}	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DBU	dppf- CuI/LiCl	THF	80 trace	
18^e	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DBU	dppf- CuI/LiCl	THF	26 8	
19 ^{<i>f</i>}	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DBU	dppf- CuI/LiCl	THF	54 trace	
20 ^g	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DBU	dppf- CuI/LiCl	THF	37 8	
21	PdCl ₂ (dppf)	Cs ₂ CO ₃ / DBU	CuI/LiCl	THF	45 trace	

^{*a*} Reaction conditions:**1a** (0.5 mmol), **2a** (2.0 mmol), Cs_2CO_3 (0.25 mmol), I_2 (0.6 mmol), DBU (1.5 mmol), PdCl₂(dppf) (5 mol %), dppf (10 mol %), CuI (0.1 mmol), LiCl (0.2 mmol), THF (10 mL), CO (40 atm), 60 °C, 36 h, isolated yield. ^{*b*} THF (6mL). ^{*c*} I_2 (1 mmol). ^{*d*} Reaction was performed for 48 h. ^{*e*} CO (20 atm). ^{*f*} PdCl₂(dppf) (2 mol %). ^{*g*} DBU (0.75 mmol).

Table S2 Optimization of mono-carbonylation of indole with amimes^a

Entry	Catalyst	Base	Additive	Solvent	Yield(%) ^b	
					3 a	4 a
1 ^c	PdCl ₂ (dppf)	K ₂ CO ₃	dppf	THF	19	61
2	PdCl ₂ (dppf)	K ₂ CO ₃	dppf	THF	trace	82 (90)
3	PdCl ₂ (dppf)	K ₃ PO ₄	dppf	THF	trace	36
4	PdCl ₂ (dppf)	Cs_2CO_3	dppf	THF	trace	5
5	PdCl ₂ (dppf)	NEt ₃	dppf	THF	trace	3
6	PdCl ₂ (dppf)	K ₂ CO ₃	dppf	1,4-Dioxane	trace	trace
7	PdCl ₂ (dppf)	K ₂ CO ₃	dppf	Toluene	trace	trace
8	PdCl ₂ (dppf)	K ₂ CO ₃	dppf	Acetonitrile	trace	29
9^d	PdCl ₂ (dppf)	K ₂ CO ₃	dppf	THF	3	30

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (2.0 mmol), I_2 (1.0 mmol), K_2CO_3 (1.5 mmol), $PdCl_2(dppf)$ (0.025 mmol), and dppf (0.05 mmol), THF (3 mL), CO (1 atm), 100 °C, 24 h. ^{*b*} HPLC yield, isolated yield in parenthesis. ^{*c*} CO (2 atm). ^{*d*} 80 °C.

4) Characterization Data for Products

1-(1-methyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3a).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.37 – 8.31 (m, 1H), 7.89 (s, 1H), 7.39 – 7.32 (m, 3H), 3.84 (s, 3H), 3.81 – 3.75 (m, 4H), 3.69 – 3.66 (m, 2H), 3.58 – 3.54 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.7 (C=O), 166.1 (C=O), 139.4, 137.7, 126.2, 124.1, 123.4, 122.3, 113.4, 110.0, 67.0, 66.7, 46.6, 41.9, 33.8. HRMS (ESI) Calcd for C₁₅H₁₆N₂NaO₃: [M+Na]⁺, 295.1053; Found: 295.1058. IR: v (cm⁻¹) = 1630.30 cm⁻¹ (C=O stretch).

1-(1-allyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3b).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.40 – 8.31 (m, 1H), 7.93 (s, 1H), 7.35 (m, 3H), 6.07 – 5.94 (m, 1H), 5.31 (d, *J* = 10.2 Hz, 1H), 5.21 (d, *J* = 17.1 Hz, 1H), 4.77 (d, *J* = 5.5 Hz, 2H), 3.78 (d, *J* = 3.4 Hz, 4H), 3.70 – 3.65 (m, 2H), 3.59 – 3.53 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8 (C=O), 166.0 (C=O), 138.4, 137.1, 131.5, 126.4, 124.1, 123.5, 122.4, 119.3, 113.7, 110.5, 67.0, 66.8, 49.8, 46.6, 41.9. HRMS (ESI) Calcd for C₁₇H₁₈N₂NaO₃: [M+Na]⁺, 321.1210; Found: 321.1201. IR: v (cm⁻¹) = 1643.21 cm⁻¹ (C=O stretch).

1-(1-benzyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3c).

A white solid. Chromatography solvent (PE/EA = 1/1). 1H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 7.4 Hz, 1H), 7.97 (s, 1H), 7.37 – 7.28 (m, 6H), 7.20 – 7.13 (m, 2H), 5.34 (s, 2H), 3.78 – 3.73 (m, 4H), 3.67 – 3.64 (m, 2H), 3.58 – 3.54 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 184.9 (C=O), 165.9 (C=O), 138.7, 137.2, 135.2, 129.1, 128.4, 127.1, 126.4, 124.3, 123.5, 122.4, 113.9, 110.7, 67.0, 66.7, 51.2, 46.6, 41.9. HRMS (ESI) Calcd for C₂₁H₂₀N₂NaO₃: [M+Na]⁺, 371.1366; Found: 371.1362. IR: v (cm⁻¹) = 1636.77 cm⁻¹ (C=O stretch).

