Electronic Supplementary Information

Unexpected manganese(III) acetate-mediated reactions of β-enamino carbonyl compounds with 1-(pyridin-2-yl)-enones under mechanical milling conditions

Zi Liu,^a Guang-Peng Fan,^a Guan-Wu Wang*^{a,b}

 ^a CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. Fax: (+86)551-360-7864; E-mail: gwang@ustc.edu.cn
 ^b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

Table of contents

Experimental procedures and spectral datas of 3	S3-S8
NMR-spectra of new compounds	
¹ H NMR spectrum of product 3aa	S 9
¹³ C NMR spectrum of product 3aa	S10
¹ H NMR spectrum of product 3ab	S 11
¹³ C NMR spectrum of product 3ab	S12
¹ H NMR spectrum of product 3ac	S13
¹³ C NMR spectrum of product 3ac	S14
¹ H NMR spectrum of product 3ad	S15
¹³ C NMR spectrum of product 3ad	S 16
¹ H NMR spectrum of product 3ae	S17
¹³ C NMR spectrum of product 3ae	S18
¹ H NMR spectrum of product 3af	S19
¹³ C NMR spectrum of product 3af	S20
¹ H NMR spectrum of product 3ag	S 21
¹³ C NMR spectrum of product 3ag	S22
¹ H NMR spectrum of product 3ah	S23
¹³ C NMR spectrum of product 3ah	S24
¹ H NMR spectrum of product 3ai	S25
¹³ C NMR spectrum of product 3ai	S26
¹ H NMR spectrum of product 3aj	S27
¹³ C NMR spectrum of product 3a j	S28
¹ H NMR spectrum of product 3ak	S29
¹³ C NMR spectrum of product 3ak	S 30

¹ H NMR spectrum of product 3al	S 31
¹³ C NMR spectrum of product 3al	S32
¹ H NMR spectrum of product 3am	S33
¹³ C NMR spectrum of product 3am	S34
¹ H NMR spectrum of product 3an	S35
¹³ C NMR spectrum of product 3an	S36
¹ H NMR spectrum of product 3ao	S37
¹³ C NMR spectrum of product 3ao	S38
¹ H NMR spectrum of product 3ap	S39
¹³ C NMR spectrum of product 3ap	S40
¹ H NMR spectrum of product 3aq	S41
¹³ C NMR spectrum of product 3aq	S42
¹ H NMR spectrum of product 3ha	S43
¹³ C NMR spectrum of product 3ha	S44
¹ H NMR spectrum of product 3hd	S45
¹³ C NMR spectrum of product 3hd	S46
¹ H NMR spectrum of product 3hl	S47
¹³ C NMR spectrum of product 3hl	S48
¹ H NMR spectrum of product 3hm	S49
¹³ C NMR spectrum of product 3hm	S50
X-ray crystal structure of 3aa	S51

General Procedure for 3

A mixture of 3-amino-5,5-dimethylcyclohex-2-enone **1a** (or **1b-1h**, 0.2 mmol), enone **2a** (or **2b-2q**, 0.1 mmol), $Mn(OAc)_3 2H_2O$ (107.2 mg, 0.4 mmol) and DMAP (12.2 mg, 0.1 mmol) was added to a stainless-steel jar containing two stainless-steel balls. The vessel was vibrated in Spex SamplePrep 5100 Mixer Mill at room temperature (~25 °C) for 2 h. The same reaction was repeated again. Then, the two reaction mixtures were washed with acetone and collected into a round-bottomed flask together with silica and the solvent was removed *in vacuo*. The residue was purified on a silica gel column with petroleum ether and ethyl acetate (3:1 v/v) as the eluent.

