Supporting Information

Experimental

General procedures

The product distribution for the reaction of PCl₃ for the synthesis of phosphorodiamidites/ phosphoramidite was examined in situ by ³¹P NMR and ¹H-³¹P coupled NMR. The phosphorodiamidites/ 1-butyl-2,3-dimethylimidazolium phosphoramidite prepared in either were bis{(trifluoromethyl)sulfonyl}imide $([C_4dmim][NTf_2],$ 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide $([C_4mim][NTf_2]$ or 1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([C₄mpyrr][NTf₂]. The ionic liquids were prepared in house using standard literature methods from the appropriate bromide salt.1 1-Hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([C₆mim][FAP]) was supplied by Merck KGaA. All ionic liquids were dried under high vacuum for 2 h prior to use. The water content for each ionic liquid was measured using Karl Fischer titration. In each case, the water content for the dried ionic liquid was <0.04 wt%.

PCl₃, 3-hydroxypropionitrile, Hünig's base, diisopropylamine, ethylmethylamine, morpholine and pyrrolidine were obtained from Aldrich and used as supplied. DCM was distilled over calcium hydride prior to use. The activators, pyridinium trifluoroacetate (Py.TFA) and *N*-methylimidazolium triflate (NMI.Tf) were prepared according to procedures reported in the literature and were dried under high vacuum prior to use. Each nucleoside was azeotroped with acetonitrile three times and then dried under high vacuum prior to use.

Spectroscopic details

All the ³¹P, ¹H-³¹P, ¹H and ¹³C nuclear magnetic resonance spectra were recorded on a Bruker Avance 300 or 400 MHz NMR spectrometer at 25 °C. For ionic liquid samples an aliquot was transferred directly into the NMR tube with no addition of deuterated solvents. The ³¹P NMR chemical were recorded in parts per million (ppm) relative to an external probe using a sealed capillary containing triethylphosphate (PO(OEt)₃) in DMSO (solvent used for locking/shimming optimization) inside the NMR tube. The PO(OEt)₃ probe was referenced to 0.2 ppm. For the nucleotides the NMR was recorded in CDCl₃ referenced to 0.00 ppm using TMS for the ¹H NMR and 77.0 ppm using CDCl₃ for the ¹³C NMR.

General experimental conditions

Phosphorodiamidtes

To a stirred solution of PCl_3 in dried $[NTf_2]$ -based ionic liquid (2 eq) under an inert atmosphere of N_2 , Hünig's Base (1 eq) was added. After vigorous stirring for 5 min, cyanoethanol (1 eq) was added and the reaction stirred for a further 30 min. The nucleophilic amine (4 eq) was then added and the reaction stirred for a further 120 min after which the reaction was complete. Isolation was achieved via extraction with anhydrous diethyl ether. $[C_6mim][FAP]$ was added to the extraction mixture after separation but prior to concentration to stabilize of the phosphorodiamidites.

Bis-(morpholino)-2-cyanoethoxyphosphite (1), synthesised in [C₄mpyrr][NTf₂]

¹**H NMR** (300 MHz, CDCl₃) δ 2.67 (t, 2H, J= 6.2 Hz, OCH₂CH₂CN), 3.01 (m, 4H, 2 NCH₂CH₂O), 3.57-3.65 (m, 4H, 2 NCH₂CH₂O), 3.88 (dt, 2H, J= 7.4, 6.2 Hz, OCH₂CH₂CN). ¹³**C NMR** (75 MHz, CDCl₃) δ 20.7 (d, J= 7.5 Hz), 45.5 (d, J= 14.9 Hz), 60.0 (d, J=20.7 Hz), 68.3 (d, J=6.3 Hz), 117.62. ³¹**P NMR** (121 MHz, CDCl₃) δ 130.6. **HRMS** (ES, M + H⁺) calculated for C₁₁H₂₀N₃O₃P 274.1321, found 274.1310.