1-morpholino-2-(1-phenyl-1H-indol-3-yl)ethane-1,2-dione (3d).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 7.4 Hz, 1H), 8.04 (s, 1H), 7.52 – 7.40 (m, 6H), 7.29 (m, 2H), 3.74 – 3.68 (m, 4H), 3.65 – 3.61 (m, 2H), 3.55 – 3.51 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 185.2 (C=O), 165.8 (C=O), 138.2, 137.9, 137.3, 130.0, 128.5, 126.4, 125.0, 124.7, 123.9, 122.5, 115.1, 111.3, 67.1, 66.8, 46.6, 41.9. HRMS (ESI) Calcd for C₁₄H₁₇NNaO₂: [M+Na]⁺, 357.1210; Found: 357.1201. IR: v (cm⁻¹) = 1637.50 cm⁻¹ (C=O stretch).

1-(1,5-dimethyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3e).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.84 (s, 1H), 7.26 (d, *J* = 7.5 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 3.83 (s, 3H), 3.78 (m, 4H), 3.69 – 3.65 (m, 2H), 3.58 – 3.52 (m, 2H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.6 (C=O), 166.2 (C=O), 139.4, 136.1, 133.3, 126.5, 125.6, 122.1, 113.0, 109.7, 67.1, 66.8, 46.6, 41.9, 33.8, 21.5. HRMS (ESI) Calcd for C₁₆H₁₈N₂NaO₃: [M+Na]⁺, 309.1210; Found: 309.1210. IR: v (cm⁻¹) = 1625.44 cm⁻¹ (C=O stretch).

1-(1,6-dimethyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3f).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.1 Hz, 1H), 7.83 (s, 1H), 7.20 – 7.13 (m, 2H), 3.81 (s, 3H), 3.80 – 3.75 (m, 4H), 3.70 – 3.64 (m, 2H), 3.58 – 3.53 (m, 2H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.4 (C=O), 166.2 (C=O), 139.1, 138.1, 134.3, 125.1, 123.9, 121.9, 113.3, 110.0, 67.0, 66.8, 46.6, 41.9, 33.7, 21.9. HRMS (ESI) Calcd for C₁₆H₁₈N₂NaO₃: [M+Na]⁺, 309.1210; Found: 309.1198. IR: v (cm⁻¹) = 1628.11 cm⁻¹ (C=O stretch).

1-(1,7-dimethyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3g).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 7.9 Hz, 1H), 7.78 (s, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 7.2 Hz, 1H), 4.10 (s, 3H), 3.78 (m, 4H), 3.71 – 3.64 (m, 2H), 3.56 (d, J = 5.1 Hz, 2H), 2.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.5 (C=O), 166.1 (C=O), 140.9, 136.4, 127.4, 127.0, 123.6, 121.9, 120.4, 112.9, 67.1, 66.8, 46.6, 41.9, 38.0, 19.5. HRMS (ESI) Calcd for C₁₆H₁₈N₂NaO₃: [M+Na]⁺, 309.1210; Found: 309.1205. IR: v (cm⁻¹) = 1628.42 cm⁻¹ (C=O stretch).

1-(4-bromo-1-methyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3h).

A light red solid. Chromatography solvent (PE/EA = 1/2). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.31 (d, *J* = 8.2 Hz, 1H), 7.18 (t, *J* = 7.9 Hz, 1H), 3.84 (s, 3H), 3.78 (d, *J* = 4.7 Hz, 2H), 3.76 – 3.69 (m, 4H), 3.63 – 3.57 (m, 2H). ¹³C NMR (100 MHz CDCl₃) δ 183.9 (C=O), 166.8 (C=O), 141.0, 139.5, 128.4, 125.7, 124.8, 115.0, 113.7, 109.3, 66.9, 66.7, 46.6, 41.9, 34.0. HRMS (ESI) Calcd for C₁₅H₁₅BrN₂NaO₃: [M+Na]⁺, 373.0158; Found: 373.0153. IR: v (cm⁻¹) = 1657.11 cm⁻¹, 1629.17 cm⁻¹ (C=O stretch).

1-(5-bromo-1-methyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3i).

A yellow solid. Chromatography solvent (PE/EA = 1/2). ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 1.6 Hz, 1H), 7.82 (s, 1H), 7.36 (m, 1H), 7.15 (d, J = 8.7 Hz, 1H), 3.76 (s, 3H), 3.71 (m, 4H), 3.63 – 3.60 (m, 2H), 3.52 – 3.48 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 183.3 (C=O), 164.6 (C=O), 139.0, 135.3, 126.7, 126.1, 123.9, 116.2, 111.8, 110.5, 66.0, 65.7, 45.5, 40.9, 32.9. HRMS (ESI) Calcd for C₁₅H₁₅BrN₂NaO₃: [M+Na]⁺, 373.0158; Found: 373.0163. IR: v (cm⁻¹) = 1628.32 cm⁻¹ (C=O stretch).

1-(6-fluoro-1-methyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3j).

A pale yellow solid. Chromatography solvent (PE/EA = 1/2). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (m, 1H), 7.82 (s, 1H), 7.05 – 6.94 (m, 2H), 3.73 (s, 3H), 3.70 (m, 4H), 3.63 – 3.58 (m, 2H), 3.51 – 3.46 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.5 (C=O), 165.8 (C=O), 161.9, 159.5, 139.8, 138.0, 137.9, 123.5, 123.4, 122.5, 113.5, 112.0, 111.8, 97.0, 96.7, 67.0, 66.7, 46.6, 41.9, 33.9. HRMS (ESI) Calcd for C₁₅H₁₅FN₂NaO₃: [M+Na]⁺, 313.0959; Found: 313.0946. IR: v (cm⁻¹) = 1628.01 cm⁻¹ (C=O stretch).

1-(6-chloro-1-methyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3k).