6,6-Dimethyl-2-picolinoyl-3*-p***-tolyl-6,7-dihydrobenzofuran-4**(*5H*)**-one** (**3aa**): ¹H NMR (400 MHz, CDCl₃) δ 8.20 (dt, J = 4.8, 1.2 Hz, 1H), 7.69 (dt, J = 7.6, 1.2 Hz, 1H), 7.65 (td, J = 7.5, 1.6 Hz, 1H), 7.19 (ddd, J = 7.1, 4.8, 1.7 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 6.91 (d, J = 8.0 Hz, 2H), 2.92 (s, 2H), 2.43 (s, 2H), 2.25 (s, 3H), 1.20 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 183.9, 169.4, 154.3, 148.6, 147.4, 138.1, 136.5, 134.3, 130.3 (2C), 128.2 (2C), 127.1, 125.8, 123.9, 119.8, 53.3, 38.1, 34.8, 28.6 (2C), 21.3; FT-IR (KBr) ν/cm^{-1} 2957, 2871, 1687, 1648, 1579, 1541, 1499, 1442, 1344, 1274, 1238, 1169, 1049, 987, 928, 811, 750, 698, 616; HR-MS (+APCI) calcd for C₂₃H₂₂NO₃ [M+1]⁺ 360.1594, found 360.1594.

6,6-Dimethyl-2-picolinoyl-3*-o***-tolyl-6,7-dihydrobenzofuran-4**(*5H*)**-one** (3ab): ¹H NMR (400 MHz, CDCl₃) δ 8.20 (dt, J = 4.8, 1.3 Hz, 1H), 7.61-7.56 (m, 2H), 7.14 (ddd, J = 6.6, 4.8, 2.9 Hz, 1H), 7.07-7.02 (m, 2H), 6.87-6.81 (m, 2H), 2.95 (s, 2H), 2.43 (d, J = 16.4 Hz, 1H), 2.39 (d, J = 16.4 Hz, 1H), 2.19 (s, 3H), 1.20 (s, 3H), 1.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.9, 183.5, 169.3, 154.3, 148.4, 147.9, 137.1, 136.3, 133.3, 130.8, 129.8, 129.4, 128.2, 125.9, 124.9, 123.3, 120.8, 53.0, 38.1, 34.9, 28.9, 28.4, 20.1; FT-IR (KBr) ν/cm^{-1} 2960, 2929, 1681, 1651, 1569, 1534, 1452, 1425, 1338, 1287, 1231, 1173, 1050, 994, 931, 753, 695, 616; HR-MS (+EI) calcd for C₂₃H₂₁NO₃ (M⁺) 359.1521, found 359.1523.

3-(3,4-Dimethylphenyl)-6,6-dimethyl-2-picolinoyl-6,7-dihydrobenzofuran-4(*5H*)-**one (3ac):** ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dt, *J* = 4.7, 1.2 Hz, 1H), 7.66-7.64 (m, 1H), 7.63 (td, *J* = 7.3, 1.6 Hz, 1H), 7.16 (ddd, *J* = 6.8, 4.7, 2.0 Hz, 1H), 7.05 (dd, *J* = 7.8, 1.5 Hz, 1H), 6.91 (d, *J* = 7.8 Hz, 1H), 6.88 (s, 1H), 2.91 (s, 2H), 2.43 (s, 2H), 2.14 (s, 3H), 2.03 (s, 3H), 1.19 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 183.9, 169.5, 154.5, 148.5, 147.4, 136.7, 136.3, 135.4, 134.5, 131.6, 128.8, 127.8, 127.3, 125.6, 123.7, 119.7, 53.3, 38.1, 34.8, 28.6 (2C), 19.6, 19.4; FT-IR (KBr) *v*/cm⁻¹ 2956, 2871, 1684, 1640, 1577, 1536, 1494, 1444, 1345, 1279, 1238, 1050, 981, 943, 817, 752, 696, 615; HR-MS (+EI) calcd for C₂₄H₂₃NO₃ (M⁺) 373.1678, found 373.1675.

3-(4-Methoxyphenyl)-6,6-dimethyl-2-picolinoyl-6,7-dihydrobenzofuran-4(5*H***)-on e (3ad):** ¹H NMR (400 MHz, CDCl₃) δ 8.23 (dt, J = 4.8, 1.5 Hz, 1H), 7.70-7.67 (m, 1H), 7.66 (td, J = 7.4, 1.5 Hz, 1H), 7.22-7.19 (m, 1H), 7.19 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 8.8 Hz, 2H), 3.73 (s, 3H), 2.91 (s, 2H), 2.43 (s, 2H), 1.19 (s, 6H); ¹³C NMR

(100 MHz, CDCl₃) δ 193.1, 183.7, 169.4, 159.5, 154.2, 148.5, 147.1, 136.4, 133.9, 131.7 (2C), 125.9, 123.8, 122.1, 119.6, 112.9 (2C), 55.2, 53.2, 37.9, 34.7, 28.5 (2C); FT-IR (KBr) ν/cm^{-1} 2955, 2873, 1687, 1641, 1579, 1540, 1498, 1443, 1344, 1296, 1256, 1166, 1106, 1043, 983, 926, 814, 749, 699, 614; HR-MS (+EI) calcd for $C_{23}H_{21}NO_4$ (M⁺) 375.1471, found 375.1478.