2-Cyanoethyl-N,N,N',N'-ethylmethylphosphoramidite (2), synthesised in [C₄mim][NTf₂]

¹H NMR (300 MHz, CDCl₃) 1.06 (t, 6H, J=7.1 Hz, 2 NCH₂CH₃), 2.56 (d, 6H, J= 7.1 Hz, 2 NCH₃), 2.64 (t, 2H, J= 6.5 Hz, OCH₂CH₂CN), 3.12-2.86 (m, 4H, 2 NCH₂CH₃), 3.78 (dt, 2H, J=7.6, 6.4 Hz, OCH₂CH₂CN). ¹³C NMR (75 MHz, CDCl₃) δ 14.7 (d, J= 4.4 Hz), 20.6 (d, J=7.5 Hz), 32.5 (d, J=8.8 Hz), 44.4 (d, J=28.3 Hz), 59.3 (d, J= 19.6 Hz), 118.2. ³¹P NMR (121 MHz, CDCl₃) 135.0. HRMS (ES, M + H⁺) calculated for C₁₁H₂₀N₃O₃P 218.1422, found 218.1428.

Bis-(pyrrolidino)-2-cyanoethoxyphosphite (3), synthesised in [C₄mim][NTf₂]

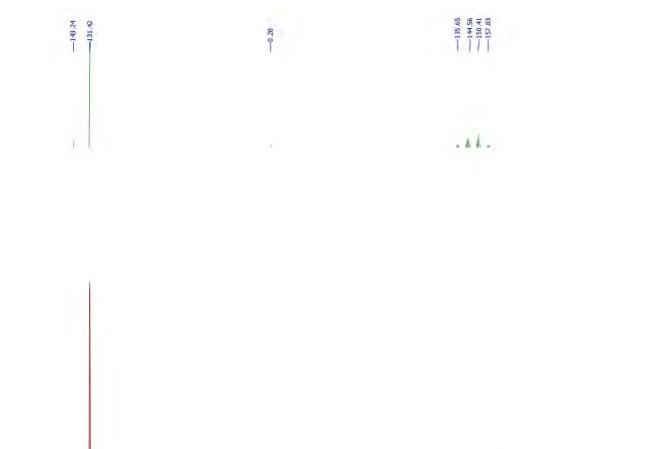
¹H NMR (300 MHz, CDCl₃) δ 1.75-1.79 (m, 8H, 2 NCH₂CH₂), 2.62 (t, 2H, J=6.2 Hz, OCH₂CH₂CN), 3.07-3.13 (m, 8H, 2 NCH₂CH₂), 3.81-3.88 (m, 2H, OCH₂CH₂CN). ¹³C NMR (75 MHz, CDCl₃) δ 20.9 (d, J=6.6 Hz), 26.4 (d, J=4.8 Hz), 47.0 (d, J=15.8 Hz), 59.3 (d, J=19.6 Hz), 118.2. ³¹P NMR (121 MHz, CDCl₃) δ 133.6. HRMS (ES, M + H⁺) calculated for C₁₁H₂₀N₃OP 242.1422, found 242.1412.

Bis-(2-cyanoethyl)-N, N-diisopropylphosphoramidite (4)

To a stirred solution of PCl_3 in dried $[C_4dmim][NTf_2]$ (2 eq) under an inert atmosphere of N_2 , Hünig's base (2 eq) was added. After vigorous stirring for 5 min, cyanoethanol (2 eq) was added and the reaction stirred for a further 30 min. The nucleophilic amine (2 eq) was then added and the reaction stirred for a further 40 min after which the reaction was complete. Isolation was achieved via extraction with

anhydrous diethyl ether. $[C_6mim][FAP]$ was added to the extraction mixture after separation but prior to concentration to stabilize of the phosphoramidite.