A pale yellow solid. Chromatography solvent (PE/EA = 1/2). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.5 Hz, 1H), 7.91 (s, 1H), 7.36 (d, *J* = 1.6 Hz, 1H), 7.30 (m, 1H), 3.82 (s, 3H), 3.78 (m, 4H), 3.71 – 3.67 (m, 2H), 3.59 – 3.55 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.2 (C=O), 165.8 (C=O), 140.0, 138.1, 130.2, 124.7, 124.0, 123.3, 113.4, 110.3, 67.0,66.7, 46.7, 42.1, 33.9. HRMS (ESI) Calcd for C₁₅H₁₅ClN₂NaO₃: [M+Na]⁺, 329.0663; Found: 329.0661. IR: v (cm⁻¹) = 1627.94 cm⁻¹ (C=O stretch).

1-(1-allyl-5-methyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3l)

A white solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.88 (d, J = 2.1 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.15 (d, J = 8.4 Hz, 1H), 6.11 – 5.89 (m, 1H), 5.31 (d, J = 10.2 Hz, 1H), 5.20 (d, J = 16.5 Hz, 1H), 4.80 – 4.70 (m, 2H), 3.83 – 3.75 (m, 4H), 3.71 – 3.64 (m, 2H), 3.56 (s, 2H), 2.48 (d, J = 1.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8 (C=O), 166.1 (C=O), 138.4, 135.4, 133.3, 131.6, 126.6, 125.6, 122.2, 119.2, 113.3, 110.2, 67.0, 66.8, 49.8, 46.6, 41.9, 21.5. HRMS (ESI) Calcd for C₁₈H₂₀N₂NaO₃: [M+Na]⁺, 335.1366; Found: 335.1357. IR: v (cm⁻¹) = 1622.79 cm⁻¹ (C=O stretch).

1-(1-allyl-6-methyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3m).

A white solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.0 Hz, 1H), 7.87 (s, 1H), 7.22 – 7.11 (m, 2H), 6.07 – 5.95 (m, 1H), 5.35 – 5.28 (m, 1H), 5.21 (m, 1H), 4.74 (d, J = 5.5 Hz, 2H), 3.78 (d, J = 2.9 Hz, 4H), 3.71 – 3.64 (m, 2H), 3.59 – 3.53 (m, 2H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.6 (C=O), 166.2 (C=O), 138.1, 137.5, 134.3, 131.6, 125.1, 124.1, 122.0, 119.2, 113.7, 110.5, 67.0, 66.8, 49.7, 46.6, 42.0, 21.9. HRMS (ESI) Calcd for C₁₈H₂₀N₂NaO₃: [M+Na]⁺, 335.1366; Found: 335.1362. IR: v (cm⁻¹) = 1629.57 cm⁻¹ (C=O stretch).

1-(1-allyl-7-methyl-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (3n).

A white solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 7.9 Hz, 1H), 7.84 (s, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 7.2 Hz, 1H), 6.07 (m, 1H), 5.25 (d, J = 10.5 Hz, 1H), 5.00 – 4.95 (m, 2H), 4.89 (d, J = 17.1 Hz, 1H), 3.78 (m, 4H), 3.69 – 3.64 (m, 2H), 3.57 – 3.53 (m, 2H), 2.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.8 (C=O), 166.0 (C=O), 140.2, 135.9, 133.5, 127.2, 123.6, 121.7, 120.4, 117.6, 113.5, 67.0, 66.8, 51.8, 46.6, 41.9, 19.2. HRMS (ESI) Calcd for C₁₈H₂₀N₂NaO₃: [M+Na]⁺, 335.1366; Found: 335.1365. IR: v (cm⁻¹) = 1629.57 cm⁻¹, 1723.28 cm⁻¹ (C=O stretch).

1-(1-allyl-5-bromo-1H-indol-3-yl)-2-morpholinoethane-1,2-dione (30).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 1.7 Hz, 1H), 7.94 (s, 1H), 7.42 (m, 1H), 7.27 – 7.22 (m, 1H), 5.99 (m, 1H), 5.34 (d, J = 10.3 Hz, 1H), 5.21 (d, J = 17.1 Hz, 1H), 4.75 (d, J = 5.6 Hz, 2H), 3.81 – 3.75 (m, 4H), 3.72 – 3.67 (m, 2H), 3.60 – 3.56 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 184.4 (C=O), 165.5 (C=O), 139.0, 135.7, 131.1, 127.9, 127.1,

125.1, 119.6, 117.2, 113.2, 111.9, 67.0, 66.7, 49.9, 46.6, 41.9. HRMS (ESI) Calcd for $C_{17}H_{17}BrN_2NaO_3$: $[M+Na]^+$, 399.0315; Found: 399.0303. IR: v (cm⁻¹) = 1638.80 cm⁻¹ (C=O stretch).

methyl 1-allyl-3-(2-morpholino-2-oxoacetyl)-1H-indole-5-carboxylate (3p).

A white solid. Chromatography solvent (PE/EA = 1/2). ¹H NMR (400 MHz, CDCl₃) δ 9.05 (d, J = 1.1 Hz, 1H), 8.08 – 8.01 (m, 2H), 7.40 (d, J = 8.7 Hz, 1H), 6.11 – 5.91 (m, 1H), 5.35 (d, J = 10.3 Hz, 1H), 5.23 (d, J = 17.1 Hz, 1H), 4.80 (d, J = 5.6 Hz, 2H), 3.95 (s, 3H), 3.80 (m, 4H), 3.72 – 3.68 (m, 2H), 3.61 – 3.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 184.5 (C=O), 167.5 (C=O), 165.5 (C=O), 139.6, 139.4, 131.1, 126.0, 125.6, 125.4, 124.8, 119.7, 114.5, 110.3, 67.0, 66.7, 52.1, 49.9, 46.6, 42.0. HRMS (ESI) Calcd for C₁₉H₂₀N₂NaO₅: [M+Na]⁺, 379.1264; Found: 379.1265. IR: v (cm⁻¹) = 1637.10cm⁻¹, 1717.01 cm⁻¹ (C=O stretch).