3-(3-Methoxyphenyl)-6,6-dimethyl-2-picolinoyl-6,7-dihydrobenzofuran-4(5*H***)-on e (3ae): ¹H NMR (400 MHz, CDCl₃) \delta 8.18 (d,** *J* **= 4.7 Hz, 1H), 7.70 (d,** *J* **= 7.6 Hz, 1H), 7.65 (td,** *J* **= 7.8, 1.5 Hz, 1H), 7.19 (ddd,** *J* **= 7.3, 4.7, 1.4 Hz, 1H), 7.00 (t,** *J* **= 8.0 Hz, 1H), 6.80-6.78 (m, 2H), 6.70-6.67 (m, 1H), 3.68 (s, 3H), 2.93 (s, 2H), 2.44 (s, 2H), 1.20 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta 193.0, 183.9, 169.4, 158.7, 154.2, 148.6, 147.5, 136.4, 133.7, 131.4, 128.4, 126.0, 123.7, 123.0, 119.7, 115.4, 114.7, 55.2, 53.3, 38.0, 34.8, 28.6 (2C); FT-IR (KBr)** *v***/cm⁻¹ 2956, 1688, 1641, 1573, 1488, 1442, 1422, 1342, 1286, 1276, 1220, 1052, 1004, 941, 772, 745, 696, 681, 617; HR-MS (+EI) calcd for C₂₃H₂₁NO₄ (M⁺) 375.1471, found 375.1476.**

3-(2-Methoxyphenyl)-6,6-dimethyl-2-picolinoyl-6,7-dihydrobenzofuran-4(5*H***)-on e (3af**): ¹H NMR (400 MHz, CDCl₃) δ 8.14 (ddd, J = 4.7, 1.5, 1.0 Hz, 1H), 7.66 (dt, J = 7.7, 1.0 Hz, 1H), 7.60 (td, J = 7.6, 1.5 Hz, 1H), 7.13 (ddd, J = 7.4, 4.7, 1.4 Hz, 1H), 7.12-7.06 (m, 2H), 6.72 (td, J = 7.5, 0.9 Hz, 1H), 6.59 (d, J = 8.2 Hz, 1H), 3.58 (s, 3H), 2.92 (s, 2H), 2.41 (s, 2H), 1.19 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 192.9, 183.7, 169.1, 156.5, 154.1, 148.3, 147.8, 136.1, 131.4, 129.8, 129.2, 125.9, 123.3, 120.3, 120.2, 119.9, 110.0, 55.2, 53.2, 38.0, 34.8, 28.6 (2C); FT-IR (KBr) ν/cm^{-1} 2959, 2936, 2872, 1683, 1644, 1582, 1537, 1489, 1436, 1336, 1297, 1269, 1238, 1167, 1109, 1050, 1026, 985, 927, 748, 689; HR-MS (+EI) calcd for C₂₃H₂₁NO₄ (M⁺) 375.1471, found 375.1477.

6,6-Dimethyl-3-phenyl-2-picolinoyl-6,7-dihydrobenzofuran-4(5*H***)-one (3ag): ¹H NMR (400 MHz, CDCl₃) \delta 8.15 (d, J = 4.6 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.63 (td, J = 7.6, 1.6 Hz, 1H), 7.22 (dd, J = 7.9, 1.5 Hz, 1H), 7.16 (ddd, J = 7.4, 4.6, 1.2 Hz, 1H), 7.14-7.07 (m, 3H), 2.92 (s, 2H), 2.43 (s, 2H), 1.19 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta 193.0, 183.8, 169.4, 154.0, 148.5, 147.4, 136.4, 134.0, 130.3 (2C), 130.2, 128.1, 127.3 (2C), 126.0, 123.8, 119.7, 53.2, 38.0, 34.8, 28.5 (2C); FT-IR (KBr) \nu/\text{cm}^{-1} 3052, 2958, 2927, 2869, 1691, 1642, 1577, 1535, 1487, 1414, 1342, 1274, 1241, 1166, 1047, 986, 926, 769, 740, 701, 615; HR-MS (+EI) calcd for C₂₂H₁₉NO₃ (M⁺) 345.1365, found 345.1366.**