¹H NMR (300 MHz, CDCl₃) δ 1.20 (t, 12H, J=6.8 Hz, NCH(CH₃)₂), 2.66 (t, 4H, J= 6.2 Hz, 2 OCH₂CH₂CN), 3.56-3.69 (m, 2H, NCH(CH₃)₂), 3.77-3.96 (m, 4H, 2 OCH₂CH₂CN). ¹³C NMR (75 MHz, CDCl₃) 20.4 (d, J= 6.8), 24.6 (d, J=7.2), 43.3 (d, J=12.4), 58.5 (d, J=18.8), 117.6. ³¹P NMR (121 MHz, CDCl₃) 149.1. HRMS (ES, M+H) calculated for C₁₂H₂₂N₃O₂P 272.1528, found 272.1530


The ³¹P NMR spectra for the phosphorodiamidites, **1-4**, stabilized in [C₆mim][FAP] and ¹H, ¹³C and ³¹P NMR spectra for **4** in its pure form are shown in Figures **S1-S4**. In each case, the mole ratio of phosphorodiamidite to ionic liquid was typically 1:1. Each of the spectra shows the phosphorodiamidites/phosphoramidite at between 123-148 ppm, the [FAP] anion at -150ppm and the internal standard (PO(OEt)₃) at 0.2ppm.

21.01

100

150

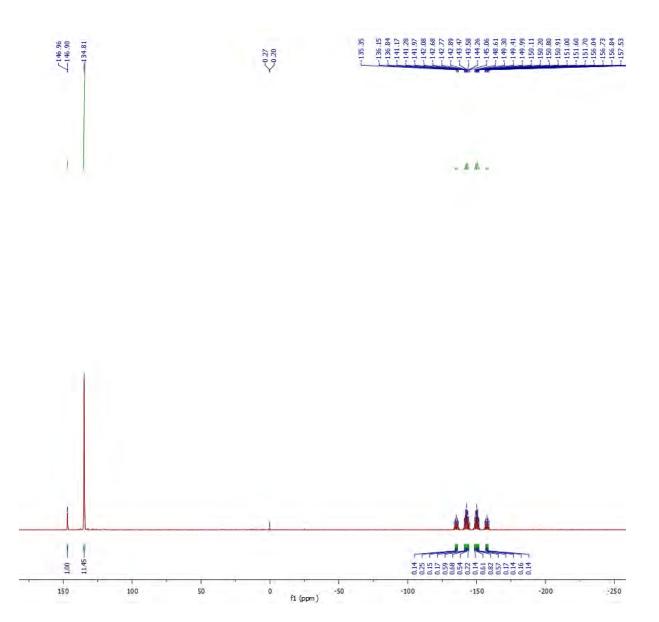
Figure S1 ³¹P NMR of phosphorodiamidite, **1**, stabilized in [C₆mim][FAP]

