$\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$: A First Strandberg-Type POM with 1D straight chainsof polymerized $\left[\mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\right]^{\mathbf{6 -}}$ units and Moderate Second HarmonicGeneration Response(Supporting Information: 14 pages)
Ying Wang, ${ }^{a b}$ Shilie Pan, ${ }^{a}$ Hongwei Yu, ${ }^{a b}$ Xin Su, ${ }^{a}$ Min Zhang ${ }^{a}$, Fangfang Zhang ${ }^{a}$ and Jian Han*a
${ }^{a}$ Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics \& Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China;
${ }^{b}$ University of Chinese Academy of Sciences, Beijing 100039, China;
*To whom correspondence should be addressed. Phone: (86)991-3674558.
Fax: (86)991-3838957. E-mail: slpan@ms.xjb.ac.cn (S. Pan).
Section S1. Synthesis and general characterization S-2
Section S2. Single crystal X-ray diffraction data collection, S-4
Structure solution and refinement procedures
Section S3. IR Spectroscopy S-9
Section S4. UV-Vis-NIR diffuse-reflectance spectroscopy S-10
Section S5. Second-harmonic generation measurements S-11
Section S6. Out-of-center distortion and local dipole S-12 moment calculation for $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$
Section S7. Comparison of the DSC curves S-13
Section S8. References S-14

Section S1. Synthesis and general characterization

Synthesis of $\mathbf{C s}_{4} \mathbf{M o}_{5} \mathbf{P}_{2} \mathbf{O}_{22}$: All reagents for synthesis were commercially available and used as received. Polycrystalline samples of $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$ were synthesized via solid-state reactions of the stoichiometric starting components (0.02 mol) of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(99.0 \%), \mathrm{MoO}_{3}$ (99.5\%) and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}(99.5 \%)$. The sample was placed in an alumina crucible and heated to $500{ }^{\circ} \mathrm{C}$ slowly in air, held for 3 d with several intermediate grindings and mixings. Purity was confirmed by PXRD. The single crystals of $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$ were grown by spontaneous crystallization from the melt of polycrystalline samples $(5 \mathrm{~g})$. The reaction was completed in a platinum crucible under air by applying the following temperature program: heating up to $700^{\circ} \mathrm{C}$ in air, holding at this temperature for 24 h , cooling slowly down to $450{ }^{\circ} \mathrm{C}\left(2^{\circ} \mathrm{C} / \mathrm{h}\right)$, before rapid cooling to RT. Several colorless block crystals were separated mechanically from the crucible for the further structural characterization.

General characterization: PXRD data were collected on a Bruker D2 PHASER diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.5418 \AA)$ at room temperature. The 2θ range was $5-70^{\circ}$ with a step size of 0.02° and a fixed counting time of $1 \mathrm{~s} / \mathrm{step}$. Vibrational spectra were obtained at room temperature via a Shimadzu IR Affinity-1 Fourier transform infrared spectrometer. The sample was mixed thoroughly with dried KBr (5 mg of the sample, 500 mg of KBr). It was collected in a range from 400 to 4000
cm^{-1} with a resolution of $4 \mathrm{~cm}^{-1}$. The UV-Vis-NIR optical diffuse reflectance spectrum was measured at room temperature with a Shimadzu SolidSpec-3700DUV spectrophotometer. Data were collected in the wavelength range $250-2600 \mathrm{~nm}$. The reflectance spectrum was converted to absorbance with the Kubelka-Munk function. ${ }^{\text {S1 }}$ Thermal analysis was carried out on NETZSCH STA 449C instrument at a temperature range of $40-800{ }^{\circ} \mathrm{C}$ with a heating rate of $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ in an atmosphere of flowing N_{2}.

Section S2. Single crystal X-ray diffraction data collection, structure solution and refinement procedures

Single-crystal X-ray diffraction data were collected on a Bruker SMART APEX II CCD diffractometer using monochromatic Mo $\mathrm{K} \alpha$ radiation $(\lambda=$ $0.71073 \AA$). A colorless block crystal of $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$ (dimensions 0.047 $\mathrm{mm} \times 0.10 \mathrm{~mm} \times 0.165 \mathrm{~mm}$) was glued on to a glass fiber at room-temperature. A total of 7424 reflections were collected of which 2833 were independent in the range $2.30<\theta<27.77^{\circ}$. The reduction of data was carried out with the Bruker Suite software package. Face-indexed absorption correction was performed numerically with the program SADABS. ${ }^{\mathrm{S} 2}$ The crystal structure of $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$ was solved by direct methods using the SHELXTL program package with anisotropic displacement parameters for all atoms. ${ }^{53}$ The structure was examined using the Adsym subroutine of PLATON to assure that no additional symmetry could be applied to the models. ${ }^{\text {S4 }}$ Crystal data and structure refinement information are given in Table S1. Selected bond lengths for $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$ are listed in Table S 2 .