3-(4-Chlorophenyl)-6,6-dimethyl-2-picolinoyl-6,7-dihydrobenzofuran-4(5*H***)-one (3ah**): ¹H NMR (400 MHz, CDCl₃) δ 8.21 (ddd, J = 4.9, 1.5, 1.1 Hz, 1H), 7.74 (dt, J = 7.2, 1.1 Hz, 1H), 7.71 (td, J = 7.5, 1.5 Hz, 1H), 7.26 (ddd, J = 6.9, 4.9, 1.9 Hz, 1H), 7.18 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 2.92 (s, 2H), 2.44 (s, 2H), 1.20 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 183.6, 169.5, 154.0, 148.6, 147.5, 136.7, 134.3, 132.7, 131.7 (2C), 128.8, 127.6 (2C), 126.2, 123.9, 119.6, 53.2, 38.0, 34.9, 28.6 (2C); FT-IR (KBr) ν/cm^{-1} 3073, 2959, 2878, 1682, 1585, 1544, 1481, 1435, 1334,

1234, 1171, 1089, 1048, 1004, 916, 814, 746, 699; HR-MS (+EI) calcd for $C_{22}H_{18}^{35}CINO_3$ (M⁺) 379.0975, found 379.0973.

3-(2-Chlorophenyl)-6,6-dimethyl-2-picolinoyl-6,7-dihydrobenzofuran-4(5*H***)-one (3ai):** ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dt, *J* = 4.5, 0.9 Hz, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.64 (td, *J* = 7.7, 1.7 Hz, 1H), 7.24 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.18 (ddd, *J* = 7.5, 4.5, 1.2 Hz, 1H), 7.11 (td, *J* = 7.7, 1.8 Hz, 1H), 7.08 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.02 (td, *J* = 7.4, 1.0 Hz, 1H), 2.97 (d, *J* = 17.9 Hz, 2H), 2.92 (d, *J* = 17.9 Hz, 2H), 2.46 (d, *J* = 16.1 Hz, 1H), 2.38 (d, *J* = 16.1 Hz, 1H), 1.21 (s, 3H), 1.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 183.1, 169.1, 154.0, 148.4, 148.0, 136.5, 133.8, 131.5, 130.7, 130.2, 129.4, 129.0, 126.1, 126.0, 123.7, 120.6, 52.8, 38.0, 35.0, 28.7, 28.6; FT-IR (KBr) ν/cm^{-1} 2958, 1688, 1653, 1580, 1542, 1470, 1445, 1272, 1228, 1049, 990, 931, 750, 695; HR-MS (+EI) calcd for C₂₂H₁₈³⁵CINO₃ (M⁺) 379.0975, found 379.0975.

3-(Benzo[*d*][1,3]dioxol-5-yl)-6,6-dimethyl-2-picolinoyl-6,7-dihydrobenzofuran-4(5*H*)-one (3aj): ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dt, J = 4.8, 1.2 Hz, 1H), 7.71-7.69 (m, 2H), 7.25 (ddd, J = 5.6, 4.8, 3.2 Hz, 1H), 6.80 (d, J = 1.7 Hz, 1H), 6.67 (dd, J = 8.0, 1.7 Hz, 1H), 6.52 (d, J = 8.0 Hz, 1H), 5.88 (s, 2H), 2.91 (s, 2H), 2.44 (s, 2H), 1.19 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 183.8, 169.4, 154.4, 148.6, 147.7, 147.4, 146.9, 136.6, 133.7, 126.0, 124.8, 123.8, 123.7, 119.7, 110.8, 107.5, 101.1, 53.3, 38.0, 34.8, 28.6 (2C); FT-IR (KBr) ν/cm^{-1} 2957, 2874, 1687, 1641, 1577, 1540, 1487, 1444, 1329, 1278, 1240, 1095, 1044, 993, 938, 865, 809, 746, 695, 614; HR-MS (+EI) calcd for C₂₃H₁₉NO₅ (M⁺) 389.1263, found 389.1266.