N,N-diethyl-2-(1-methylindol-3-yl)-2-oxoacetamide (3q).

A yellow liquid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.42 – 8.32 (m, 1H), 7.81 (s, 1H), 7.43 – 7.32 (m, 3H), 3.85 (s, 3H), 3.55 (m, 2H), 3.38 (m, 2H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 185.8 (C=O), 167.4 (C=O), 138.9, 137.7, 126.3, 123.9, 123.2, 122.4, 113.4, 109.9, 42.4, 39.1, 33.7, 14.5, 12.9. HRMS (ESI) Calcd for C₁₅H₁₈N₂NaO₂: [M+Na]⁺, 281.1266; Found: 281.1260. IR: v (cm⁻¹) = 1632.91cm⁻¹ (C=O stretch).

N-allyl-2-(1-methylindol-3-yl)-2-oxoacetamide (3r).

A pale yellow solid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.42 (m, 1H), 7.64 (s, 1H), 7.40 – 7.33 (m, 3H), 5.90 (m, 1H), 5.28 (m, 1H), 5.20 (m, 1H), 4.02 (t, *J* = 5.8 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 179.8 (C=O), 162.5 (C=O), 142.2, 137.1, 133.3, 127.7, 123.9, 123.5, 122.6, 116.8, 111.9, 109.9, 41.6, 33.8. HRMS (ESI) Calcd for C₁₄H₁₄N₂NaO₂: [M+Na]⁺, 265.0947; Found: 265.0941. IR: v (cm⁻¹) = 1677.75 cm⁻¹, 1622.99 cm⁻¹ (C=O stretch); v (cm⁻¹) = 3358.94 cm⁻¹ (N-H stretch).

N-cyclohexenyl-2-(1-methylindol-3-yl)-2-oxoacetamide (3s).

A white solid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.47 – 8.37 (m, 1H), 7.54 (s, 1H), 7.39 – 7.32 (m, 3H), 5.54 (s, 1H), 3.86 (s, 3H), 3.45 (m, 2H), 2.23 (t, *J* = 6.8 Hz, 2H), 2.04 – 1.95 (m, 4H), 1.66 – 1.52 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 180.1 (C=O), 162.5 (C=O), 142.2, 137.0, 134.2, 127.7, 123.9, 123.8, 123.4, 122.6, 111.9, 109.9, 37.4, 37.2, 33.8, 28.0, 25.3, 22.9, 22.3. HRMS (ESI) Calcd for C₁₉H₂₂N₂NaO₂: [M+Na]⁺, 333.1573; Found: 333.1562. IR: v (cm⁻¹) = 1670.18 cm⁻¹, 1623.83 cm⁻¹ (C=O stretch); v (cm⁻¹) = 3335.91 cm⁻¹ (N-H stretch).

N-benzyl-2-(1-methylindol-3-yl)-2-oxoacetamide (3t).

A white solid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 9.00 (s, 1H), 8.43 – 8.39 (m, 1H), 7.89 (s, 1H), 7.37 – 7.34 (m, 8H), 4.57 (d, *J* = 6.1 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.8 (C=O), 162.6 (C=O), 142.2, 137.5, 137.0, 128.8, 127.8, 127.7, 123.9, 123.5, 122.6, 111.9, 109.9, 43.3, 33.8. HRMS (ESI) Calcd for C₁₈H₁₆N₂NaO₂: [M+Na]⁺, 315.1104; Found: 315.1101. IR: v (cm⁻¹) = 1671.94 cm⁻¹, 1611.20 cm⁻¹ (C=O stretch); v (cm⁻¹) = 3332.99 cm⁻¹ (N-H stretch).

N-cyclohexyl-2-(1-methylindol-3-yl)-2-oxoacetamide (3u).

A yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 8.36 – 8.31 (m, 1H), 7.38 (d, *J* = 7.9 Hz, 1H), 7.29 – 7.25 (m, 3H), 3.77 (s, 3H), 1.92 – 1.85 (m, 2H), 1.73 – 1.66 (m, 2H), 1.60 – 1.54 (m, 1H), 1.39 – 1.12 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 180.4 (C=O), 161.7 (C=O), 142.2, 137.0, 127.7, 123.8, 123.4, 122.6, 111.9, 109.9, 48.3, 33.8, 32.8, 25.5, 24.8. HRMS (ESI) Calcd for C₁₇H₂₀N₂NaO₂: [M+Na]⁺, 307.1417; Found: 307.1417. IR: v (cm⁻¹) = 1665.52 cm⁻¹, 1619.74 cm⁻¹ (C=O stretch); v (cm⁻¹) = 3330.31 cm⁻¹ (N-H stretch).

N-tert-butyl-2-(1-methylindol-3-yl)-2-oxoacetamide (3v).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CD₃OD) δ 9.01 (s, 1H), 8.43 – 8.38 (m, 1H), 7.46 (s, 1H), 7.37 (m, 3H), 3.87 (s, 3H), 1.46 (s, 9H). ¹³C NMR (101 MHz, CD₃OD) δ 185.8 (C=O), 167.5 (C=O), 145.5, 141.3, 131.2, 127.4, 126.7, 125.7, 115.2, 113.9, 54.8, 36.4, 31.2. HRMS (ESI) Calcd for C₁₅H₁₈N₂NaO₂: [M+Na]⁺, 281.1260; Found: 281.1268. IR: v (cm⁻¹) = 1679.02 cm⁻¹, 1616.66 cm⁻¹ (C=O stretch); v (cm⁻¹) = 3333.92 cm⁻¹ (N-H stretch).