Table S1. Crystal data and structure refinement for $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$

Empirical formula	$\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$
Formula weight	1425.28
Temperature	296(2) K
Crystal system	Orthorhombic
Space group	C222 ${ }_{1}$
a / \AA	6.622(5)
b / \AA	20.485(15)
c / \AA	17.748(13)
Volume $/ \AA^{3}$	2408(3)
Z	4
$\rho_{\text {calcd }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	3.932
μ / mm^{-1}	8.715
$\mathrm{F}(000)$	2544
Crystal size / mm ${ }^{3}$	$0.165 \times 0.10 \times 0.047$
Θ range for data collection	2.30 to 27.77°
Index ranges	$-8 \leq \mathrm{h} \leq 7,-23 \leq \mathrm{k} \leq 26,-23 \leq 1 \leq 19$
Reflections collected	7424
Independent reflections	2833 [$\mathrm{R}(\mathrm{int})=0.0406]$
Completeness to theta $=27.77$	99.4 \%
Data / restraints / parameters	2833 / 0 / 153
Goodness-of-fit on F^{2}	1.009
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]^{[\mathrm{a}]}$	$\mathrm{R}_{1}=0.0314, \mathrm{wR}_{2}=0.0483$
Final R indices (all data) ${ }^{[a]}$	$\mathrm{R}_{1}=0.0383, \mathrm{wR}_{2}=0.0503$
Largest diff. peak/hole / $\cdot \cdot \AA^{-3}$	0.971 and -0.905
Absolute structure parameter	0.03(2)

${ }^{[a]} \mathrm{R}_{1}=\Sigma \|\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right||\Sigma| \mathrm{F}_{\mathrm{o}} \mid$ and $\mathrm{wR}_{2}=\left[\Sigma \mathrm{w}\left(\mathrm{F}_{0}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma \mathrm{w} \mathrm{F}_{0}{ }^{4}\right]^{1 / 2}$ for $\mathrm{F}_{0}{ }^{2}>2 \sigma\left(\mathrm{~F}_{0}{ }^{2}\right)$.

Table S2. Selected bond lengths (\AA) for $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$.