4-(6,6-Dimethyl-4-oxo-2-picolinoyl-4,5,6,7-tetrahydrobenzofuran-3-yl)benzonitril e (3ak): ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 4.8 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.76 (td, J = 7.5, 1.6 Hz, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.30 (ddd, J = 7.3, 4.8, 1.3 Hz, 1H), 2.94 (s, 2H), 2.45 (s, 2H), 1.20 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 183.0, 169.4, 153.5, 148.4, 147.5, 136.8, 135.5, 131.4, 130.9 (4C), 126.5, 123.9, 119.3, 118.6, 111.5, 52.9, 37.8, 34.8, 28.5 (2C); FT-IR (KBr) ν/cm^{-1} 2958, 2887, 2874, 2223, 1686, 1656, 1580, 1540, 1495, 1443, 1408, 1340, 1297, 1275, 1235, 1052, 1008, 926, 903, 853, 808, 752, 707, 691, 561; HR-MS (+EI) calcd for C₂₃H₁₈N₂O₃ (M⁺) 370.1317, found 370.1312.

6,6-Dimethyl-3-(4-nitrophenyl)-2-picolinoyl-6,7-dihydrobenzofuran-4(5H)-one

(3al): ¹H NMR (400 MHz, CDCl₃) δ 8.19 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 8.03 (d, J = 8.9 Hz, 2H), 7.83 (dt, J = 7.8, 1.1 Hz, 1H), 7.76 (td, J = 7.7, 1.6 Hz, 1H), 7.44 (d, J = 8.9 Hz, 2H), 7.27 (ddd, J = 7.5, 4.8, 1.3 Hz, 1H), 2.95 (s, 2H), 2.46 (s, 2H), 1.22 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 183.0, 169.4, 153.6, 148.4, 147.6, 147.2, 137.6, 136.9, 131.2 (2C), 131.0, 126.6, 124.0, 122.4 (2C), 119.4, 52.9, 37.8, 34.8, 28.5 (2C); FT-IR (KBr) ν/cm^{-1} 2961, 1688, 1644, 1576, 1511, 1444, 1341, 1291, 1238, 1050, 1009, 926, 853, 814, 750, 699; HR-MS (+EI) calcd for C₂₂H₁₈N₂O₅ (M⁺) 390.1216, found 390.1212.

6,6-Dimethyl-3-(3-nitrophenyl)-2-picolinoyl-6,7-dihydrobenzofuran-4(5H)-one

(3am): ¹H NMR (400 MHz, CDCl₃) δ 8.17 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 8.06 (ddd, J = 8.2, 2.3, 1.1 Hz, 1H), 8.03 (t, J = 1.7 Hz, 1H), 7.83 (dt, J = 7.8, 1.1 Hz, 1H), 7.74 (td, J = 7.7, 1.6 Hz, 1H), 7.71 (ddd, J = 7.7, 1.5, 1.2 Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.24 (ddd, J = 7.6, 4.8, 1.3 Hz, 1H), 2.96 (s, 2H), 2.46 (s, 2H), 1.22 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 183.1, 169.6, 153.7, 148.4, 147.8, 147.3, 137.0, 136.4, 132.2, 131.1, 128.4, 126.5, 125.4, 124.2, 122.9, 119.4, 53.0, 37.9, 35.0, 28.6 (2C); FT-IR (KBr) ν/cm^{-1} 3057, 2952, 2920, 2869, 1681, 1655, 1522, 1479, 1442, 1344, 1285, 1179, 1052, 940, 811, 739, 685, 619; HR-MS (+EI) calcd for C₂₂H₁₈N₂O₅ (M⁺) 390.1216, found 390.1210.