1-(1-methylindol-3-yl)-2-(4-benzoylpiperazin-1-yl)ethane-1,2-dione (3w).

A pale yellow solid. Chromatography solvent (PE/EA = 1/2). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.90 (s, 1H), 7.40 (d, *J* = 18.5 Hz, 8H), 3.72 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 184.3 (C=O), 170.7 (C=O), 166.2 (C=O), 139.5, 137.7, 135.1, 133.9, 130.2, 128.7, 128.5, 127.1, 126.2, 124.2, 123.5, 122.3, 113.3, 110.1, 50.1, 46.2, 41.7, 33.8, 28.4. HRMS (ESI) Calcd for C₂₂H₂₁N₃NaO₃: [M+Na]⁺, 398.1475; Found: 398.1487. IR: v (cm⁻¹) = 1617.24 cm⁻¹, 1601.36 cm⁻¹, 1674.25 cm⁻¹ (C=O stretch).

1-(1-allylindol-3-yl)-2-(4-benzoylpiperazin-1-yl)ethane-1,2-dione (3x).

A white solid. Chromatography solvent (PE/EA = 1/2). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 7.93 (s, 1H), 7.46 – 7.32 (m, 8H), 5.99 (m, 1H), 5.31 (m, 1H), 5.21 (m, 1H), 4.76 (d, *J* = 5.6 Hz, 2H), 3.69 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 184.5 (C=O), 170.7 (C=O), 166.2 (C=O), 138.5, 137.1, 135.1, 131.5, 130.2, 128.7, 127.1, 126.4, 124.2, 123.5, 122.4, 119.4, 113.6, 110.6, 65.8, 49.8, 46.2, 41.7, 15.3. HRMS (ESI) Calcd for C₂₄H₂₃N₃NaO₃: [M+Na]⁺, 424.1632; Found: 424.1627. IR: v (cm⁻¹) = 1620.26 cm⁻¹, 1607.46 cm⁻¹, 1676.23 cm⁻¹ (C=O stretch).

(1-methyl-1H-indol-3-yl)(morpholino)methanone (4a).

A red liquid. Chromatography solvent (PE/EA = 1/1).¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.8 Hz, 1H), 7.44 (s, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.31 – 7.19 (m, 2H), 3.81 (s, 3H), 3.73 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8 (C=O), 136.5, 131.8, 125.8, 122.5, 121.0, 120.5, 110.0, 109.9, 67.2, 33.2. HRMS (ESI) Calcd for C₁₄H₁₆N₂NaO₂: [M+Na]⁺, 267.1104; Found: 267.1097. IR: v (cm⁻¹) = 1605.86 cm⁻¹ (C=O stretch).

(1,5-dimethyl-1H-indol-3-yl)(morpholino)methanone (4b).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.37 (s, 1H), 7.22 (d, *J* = 8.4 Hz, 1H), 7.10 (d, *J* = 8.4 Hz, 1H), 3.78 (s, 3H), 3.74 (m, 8H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9 (C=O), 134.9, 131.6, 130.5, 126.2, 124.2, 120.2, 109.5, 109.4, 67.2, 33.2, 21.6. HRMS (ESI) Calcd for C₁₅H₁₈N₂NaO₂: [M+Na]⁺, 281.1260; Found: 281.1263. IR: v (cm⁻¹) = 1642.65 cm⁻¹ (C=O stretch).

(1,6-dimethyl-1H-indol-3-yl)(morpholino)methanone (4c).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.2 Hz, 1H), 7.30 (s, 1H), 7.06 (s, 1H), 6.98 (d, J = 8.2 Hz, 1H), 3.70 (s, 3H), 3.65 (m, 8H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9 (C=O), 136.9, 132.5, 131.4, 123.7, 122.8, 120.1, 109.9, 109.8, 67.2, 33.1, 21.8. HRMS (ESI) Calcd for C₁₅H₁₈N₂NaO₂: [M+Na]⁺, 281.1260; Found: 281.1256. IR: v (cm⁻¹) = 1612.26 cm⁻¹ (C=O stretch).

(1,7-dimethyl-1H-indol-3-yl)(morpholino)methanone (4d).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.0 Hz, 1H), 7.30 (s, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 7.1 Hz, 1H), 4.05 (s, 3H), 3.71 (m, 8H), 2.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8 (C=O), 135.2, 133.1, 126.9, 125.2, 121.9, 121.2, 118.5, 109.8, 67.2, 37.3, 19.6. HRMS (ESI) Calcd for C₁₅H₁₈N₂NaO₂: [M+Na]⁺, 281.1260; Found: 281.1258. IR: v (cm⁻¹) = 1628.25 cm⁻¹ (C=O stretch).

(5-methoxy-1-methyl-1H-indol-3-yl)(morpholino)methanone (4e).

A yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 1H), 7.22 (d, J = 8.9 Hz, 1H), 7.18 (d, J = 2.4 Hz, 1H), 6.92 (m, 1H), 3.86 (s, 3H), 3.77 (s, 3H), 3.74 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8 (C=O), 155.2, 131.8, 126.7, 113.0, 110.6, 109.2, 102.1, 67.2, 55.8, 33.3. HRMS (ESI) Calcd for C₁₅H₁₈N₂NaO₃: [M+Na]⁺, 297.1210; Found: 297.1217. IR: v (cm⁻¹) =1620.26 cm⁻¹ (C=O stretch).

1-methyl-3-(morpholine-4-carbonyl)-1H-indole-5-carbonitrile (4f).