0 - 0.58

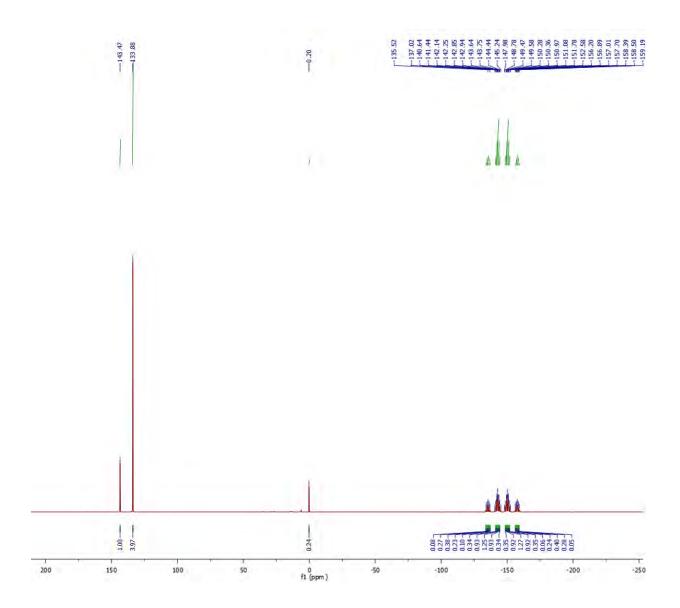
50

-150

-200

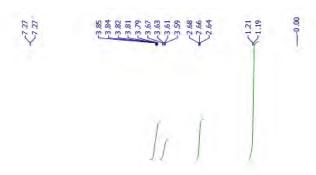

-250

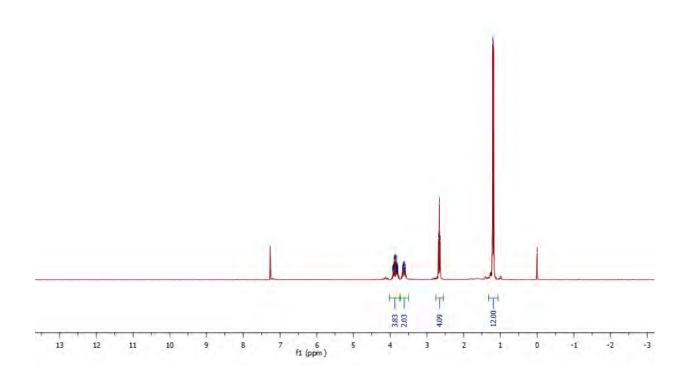
-100


-50

f1 (ppm)

Figure S2 ³¹P NMR of phosphorodiamidite, **2**, stabilized in [C₆mim][FAP]




Figure S3 ³¹P NMR of phosphorodiamidite, **3**, stabilized in [C₆mim][FAP]

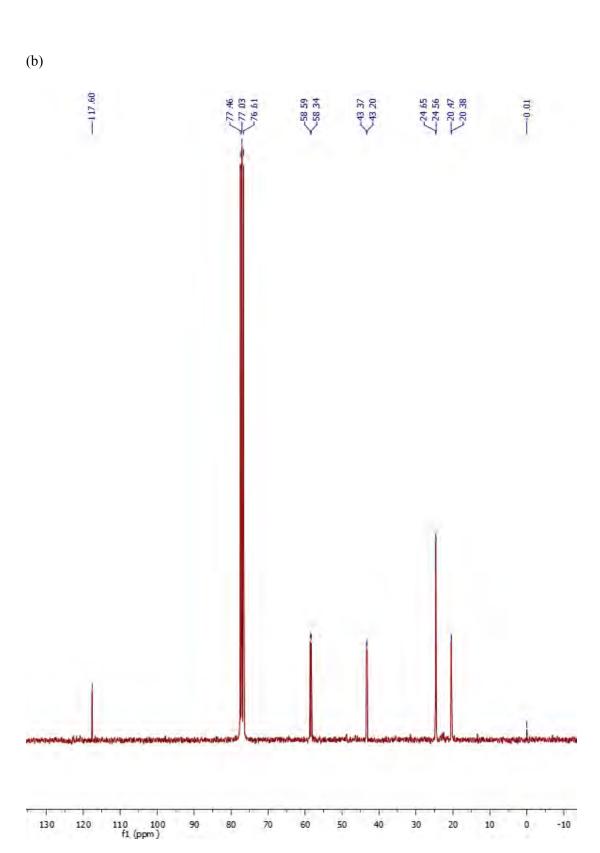
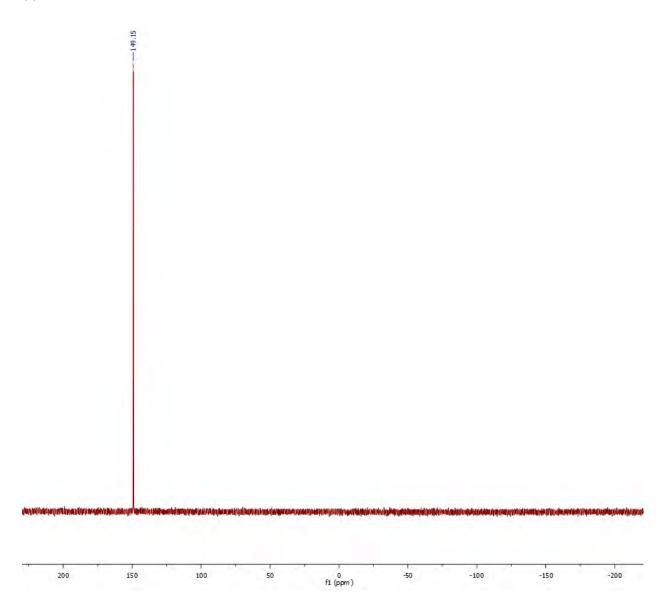
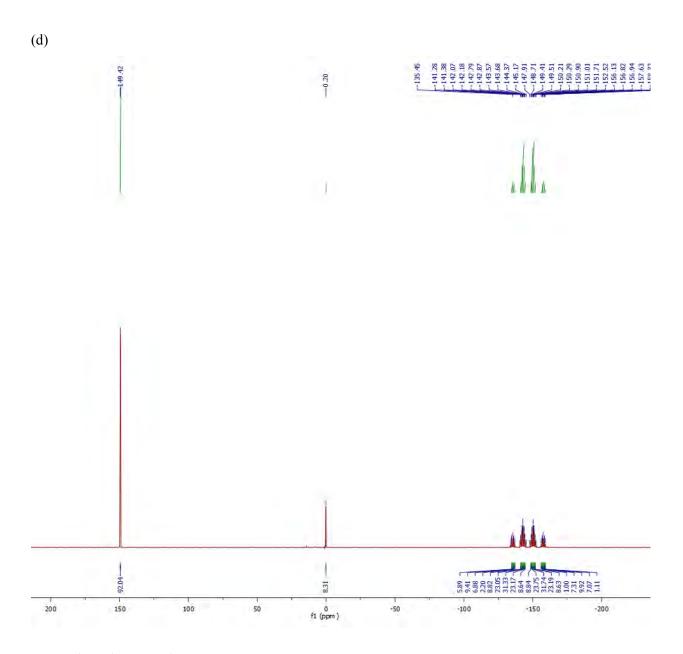