6, 6-Dimethyl-2-picolinoyl-3-(thiophen-2-yl)-6, 7-dihydrobenzofuran-4(5H)-one

(3an): ¹H NMR (400 MHz, CDCl₃) δ 8.33 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 7.79 (dt, J = 7.8, 1.1 Hz, 1H), 7.73 (td, J = 7.7, 1.6 Hz, 1H), 7.27 (ddd, J = 7.5, 4.8, 1.3 Hz, 1H), 7.24 (dd, J = 5.1, 1.2 Hz, 1H), 7.12 (dd, J = 3.6, 1.2 Hz, 1H), 6.78 (dd, J = 5.1, 3.6 Hz, 1H), 2.89 (s, 2H), 2.45 (s, 2H), 1.19 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 192.8, 183.6, 169.2, 154.2, 148.7, 147.6, 136.6, 131.3, 130.2, 128.1, 126.4, 126.2, 126.1, 123.8, 119.5, 53.2, 37.9, 34.7, 28.5 (2C); FT-IR (KBr) ν/cm^{-1} 3086, 2959, 2928, 2869, 1691, 1637, 1578, 1502, 1445, 1410, 1321, 1245, 1162, 1050, 963, 898, 838, 735, 695; HR-MS (+EI) calcd for C₂₀H₁₇NO₃S (M⁺) 351.0929, found 351.0924.

3-(Benzo[b]thiophen-2-yl)-6,6-dimethyl-2-picolinoyl-6,7-dihydrobenzofuran-4(5

H)-one (3ao): ¹H NMR (400 MHz, CDCl₃) δ 8.21 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 7.82 (dt, J = 7.8, 0.9 Hz, 1H), 7.70-7.67 (m, 1H), 7.65 (td, J = 7.7, 1.6 Hz, 1H), 7.58-7.56 (m, 1H), 7.30 (d, J = 0.3 Hz, 1H), 7.25-7.23 (m, 2H), 7.09 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 2.91 (s, 2H), 2.47 (s, 2H), 1.20 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 192.8, 183.7, 169.3, 154.2, 148.7, 148.3, 141.3, 139.1, 136.6, 131.1, 127.9, 126.3, 125.9, 124.7, 124.1, 123.82, 123.77, 121.9, 119.8, 53.2, 38.0, 34.8, 28.6 (2C); FT-IR (KBr) ν/cm^{-1} 2954, 2925, 2868, 1688, 1641, 1582, 1501, 1444, 1417, 1341, 1322, 1290, 1232, 1155, 1107, 1050, 961, 751, 697, 567; HR-MS (+EI) calcd for C₂₄H₁₉NO₃S (M⁺) 401.1086, found 401.1082.

6,6-Dimethyl-3-phenyl-2-(py razine-2-carbonyl)-6,7-dihydrobenzofuran-4(5*H***)-on e** (**3ap):** ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, J = 1.4 Hz, 1H), 8.44 (d, J = 2.3 Hz, 1H), 8.10 (dd, J = 2.3, 1.4 Hz, 1H), 7.22-7.11 (m, 5H), 2.94 (s, 2H), 2.45 (s, 2H), 1.21 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 192.9, 181.9, 170.0, 149.4, 147.1, 146.5, 144.9, 143.1, 135.0, 130.4 (2C), 129.7, 128.6, 127.6 (2C), 119.8, 53.2, 38.1, 34.9, 28.6 (2C); FT-IR (KBr) ν/cm^{-1} 2961, 2928, 2871, 1691, 1650, 1570, 1542, 1489, 1452, 1421, 1345, 1267, 1164, 1050, 1016, 985, 926, 767, 731, 700, 580; HR-MS (+EI) calcd for C₂₁H₁₈N₂O₃ (M⁺) 346.1317, found 346.1293.