A white solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 0.7 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.33 (d, J = 8.6 Hz, 1H), 3.79 (s, 3H), 3.67 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 165.1 (C=O), 137.9, 133.0, 126.2, 126.1, 125.5, 120.2, 110.8, 110.7, 104.3, 67.0, 33.5. HRMS (ESI) Calcd for C₁₅H₁₅N₃NaO₂: [M+Na]⁺, 292.1056; Found: 292.1063. IR: v (cm⁻¹) = 1628.25 cm⁻¹ (C=O stretch).

(5-bromo-1-methyl-1H-indol-3-yl)(morpholino)methanone (4g).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 1.7 Hz, 1H), 7.38 (s, 1H), 7.33 (m, 1H), 7.19 (d, J = 8.7 Hz, 1H), 3.78 (s, 3H), 3.72 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9 (C=O), 135.2, 132.3, 127.7, 125.5, 123.1, 114.6, 111.3, 109.4, 67.1, 33.3. HRMS (ESI) Calcd for C₁₄H₁₅BrN₂NaO₂: [M+Na]⁺, 345.0209; Found: 345.0199. IR: v (cm⁻¹) = 1612.26 cm⁻¹ (C=O stretch).

(6-bromo-1-methyl-1H-indol-3-yl)(morpholino)methanone (4h).

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.5 Hz, 1H), 7.49 (d, *J* = 1.4 Hz, 1H), 7.37 (s, 1H), 7.31 (m, 1H), 3.76 (s, 3H), 3.72 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1 (C=O), 137.3, 131.9, 124.9, 124.3, 121.8, 116.2, 112.9, 110.2, 67.1, 33.3. HRMS (ESI) Calcd for C₁₄H₁₅BrN₂NaO₂: [M+Na]⁺, 345.0209; Found: 345.0211. IR: v (cm⁻¹) = 1620.26 cm⁻¹ (C=O stretch).

(1-allyl-1H-indol-3-yl)(morpholino)methanone (4i).

A red liquid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (m, 1H), 7.48 (s, 1H), 7.38 – 7.33 (m, 1H), 7.28 – 7.20 (m, 2H), 6.07 – 5.93 (m, 1H), 5.27 (m, 1H), 5.17 (m, 1H), 4.75 (m, 2H), 3.74 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7 (C=O), 135.9, 132.5, 130.7, 126.1, 122.6, 121.1, 120.6, 118.4, 110.4, 110.3, 67.2, 49.2. HRMS (ESI) Calcd for C₁₆H₁₈N₂NaO₂: [M+Na]⁺, 293.1260; Found: 293.1260. IR: v (cm⁻¹) = 1612.26 cm⁻¹ (C=O stretch).

(1-allyl-5-methyl-1H-indol-3-yl)(morpholino)methanone (4j).

A red liquid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.41 (s, 1H), 7.23 (d, *J* = 8.4 Hz, 1H), 7.08 (d, *J* = 8.4 Hz, 1H), 5.98 (m, 1H), 5.25 (m, 1H), 5.14 (m, 1.0 Hz, 1H), 4.71 (d, *J* = 5.5 Hz, 2H), 3.74 (m, 8H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8 (C=O), 134.4, 132.6, 130.6, 126.5, 124.2, 120.3, 118.2, 109.9, 109.8, 67.2, 49.2, 21.5. HRMS (ESI) Calcd for C₁₇H₂₀N₂NaO₂: [M+Na]⁺, 307.1417; Found: 307.1414. IR: v (cm⁻¹) = 1612.26 cm⁻¹ (C=O stretch).

(1-allyl-6-methyl-1H-indol-3-yl)(morpholino)methanone (4k).

A red liquid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.2 Hz, 1H), 7.41 (s, 1H), 7.13 (s, 1H), 7.05 (d, *J* = 8.2 Hz, 1H), 6.00 (m, 1H), 5.26 (d, *J* = 10.2 Hz, 1H), 5.16 (d, *J* = 17.1 Hz, 1H), 4.71 (d, *J* = 5.0 Hz, 2H), 3.73 (m, 8H), 2.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9 (C=O), 136.3, 132.6, 132.5, 130.3, 123.9, 122.9, 120.2, 118.2, 110.3, 110.1, 67.2, 49.0, 21.8. HRMS (ESI) Calcd for C₁₇H₂₀N₂NaO₂: [M+Na]⁺, 307.1417; Found: 307.1422. IR: v (cm⁻¹) = 1612.26 cm⁻¹ (C=O stretch).

(1-allyl-7-methyl-1H-indol-3-yl)(morpholino)methanone (4l).

A red liquid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.0 Hz, 1H), 7.36 (s, 1H), 7.09 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 7.1 Hz, 1H), 6.06 (m, 1H), 5.20 (d, J = 10.3 Hz, 1H), 4.97 (d, J = 2.7 Hz, 2H), 4.85 (d, J = 17.1 Hz, 1H), 3.72 (m, 8H), 2.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7 (C=O), 134.7, 134.5, 132.0, 126.9, 125.5, 121.5, 121.2, 118.6, 116.9, 110.6, 67.2, 51.2, 19.4. HRMS (ESI) Calcd for C₁₇H₂₀N₂NaO₂: [M+Na]⁺, 307.1417; Found: 307.1417. IR: v (cm⁻¹) = 1620.26 cm⁻¹ (C=O stretch).

methyl 1-allyl-3-(morpholine-4-carbonyl)-1H-indole-5-carboxylate (4m).