$\mathrm{Cs}(1)-\mathrm{O}(2)$	$2.960(5)$	$\mathrm{Cs}(3)-\mathrm{O}(9)$	$3.378(6)$
$\mathrm{Cs}(1)-\mathrm{O}(2) \# 1$	$2.960(5)$	$\mathrm{Mo}(1)-\mathrm{O}(8)$	$1.694(5)$
$\mathrm{Cs}(1)-\mathrm{O}(4) \# 1$	$2.973(5)$	$\mathrm{Mo}(1)-\mathrm{O}(6)$	$1.704(6)$
$\mathrm{Cs}(1)-\mathrm{O}(4)$	$2.973(5)$	$\mathrm{Mo}(1)-\mathrm{O}(10) \# 11$	$1.903(4)$
$\mathrm{Cs}(1)-\mathrm{O}(6)$	$3.068(6)$	$\mathrm{Mo}(1)-\mathrm{O}(7)$	$1.906(2)$
$\mathrm{Cs}(1)-\mathrm{O}(6) \# 1$	$3.068(6)$	$\mathrm{Mo}(1)-\mathrm{O}(2) \# 3$	$2.328(5)$
$\mathrm{Cs}(1)-\mathrm{O}(8) \# 2$	$3.280(6)$	$\mathrm{Mo}(1)-\mathrm{O}(3)$	$2.485(5)$
$\mathrm{Cs}(1)-\mathrm{O}(8) \# 3$	$3.280(6)$	$\mathrm{Mo}(2)-\mathrm{O}(4)$	$1.699(5)$
$\mathrm{Cs}(1)-\mathrm{O}(7)$	$3.439(3)$	$\mathrm{Mo}(2)-\mathrm{O}(4) \# 1$	$1.699(5)$
$\mathrm{Cs}(1)-\mathrm{O}(7) \# 2$	$3.439(3)$	$\mathrm{Mo}(2)-\mathrm{O}(5)$	$1.910(5)$
$\mathrm{Cs}(2)-\mathrm{O}(4) \# 1$	$2.919(5)$	$\mathrm{Mo}(2)-\mathrm{O}(5) \# 1$	$1.910(5)$
$\mathrm{Cs}(2)-\mathrm{O}(11) \# 4$	$2.972(5)$	$\mathrm{Mo}(2)-\mathrm{O}(12) \# 2$	$2.267(5)$
$\mathrm{Cs}(2)-\mathrm{O}(5) \# 5$	$2.987(5)$	$\mathrm{Mo}(2)-\mathrm{O}(12) \# 3$	$2.267(5)$
$\mathrm{Cs}(2)-\mathrm{O}(11) \# 2$	$3.203(6)$	$\mathrm{Mo}(3)-\mathrm{O}(9)$	$1.692(5)$
$\mathrm{Cs}(2)-\mathrm{O}(9)$	$3.324(6)$	$\mathrm{Mo}(3)-\mathrm{O}(11)$	$1.708(5)$
$\mathrm{Cs}(2)-\mathrm{O}(8)$	$3.353(6)$	$\mathrm{Mo}(3)-\mathrm{O}(10)$	$1.923(4)$
$\mathrm{Cs}(3)-\mathrm{O}(6) \# 6$	$3.174(6)$	$\mathrm{Mo}(3)-\mathrm{O}(5) \# 5$	$1.930(5)$
$\mathrm{Cs}(3)-\mathrm{O}(6) \# 7$	$3.174(6)$	$\mathrm{Mo}(3)-\mathrm{O}(3) \# 6$	$2.263(5)$
$\mathrm{Cs}(3)-\mathrm{O}(8) \# 4$	$3.249(6)$	$\mathrm{Mo}(3)-\mathrm{O}(12)$	$2.364(4)$
$\mathrm{Cs}(3)-\mathrm{O}(8) \# 8$	$3.249(6)$	$\mathrm{P}(1)-\mathrm{O}(2)$	$1.500(5)$
$\mathrm{Cs}(3)-\mathrm{O}(10) \# 9$	$3.318(5)$	$\mathrm{P}(1)-\mathrm{O}(3)$	$1.526(5)$
$\mathrm{Cs}(3)-\mathrm{O}(10) \# 2$	$3.318(5)$	$\mathrm{P}(1)-\mathrm{O}(12) \# 12$	$1.529(5)$
$\mathrm{Cs}(3)-\mathrm{O}(9) \# 10$	$3.378(6)$	$\mathrm{P}(1)-\mathrm{O}(1)$	$1.597(3)$
Sm			

Symmetry transformations used to generate equivalent atoms:
\#1 -x+1,y,-z+1/2; \#2 x+1,y,z; \#3 -x,y,-z+1/2; \#4 x+1/2,-y+3/2,-z; \#5 x-1,y,z; \#6 $\mathrm{x}-1 / 2, \mathrm{y}+1 / 2, \mathrm{z} ; \# 7 \mathrm{x}-1 / 2,-\mathrm{y}+3 / 2,-\mathrm{z}$; \#8 $\mathrm{x}+1 / 2, \mathrm{y}+1 / 2, \mathrm{z}$; \#9 $\mathrm{x}+1,-\mathrm{y}+2,-\mathrm{z}$; \#10 x,-y+2,-z; \#11 x+1/2,y-1/2,z; \#12-x-1/2,y-1/2,-z+1/2.

Fig. S1 ORTEP drawing of the asymmetric unit of $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$. Thermal ellipsoids are drawn at a 50% probability level.

Fig. S2 The polyhedra representation of $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$ along the [001] direction. The figure shows the crystallographic 2_{1} screw axis in the c direction.

Section S3. IR Spectroscopy

Fig. S3 IR Spectroscopy of as-synthesized $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$. Characteristic FTIR bands at 1170 and $1078 \mathrm{~cm}^{-1}$ confirmed the presence of P-O-P bridges, and bands at 927 , 891,704 , and $559 \mathrm{~cm}^{-1}$ are characteristic of phosphomolybdate anion.

Section S4. UV-Vis-NIR diffuse-reflectance spectroscopy

Fig. S4 UV-Vis-NIR diffuse-reflectance spectroscopy of $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$.

Section S5. Second-harmonic generation measurements

Second-harmonic generation (SHG) test was performed on a modified Kurtz-NLO system. ${ }^{\text {S5 }}$ About 100 mg of the powder samples were hand-pressed into a 1 cm diameter round box with two glass windows, which were irradiated with a pulsed infrared beam (1064 nm, $10 \mathrm{~ns}, 10$ kHz) produced by a Q-switched Nd: YAG laser. A 532 nm filter was used to absorb the fundamental light and pass the visible light onto a photomultiplier. A digital oscilloscope was used to receive the laser SHG signal. Because the SHG efficiency has been shown to depend on particle size, ${ }^{\text {S6 }}$ polycrystalline samples were ground and sieved into distinct particle size ranges: $<20,20-38,38-55,55-88,88-105,105-150$, and $150-200 \mu \mathrm{~m}$, and the microcrystalline $\operatorname{KDP}(150-200 \mu \mathrm{~m})$ also served as a reference.