3-(4-Methoxyphenyl)-6,6-dimethyl-2-(pyrazine-2-carbonyl)-6,7-dihydrobenzofur an-4(5*H***)-one (3aq):** ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, J = 1.4 Hz, 1H), 8.48 (d, J = 2.4 Hz, 1H), 8.20 (dd, J = 2.4, 1.5 Hz, 1H), 7.19 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 2.4 Hz, 1H), 8.20 (dd, J = 2.4, 1.5 Hz, 1H), 7.19 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 1.4 Hz, 1H), 8.20 (dd, J = 2.4, 1.5 Hz, 1H), 7.19 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 1.4 Hz, 1H), 8.20 (dd, J = 2.4, 1.5 Hz, 1H), 7.19 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 1.4 Hz, 1H), 8.20 (dd, J = 2.4, 1.5 Hz, 1H), 7.19 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 1.4 Hz, 1H), 8.20 (dd, J = 1.4 Hz, 1H), 7.19 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 1.4 Hz, 1H), 8.20 (dd, J = 1.4 Hz, 1H), 7.19 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 1.4 Hz, 1H), 8.20 (dd, J = 1.4 Hz, 1H), 7.19 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 1.4 Hz, 1H), 7.19 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 1.4 Hz, 1H), 8.20 (dd, J = 1.4 Hz, 1H), 8.20 (dd, J = 1.4 Hz, 1H), 8.20 (dd, J = 1.4 Hz, 1H), 7.19 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 1.4 Hz, 1H), 8.20 (dd, J = 1.4 H 8.7 Hz, 2H), 3.74 (s, 3H), 2.92 (s, 2H), 2.45 (s, 2H), 1.20 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 192.9, 181.8, 170.0, 159.9, 149.6, 146.8, 146.3, 144.8, 143.1, 135.0, 131.9 (2C), 121.5, 119.7, 113.1 (2C), 55.2, 53.1, 38.0, 34.7, 28.5 (2C); FT-IR (KBr) ν/cm^{-1} 2959, 1689, 1642, 1610, 1578, 1539, 1500, 1443, 1412, 1341, 1296, 1250, 1172, 1053, 1019, 987, 928, 821, 774, 730, 595, 543; HR-MS (+EI) calcd for C₂₂H₂₀N₂O₄ (M⁺) 376.1423, found 376.1425.

2-Picolinoyl-3-*p*-tolyl-6,7-dihydrobenzofuran-4(5*H*)-one (3ha): ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 4.4 Hz, 1H), 7.70-7.64 (m, 2H), 7.22-7.19 (m, 1H), 7.13 (d, J = 7.9 Hz, 2H), 6.93 (d, J = 7.9 Hz, 2H), 3.06 (t, J = 6.4 Hz, 2H), 2.57-2.54 (m, 2H), 2.25 (s, 3H), 2.24 (quintet, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 183.9, 170.1, 154.3, 148.6, 146.9, 138.0, 136.4, 134.3, 130.2 (2C), 128.1 (2C), 127.1, 125.8, 123.8, 120.8, 38.9, 24.3, 22.1, 21.3; FT-IR (KBr) ν/cm^{-1} 2943, 1679, 1656, 1579, 1543, 1504, 1440, 1426, 1401, 1348, 1263, 1229, 1173, 1066, 1011, 952, 877, 818, 754, 680, 514; HR-MS (+EI) calcd for C₂₁H₁₇NO₃ (M⁺) 331.1208, found 331.1211.

3-(4-Methoxyphenyl)-2-picolinoyl-6,7-dihydrobenzofuran-4(*5H*)-one (**3hd**): ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dt, J = 4.7, 1.4 Hz, 1H), 7.69-7.67 (m, 1H), 7.65 (td, J = 7.3, 1.4 Hz, 1H), 7.23-7.20 (m, 1H), 7.19 (d, J = 8.8 Hz, 2H), 6.66 (d, J = 8.8 Hz, 2H), 3.03 (t, J = 6.4 Hz, 2H), 2.56-2.53 (m, 2H), 2.22 (quintet, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 183.8, 170.2, 159.6, 154.3, 148.6, 146.8, 136.5, 134.0, 131.7 (2C), 125.9, 123.8, 122.2, 120.7, 112.9 (2C), 55.2, 38.9, 24.2, 22.0; FT-IR (KBr) ν/cm^{-1} 2942, 1680, 1650, 1614, 1541, 1504, 1440, 1403, 1349, 1296, 1264, 1250, 1171, 1067, 1035, 1011, 950, 875, 838, 759, 683, 585; HR-MS (+EI) calcd for C₂₁H₁₇NO₄ (M⁺) 347.1158, found 347.1159.