A red liquid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 1.1 Hz, 1H), 7.96 (m, 1H), 7.52 (s, 1H), 7.37 (d, J = 8.7 Hz, 1H), 6.00 (m, 1H), 5.30 (m, 1H), 5.18 (m, 1H), 4.77 (m, 2H), 3.94 (s, 3H), 3.75 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 167.7 (C=O), 165.9 (C=O), 138.3, 131.9, 131.8, 125.7, 123.9, 123.3, 123.2, 118.8, 111.9, 110.0, 67.1, 52.0, 49.4. HRMS (ESI) Calcd for C₁₈H₂₀N₂NaO₄: [M+Na]⁺, 351.1315; Found: 351.1307. IR: v (cm⁻¹) = 1642.65 cm⁻¹, 1703.42 cm⁻¹ (C=O stretch).

(1-benzyl-1H-indol-3-yl)(morpholino)methanone (4n).

A white solid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.69 (m, 1H), 7.47 (s, 1H), 7.33 – 7.25 (m, 4H), 7.25 – 7.18 (m, 2H), 7.18 – 7.10 (m, 2H), 5.29 (s, 2H), 3.71 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6 (C=O), 136.2, 136.1, 131.1, 128.9, 128.1, 127.1, 126.2, 122.7, 121.2, 120.7, 110.6, 110.4, 67.1, 50.5. HRMS (ESI) Calcd for C₂₀H₂₀N₂NaO₂: [M+Na]⁺, 343.1420; Found: 343.1417. IR: v (cm⁻¹) = 1642.65 cm⁻¹ (C=O stretch)

(1-benzyl-5-methyl-1H-indol-3-yl)(morpholino)methanone (40).

A white solid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.34 (s, 1H), 7.25 – 7.17 (m, 3H), 7.12 – 7.02 (m, 3H), 6.96 (m, 1H), 5.20 (s, 2H), 3.65 (m, 8H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8 (C=O), 136.4, 134.6, 130.9, 130.8,128.9, 128.0, 127.0, 126.6, 124.4, 120.4, 110.1,109.9,67.1, 50.5, 21.6. HRMS (ESI) Calcd for C₂₁H₂₂N₂NaO₂: [M+Na]⁺, 357.1573; Found: 357.1570. IR: v (cm⁻¹) = 1612.26 cm⁻¹ (C=O stretch).

(1-benzyl-6-methyl-1H-indol-3-yl)(morpholino)methanone (4p).

A white solid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.2 Hz, 1H), 7.41 (s, 1H), 7.36 – 7.26 (m, 3H), 7.17 – 7.02 (m, 4H), 5.28 (s, 2H), 3.72 (m, 8H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8 (C=O), 136.5, 136.4, 132.7, 130.6, 128.9, 127.9, 127.0, 124.0, 123.0, 120.3, 110.5, 110.2, 67.1, 50.3, 21.8. HRMS (ESI) Calcd for C₂₁H₂₂N₂NaO₂: [M+Na]⁺, 357.1573; Found: 357.1567. IR: v (cm⁻¹) = 1612.26 cm⁻¹ (C=O stretch).

(1-benzyl-6-methyl-1H-indol-3-yl)(morpholino)methanone (4q)

A white solid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.0 Hz, 1H), 7.31 (s, 1H), 7.24 – 7.15 (m, 3H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.92 – 6.81 (m, 3H), 5.51 (s, 2H), 3.65 (m, 8H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7 (C=O), 138.4, 134.9, 132.5, 129.0, 127.7, 127.3, 125.7, 125.6, 121.7, 121.4, 118.7, 110.7, 67.1, 52.6, 19.5. HRMS (ESI) Calcd for C₂₁H₂₂N₂NaO₂: [M+Na]⁺, 357.1573; Found: 357.1575. IR: v (cm⁻¹) = 1620.26 cm⁻¹ (C=O stretch).

(1-benzyl-5-bromo-1H-indol-3-yl)(morpholino)methanone (4r)

A pale yellow solid. Chromatography solvent (PE/EA = 1/1). 1H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 1.7 Hz, 1H), 7.44 (s, 1H), 7.33 – 7.26 (m, 4H), 7.17 – 7.09 (m, 3H), 5.29 (s, 2H), 3.72 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 165.9 (C=O), 135.8, 134.8, 131.6, 129.1, 128.3, 128.0, 127.0, 125.8, 123.4, 114.8, 111.9, 110.1, 67.1, 50.7. HRMS (ESI) Calcd for C₂₂H₁₉BrN₂NaO₂: [M+Na]⁺, 421.0546; Found: 421.0539. IR: v (cm⁻¹) = 1612.26 cm⁻¹ (C=O stretch).

(1-benzyl-1H-pyrrol-3-yl)(morpholino)methanone (4s)

A red liquid. Chromatography solvent (PE/EA = 5/1).1H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 3H), 7.15 (d, *J* = 6.7 Hz, 2H), 7.07 (s, 1H), 6.62 (t, *J* = 2.5 Hz, 1H), 6.35 – 6.27 (m, 1H), 5.04 (s, 2H), 3.72 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4 (C=O), 136.8, 128.9, 128.1, 127.4, 124.4, 121.2, 118.4, 109.5, 67.0, 53.7. HRMS (ESI) Calcd for C₁₆H₁₈N₂NaO₂: [M+Na]⁺, 293.1260; Found: 293.1261. IR: v (cm⁻¹) = 1605.86 cm⁻¹ (C=O stretch).

(1-methyl-1H-pyrrolo[2,3-b]pyridin-3-yl)(morpholino)methanone (4t)

A yellow solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 8.43 – 8.35 (m, 1H), 8.05 (m, 1H), 7.57 (s, 1H), 7.18 (m, 1H), 3.92 (s, 3H), 3.75 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7 (C=O), 147.3, 143.9, 131.5, 128.9, 118.6, 117.1, 108.1, 67.0, 31.5. HRMS (ESI) Calcd for C₁₃H₁₅N₃NaO₂: [M+Na]⁺, 268.1056; Found: 268.1066. IR: v (cm⁻¹) = 1597.87 cm⁻¹ (C=O stretch).