Figure S4 (a) 1 H, (b) 13 C and (c) 31 P NMR of phosphoramidite, **4**, as well as (d) 31 P NMR of phosphoramidite, **4**, stabilized in [C₆mim][FAP]


(a)



Phosphitylation Reactions

All ball mill reactions were carried out on a 40 mg scale based on the amount of protected nucleoside. This generally equated to 25-30 mg (2.5 eq) of activator and 100 μ L of the [C₆mim][FAP] stabilized phosphorodiamidites (2 eq).

Activator Synthesis

N-Methylimidazole Triflate

In a 2 neck round bottom flask, N-methylimidazole (1 eq) in DCM (10 ml) was added. The solution was stirred at room temperature for 30 min after which triflic acid was added (1.1 eq). Diethyl ether (10 ml) was then added to the solution to crystallise the salt and the mixture stirred for a further 30 min. The solution was the filtered, the solid washed with diethyl ether, collected and dried under high vacuum for 2 h to give 1.75g (75%) of *N*-methylimidazole triflate as a white solid.

¹H NMR (300 MHz, CD₃OD) δ ppm 3.99 (s, 3H, NC H_3), 7.59 (d, 2H, J=7.2 Hz, NCHCHN), 8.99 (s, 1H, NCHN). ¹³C NMR (75 MHz, CD₃OD) δ ppm 35.4, 118.0, 122.9, 134.7 ¹⁹F NMR (CD₃OD) δ ppm -78.9 (s, C F_3). CHNS Anal. Calcd for C₅H₈F₃N₂O₃S: C, 25.9; H, 3.0; N, 12.1; S, 13.8 Found: C, 25.8; H, 2.77; N, 12.1; S, 13.5. HRMS (ES) +ve calc. 83.0609 found 83.0610; -ve calc. 148.9520 found 148.9520

Synthesis of Pyridinium Trifluoroacetate

Pyridine (1 eq) was placed in a 2 neck round bottom flask equipped with a magnetic stirrer and cooled in an ice-water bath to 0°C. 2 ml of water was added followed by slow addition of trifluoroacetic acid (1.1 eq) and the mixture was left to stir for a further 2 h. The mixture was then concentrated in vacuo at 70 °C. The resulting residue was then dried under high vacuum for 2 h to give 1.70 g (88%) of pyridinium trifluoroacetate as a white solid.