3-(4-Nitrophenyl)-2-picolinoyl-6,7-dihydrobenzofuran-4(5*H***)-one (3hl): ¹H NMR (400 MHz, CDCl₃) \delta 8.28 (d, J = 4.8 Hz, 1H), 8.05 (d, J = 8.8 Hz, 2H), 7.85 (d, J = 7.4 Hz, 1H), 7.81 (td, J = 7.6, 1.5 Hz, 1H), 7.47 (d, J = 8.8 Hz, 2H), 7.34 (ddd, J = 7.2, 4.8, 1.5 Hz, 1H), 3.10 (t, J = 6.4 Hz, 2H), 2.60-2.56 (m, 2H), 2.28 (quintet, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) \delta 193.5, 182.7, 170.4, 153.3, 148.2, 147.4, 147.2, 137.6, 137.5, 131.4, 131.3 (2C), 126.9, 124.2, 122.6 (2C), 120.6, 38.7, 24.2, 22.0; FT-IR (KBr) \nu/\text{cm}^{-1} 3110, 3052, 2926, 1682, 1661, 1578, 1515, 1441, 1346, 1294, 1230, 1063, 1013, 948, 855, 747, 698; HR-MS (+EI) calcd for C₂₀H₁₄N₂O₅ (M⁺) 362.0903, found 362.0902.**

3-(3-Nitrophenyl)-2-picolinoyl-6,7-dihydrobenzofuran-4(5*H***)-one (3hm): ¹H NMR (400 MHz, CDCl₃) \delta 8.21 (ddd, J = 4.8, 1.6, 0.9 Hz, 1H), 8.08-8.05 (m, 2H), 7.82 (dt, J = 7.8, 0.9 Hz, 1H), 7.74 (td, J = 7.7, 1.6 Hz, 1H), 7.70 (dt, J = 7.8, 1.3 Hz, 1H), 7.40 (td, J = 7.8, 0.9 Hz, 1H), 7.25 (ddd, J = 7.6, 4.8, 1.3 Hz, 1H), 3.09 (t, J = 6.4 Hz, 2H), 2.60-2.56 (m, 2H), 2.28 (quintet, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) \delta 193.6, 183.2, 170.3, 153.8, 148.5, 147.42, 147.38, 137.0, 136.4, 132.3, 131.1, 128.4, 126.6, 125.4, 124.2, 123.0, 120.5, 38.7, 24.2, 22.1; FT-IR (KBr) \nu/cm^{-1}**

3081, 2955, 2877, 1686, 1655, 1582, 1524, 1478, 1445, 1410, 1347, 1229, 1065, 1014, 953, 863, 810, 741, 685; HR-MS (+EI) calcd for $C_{20}H_{14}N_2O_5$ (M⁺) 362.0903, found 362.0905.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

X-ray crystal structure of 3aa

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) 111123

No syntax errors found. CIF dictionary Interpreting this report

Datablock: 111123

Bond precision: C-C = 0.0031 AWavelength=1.54184 Cell: a=18.5722(6)b=6.3147(3)c=16.7573(7)beta=93.197(3)alpha=90 gamma=90 290 K Temperature: Calculated Reported Volume 1962.20(14)1962.20(14)Space group P 21/c P 21/c Hall group ? -P 2ybc Moiety formula C23 H21 N O3 ? Sum formula C23 H21 N O3 C23 H21 N O3 Mr 359.41 359.41 1.217 Dx,g cm-3 1.217 Ζ 4 4 0.645 Mu (mm-1) 0.645 F000 760.0 760.0 F000′ 762.27 h,k,lmax 22,7,20 22,7,20 Nref 3702 3615 Tmin,Tmax 0.793,0.857 0.787,0.864 Tmin' 0.773 Correction method= MULTI-SCAN Data completeness= 0.976 Theta(max) = 69.520R(reflections) = 0.0503(2540) wR2(reflections) = 0.1614(3615) S = 1.031Npar= 248

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low 0.976 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C1

```
Alert level G
PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF ....
```

```
0 ALERT level A = Most likely a serious problem - resolve or explain
0 ALERT level B = A potentially serious problem, consider carefully
2 ALERT level C = Check. Ensure it is not caused by an omission or oversight
1 ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

?

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 04/07/2012; check.def file version of 28/06/2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Datablock 111123 - ellipsoid plot