N-benzyl-N,1-dimethyl-1H-indole-3-carboxamide (4u)

A white solid. Chromatography solvent (PE/EA = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.8 Hz, 1H), 7.38 – 7.21 (m, 9H), 4.80 (s, 2H), 3.76 (s, 3H), 3.07 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.7 (C=O), 137.6, 136.5, 130.6, 128.8, 127.5, 127.4, 126.9, 122.5, 121.3, 120.9, 110.3, 109.6, 52.8, 35.5, 33.2. HRMS (ESI) Calcd for C₁₈H₁₈N₂NaO: [M+Na]⁺, 301.1311; Found: 301.1311. IR: v (cm⁻¹) = 1605.26 cm⁻¹ (C=O stretch).

N-(2-cyclohexenylethyl)-1-methyl-1H-indole-3-carboxamide (4v)

A colorless solid. Chromatography solvent (PE/EA = 5/1).¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.6 Hz, 1H), 7.68 (s, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.28 (m, 2H), 6.01 (s, 1H), 5.63 (s, 1H), 3.82 (s, 3H), 3.59 (m, 2H), 2.30 (t, J = 6.4 Hz, 2H), 2.06 (m, 4H), 1.69 – 1.58 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 164.9 (C=O), 137.3, 135.2, 132.8, 125.0, 124.2, 122.3, 121.3, 119.7, 111.2, 110.2, 37.7, 36.8, 33.3, 27.6, 25.4, 22.8, 22.4. HRMS (ESI) Calcd for C₁₈H₂₂N₂NaO: [M+Na]⁺, 305.1624; Found: 305.1628. IR: v (cm⁻¹) = 1628.25 cm⁻¹ (C=O stretch); v (cm⁻¹)=3285.12 cm⁻¹ (N-H stretch).

N-butyl-1-methyl-1H-indole-3-carboxamide (4w)

A yellow solid. Chromatography solvent (PE/EA = 5/1). 1H NMR (400 MHz, CDCl₃) δ 7.97 – 7.88 (m, 1H), 7.65 (s, 1H), 7.37 – 7.23 (m, 3H), 5.98 (s, 1H), 3.79 (s, 3H), 3.50 (m, 2H), 1.67 – 1.58 (m, 2H), 1.44 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.2 (C=O), 137.2, 132.3, 125.3, 122.4, 121.3, 119.9, 111.1, 110.1, 39.2, 33.2, 32.1, 20.3, 13.9. HRMS (ESI) Calcd for C₁₄H₁₈N₂NaO: [M+Na]⁺, 253.1311; Found: 253.1310. IR: v (cm⁻¹) = 1628.25 cm⁻¹ (C=O stretch); v (cm⁻¹) = 3384.27 cm⁻¹ (N-H stretch).

N-tert-butyl-1-methyl-1H-indole-3-carboxamide (4x)

A white solid. Chromatography solvent (PE/EA = 10/1).1H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.2 Hz, 1H), 7.62 (s, 1H), 7.36 (d, J = 7.4 Hz, 1H), 7.29 (m, 2H), 5.81 (s, 1H), 3.82 (s, 3H), 1.52 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.6 (C=O), 137.3, 132.3, 125.1, 122.4,

121.2, 119.8, 112.2, 110.1, 51.3, 33.2, 29.3. HRMS (ESI) Calcd for $C_{14}H_{18}N_2O$: $[M+H]^+$, 231.1492; Found: 231.1497. IR: v (cm⁻¹) = 1628.25 cm⁻¹ (C=O stretch); v (cm⁻¹) = 3384.27 cm⁻¹ (N-H stretch).

N-benzyl-1-methyl-1H-indole-3-carboxamide (4y)

A pale yellow solid. Chromatography solvent (PE/EA = 5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.90 (m, 1H), 7.67 (s, 1H), 7.44 – 7.32 (m, 5H), 7.31 – 7.22 (m, 3H), 6.24 (s, 1H), 4.70 (d, J = 5.7 Hz, 2H), 3.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0 (C=O), 138.9, 137.3, 132.4, 128.7, 127.8, 127.4, 125.3, 122.6, 121.5, 120.1, 110.7, 110.1, 43.5, 33.3. HRMS (ESI) Calcd for C₁₇H₁₆N₂NaO: [M+Na]⁺, 287.1155; Found: 287.1153. IR: v (cm⁻¹) = 1636.25 cm⁻¹ (C=O stretch); v (cm⁻¹) = 3445.05 cm⁻¹ (N-H stretch).

5) ¹H NMR and ¹³C NMR Copies of Products

21

25

6) The Crystal Structure of 3t and 4v

Compound: 3t

CCDC number: 895174

Scheme S1 The crystal structure of 3t.

Compound: 4v

CCDC number: 895173

Scheme S2 The crystal structure of 4v.

7) References

- 1 Y. Naruse, Y. Ito, S. Inagaki, J. Org. Chem. 1991, 56, 2256.
- 2 F. Gagosz, S. Z. Zard, Org. Lett. 2002, 4, 4345.
- 3 H. Heaney, S. V. Ley, A. Brossi, E. E. Garcia, R. P. Schwartz, Org. Synth., Coll. 1988, 6, 104; 1974, 54, 58.
- 4 Y. Huang, H. Miao, Q. Zhang, C. Chen, J. Xu, Catal. Lett. 2008, 122, 344.