¹**H NMR** (300 MHz, CDCl₃) δ ppm 7.82-7.95 (m, 2H, 2 NCHCHCH), 8.35 (t, 1H, J= 7.8 Hz, NCHCHCH), 8.91 (d, 2H, J= 5.1 Hz, 2 NCH). ¹³**C NMR** (75 MHz, CDCl₃) δ ppm 118.5, 126.9, 143.3, 144.3, 162.5 (q, J=37.6 Hz, CF₃). ¹⁹**F NMR** (CDCl₃) δ ppm -79.1 (s, CF₃). **CHNS Anal.** Calcd for C₇H₆F₃NO₂: C, 43.5; H, 3.1; N, 7.3 Found: C, 41.5; H, 2.66; N, 6.9. **HRMS** (ES) +ve calc. 80.0500 found 80.0504; -ve calc. 112.9850 found 112.9846.

Ball Milling

To the partially protected nucleoside (1 eq) was added the activator (2.5 eq) and $[C_6mim][FAP]$ -stabilized phosphorodiamidite in $[C_6mim][FAP]$ (2 eq). The mixture was shaken in a 1.5 ml steel vessel with a 5 mm diameter steel ball bearing in a Retsch MM400 mixer mill at 25Hz for 0.5 h. In bulk physical form, the ball-milled reactions were pastes.

All compounds are a diastereoisomeric mixture, hence the complex ¹H and ¹³C spectra and 2 peaks in each of the ³¹P NMR spectra. The diastereoisomeric ratio was determined from the ³¹P NMR.

N-Isobutyryl-5'-*O*-(4,4'-dimethoxytrityl)-2'-*O*-TBDMS-guanosine-3'-*O*-[*O*-(2-cyanoethyl)-*N*-morpholinophosphoramidite (1a). Purification was achieved via filtration of the crude residue through

a short pad of silica gel (1:1 hexane: ethyl acetate, (1% NEt₃), to give **1a** as a white solid (1:1 diastereotopic mixture).

¹H NMR (400 MHz, CDCl₃) δ ppm -0.21 (s, 3H, SiCH₃), -0.17 (s, 3H, SiCH₃), -0.04 (s, 3H, SiCH₃), 0.03 (s, 3H, SiCH₃), 0.60 (d, 3H, J= 6.9 Hz, CH₃), 0.75 (d, 3H, J=6.9 Hz, CH₃), 0.79 (s, 9H, SiC(CH_3)₃), 0.81 (s, 9H, SiC(CH_3)₃)), 0.84 (d, 3H, J=6.8 Hz, CH_3), 0.92 (d, 3H, J=6.8 Hz, CH_3), 1.65-1.68 (heptet, 1H, J=6.8 Hz, CH_3) 6.8 Hz, CH), 1.84-1.89 (heptet, 1H, J= 6.8 Hz, CH), 2.74 (t, 2H, J= 6.1 Hz OCH₂CH₂CN), 2.97 (m, 6H, OCH_2CH_2CN , NCH_2CH_2O), 3.02-3.11 (m, 6H, NCH_2CH_2O , H-5), 3.41-3.49 (m, 4H, NCH_2CH_2O , H-5), 3.61-3.64 (m, 6H, NCH₂CH₂O, H-5), 3.88-4.00 (m, 2H, OCH₂CH₂CN), 4.06-4.12 (m, 2H, OCH₂CH₂CN), 3.77 (s, 3H, OMe), 3.77 (s, 3H, OMe), 3.78 (s, 3H, OMe), 3.78 (s, 3H, OMe), 4.16 (br. m, 1H, H-4), 4.29 (br. m, 1H, H-4), 4.36 (dd, 1H, J= 12.0 Hz, J= 4.9 Hz, H-3), 4.44 (m, 1H, H-3), 4.99 (dd, 1H, J= 7.8 Hz, J = 5.0 Hz, H-2), 5.15 (dd, 1H, J = 7.2 Hz, J = 5.5 Hz, H-2), 5.74 (d, 1H, J = 7.3 Hz, H-1), 5.85 (d, 1H, J= 7.8 Hz, H-1), 6.80-6.85 (m, 8H, trityl), 7.23 (s, 1H, NH), 7.24 (s, 1H, NH), 7.24-7.31 (m, 6H, trityl), 7.40-7.45 (m, 8H, trityl), 7.56 (d, 2H, J=7.3 Hz, trityl), 7.59 (d, 2H, J=7.2 Hz, trityl), 7.83 (s, 1H, N=CH-N), 7.88 (s, 1H, N=CH-N), 8.00 (s, 1H, NH), 8.52 (s, 1H, NH). 13 C NMR (125 MHz, CDCl₃) δ ppm -5.09, -5.08 (SiCH₃), -4.65, -4.77 (SiCH₃), 18.2-18.3 (SiC(CH₃)₃), 18.3-18.4 (SiC(CH₃)₃), 20.1-20.2 (OCH_2CH_2CN) , 22.2 $(Si-C-(CH_3)_3)$, 25.5-25.6 $(CHCH_3)$, 35.9-36.0 $(CHCH_3)$, 43.1-43.4 (NCH_2CH_2O) , 55.1-55.2 (OCH₃), 57.6-57.7, 58.9-59.0 (OCH₂CH₂CN), 63.1 (C-5), 67.8-67.9 (NCH₂CH₂O), 72.2-72.3, 72.8-72.9 (C-3), 73.5-73.6 (C-2), 84.3-84.4 (C-4), 87.4 (C-1), 113.3-113.4 (trityl), 117.1, 117.7 (CN), 122.1-148.5 (trityl), 138.2 (N=CH-N), 155.6, 158.8, 178.4 (C=O), 178.7 (C=O). ³¹P NMR (121 MHz. CDCl₃) δ ppm 145.0, 145.3. **HRMS** (ES, M- CH₃) calculated for $C_{47}H_{59}N_7O_{10}SiP$ 940.3830, found 940.3830.