Section S6. Out-of-center distortion and local dipole moment calculation for $\mathrm{Cs}_{\mathbf{4}} \mathbf{M o}_{\mathbf{5}} \mathbf{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{2 2}}$

Table S3. The direction and magnitude of the $\mathrm{MoO}_{6}, \mathrm{PO}_{4}$, and $\mathrm{CsO}_{\mathrm{n}}(\mathrm{n}=10,6$, and 8) polyhedra in $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$

species	octahedron distortion,$\Delta_{d}{ }^{[a]}$		dipole moment				
	direction	magnitude	x (a)	y (b)	$z(c)$	magnitude	
						deby	$\begin{gathered} \times 10^{-4} \\ \mathrm{esu} \cdot \mathrm{~cm} \\ 1 \AA^{3} \\ \hline \end{gathered}$
$\mathrm{Mo}(1) \mathrm{O}_{6}$	C_{2} [110]	1.433	-0.6743	-6.118	2.090	6.501	108.0
$\mathrm{Mo}(2) \mathrm{O}_{6}$	C_{2} [110]	1.171	0	7.043	0	7.043	117.0
$\mathrm{Mo}(3) \mathrm{O}_{6}$	C_{2} [110]	1.302	-1.196	0.2933	7.122	7.227	120.0
PO_{4}	-	-	1.865	-1.882	-0.3181	2.669	44.33
$\left[\mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\right]^{6-} \mathrm{unit}^{\text {[b] }}$	-	-	0	-8.371	0	8.371	139.0
$\left[\mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\right]^{6-}$ unit $^{[b]}$	-	-	0	8.371	0	8.371	139.0
$\mathrm{Cs}(1) \mathrm{O}_{10}$	-	-	0	-3.772	0	3.772	62.66
$\mathrm{Cs}(2) \mathrm{O}_{6}$	-	-	-1.465	1.282	-0.6708	2.059	34.20
$\mathrm{Cs}(3) \mathrm{O}_{8}$	-	-	1.372	0	0	1.372	22.78
Asymmetric unit	-	-	-0.0988	-3.154	8.223	8.808	146.3
Unit cell	-	-	0	0	0	0	0

${ }^{[\text {a] }}$ Octahedron distortion, Δ_{d} parameter, is defined as below:
$\Delta d=\frac{|(\mathrm{M}-01)-(\mathrm{M}-04)|}{\left|\cos \theta_{1}\right|}+\frac{|(\mathrm{M}-02)-(\mathrm{M}-05)|}{\left|\cos \theta_{2}\right|}+\frac{|(\mathrm{M}-03)-(\mathrm{M}-06)|}{\left|\cos \theta_{3}\right|}$
where the pairs $(\mathrm{O} 1, \mathrm{O} 4),(\mathrm{O} 2, \mathrm{O} 5)$, and $(\mathrm{O} 3, \mathrm{O} 6)$ are the oxygen atoms that constitute the octahedron and are located in opposite positions from each other.
$\theta_{1}=\angle \mathrm{O} 1-\mathrm{M}-\mathrm{O} 4, \theta_{2}=\angle \mathrm{O} 2-\mathrm{M}-\mathrm{O} 5$, and $\theta_{3}=\angle \mathrm{O} 3-\mathrm{M}-\mathrm{O} 6$
${ }^{[b]}$ Representation of two opposite directions of the POM units

Section S7. Comparison of the DSC curves

Fig. S5 Comparison of the DSC curves for $\mathrm{Cs}_{4} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{22}$. The second run performed right after the first run.

Section S8. References

S1. (a) J. Tauc, Mater. Res. Bull., 1970, 5, 721; (b) P. Kubelka and F. Z. Munk, Tech. Phys., 1931, 12, 593.

S2. SAINT, Version 7.60A,Bruker Analytical X-ray Instruments, Inc.,Madison, WI, 2008.

S3. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2010, 64, 112.
S4. L. Spek, J. Appl. Crystallogr, 2003, 36, 7.
S5. S. K. Kurtz and T. T. Perry, J. Appl. Phys., 1968, 39, 3798.
S6. J. P. Dougherty and S. K. Kurtz, J. Appl. Crystallogr., 1976, 9, 145.