N-Benzovl-5'-O-(4,4'-dimethoxytrityl)-2'-deoxycytidine-3'-O-[O-(2-cyanoethyl)-N-

morpholinophosphoramidite (1b). Purification was achieved via filtration of the crude residue through a short pad of silica gel (3:7 pentane: ethyl acetate, (1% NEt₃), to give **1b** as a white solid (1:0.7 diastereotopic mixture).

¹H NMR (400 MHz, CDCl₃) δ ppm 2.23-2.35 (m, 2H, H-2), 2.50 (t, 2H, *J*= 6.2 Hz, OCH₂*CH*₂CN), 2.59-2.79 (m, 2H, H-2), 2.62 (t, 2H, *J*= 6.0 Hz, OCH₂*CH*₂CN), 3.02-3.03 (m, 4H, N*CH*₂CH₂O), 3.09-3.12 (m, 4H, N*CH*₂CH₂O), 3.38-3.46 (m, 2H, H-5), 3.50-3.53 (m, 4H, NCH₂*CH*₂O), 3.50-3.61 (m, 2H, H-5), 3.56-3.61 (m, 4H, NCH₂*CH*₂O), 3.69-3.83 (m, 4H, O*CH*₂CH₂CN), 3.80 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 4.09-4.13 (m, 1H, H-4), 4.16-4.20 (m, 1H, H-4), 4.50-4.53 (m, 1H, H-3), 4.64-4.69 (m, 1H, H-3) 6.21-6.26 (m, 2H, H-1), 6.86-6.89 (m, 8H, trityl), 7.23-7.25 (m, 16H, trityl, N-CH=C*H*), 7.41-7.42 (m, 4H, trityl), 7.48-7.53 (m, 4H, benzoyl), 7.59-7.64 (m, 2H, benzoyl),

7.86-7.88 (m, 4H, benzoyl), 8.32-8.43 (m, 2H, N-C*H*=CH), 8.68 (br s, 2H, NH). ¹³C **NMR** (125 MHz, CDCl₃) δ ppm 20.2-20.3 (OCH₂CH₂CN), 41.7 (C-2), 43.3 (d, *J*=15.8 Hz, NCH₂CH₂O) 43.4 (d, *J*= 16.1 Hz, NCH₂CH₂O), 55.2-55.3 (OCH₃), 58.4-58.5 (OCH₂CH₂CN), 60.4 (C-5), 67.8-67.9 (NCH₂CH₂O), 70.7 (C-3), 85.4-85.5 (C-4), 87.1 (C-1), 96.9 (N-CH=CH) 113.1 (trityl), 117.5 (CN), 122.1, 123.5, 127.2 (benzoyl), 127.5, 128.1, 130.1, 135.1 (trityl), 129.0 (benzoyl), 133.3 (benzoyl), 135.2 (N-CH=CH), 143.9, 144.0(N-CH=CH), 158.7 (C=O), 162.2 (C=N). ³¹P NMR (121 MHz, CDCl₃) δ ppm 144.4, 144.6. HRMS (ES, M+H⁺) calculated for C₄₄H₄₇N₅O₉P 820.3111, found 820.3123

N-Benzoyl-5'-O-(4,4'-dimethoxytrityl)-2'-deoxyadenosine-3'-O-[O-(2-cyanoethyl)-N-

morpholinophosphoramidite (1c). Purification was achieved via filtration of the crude residue through a short pad of silica gel (3:7 pentane: ethyl acetate, (1% NEt₃), to give 1c as a white solid (2:1 diastereotopic mixture).

¹H NMR (400 MHz, CDCl₃) δ ppm 2.52 (t, *J*= 6.2 Hz, 2H, OCH₂CH₂CN), 2.55-2.65 (m, 2H, H-2), 2.63 (t, *J*= 6.2 Hz, 2H, OCH₂CH₂CN), 2.87-2.98 (m, 2H, H-2), 3.14-3.20 (m, 8H, NCH₂CH₂O), 3.34-3.46 (m, 4H, H-5), 3.54-3.56 (m, 4H, NCH₂CH₂O), 3.60-3.62 (m, 4H, NCH₂CH₂O), 3.77 (s, 12H, OCH₃), 3.76-3.80 (m, 2H, OCH₂CH₂CN), 3.87-3.91 (m, 2H, OCH₂CH₂CN), 4.11-4.16 (m, 1H, H-4), 4.28-4.31 (m, 1H, H-4), 4.72-4.75 (m, 1H, H-3), 4.84-4.86 (m, 1H, H-3), 6.48-6.52 (m, 2H, H-1), 6.79-6.81 (m, 8H, trityl), 7.19-7.29 (m, 14H, trityl), 7.38-7.39 (m, 4H, trityl), 7.53 (t, *J*= 7.5 Hz, 4H, benzoyl), 7.62 (t, *J*= 6.9 Hz, 2H, benzoyl), 8.01 (t, *J*= 7.4 Hz, 4H, benzoyl), 8.16 (s, 1H, N-CH=N), 8.21 (s, 1H, N-CH=N), 8.72 (br s, 2H, N=CH-N), 9.01 (br s, 2H, NH). ¹³C NMR (125 MHz, CDCl₃) δ ppm 20.2-20.4 (OCH₂CH₂CN), 39.3-39.3 (C-2), 43.3-43.5 (NCH₂CH₂O), 55.2 (OCH₃), 58.4-58.6 (OCH₂CH₂CN), 63.0-63.6 (C-5), 67.6-67.9 (NCH₂CH₂O), 73.5-74.0 (C-3), 84.6-84.8 (C-1), 85.6-86.0 (C-4), 113.1 (trityl), 117.4 (CN), 123.4, 126.9-130.0 (trityl, benzoyl), 132.9 (benzoyl) 141.6-141.7 (N-CH=N), 149.3, 152.5 (N=CH-H), 158.6, 164.7 (C=O). ³¹P NMR (121 MHz, CDCl₃) δ ppm 144.2, 144.4. HRMS (ES, M+H⁺) calculated for C₄₅H₄₇N₇O₈P 844.3324, found 844.3215

N-Isobutyryl-5'-*O*-(4,4'-dimethoxytrityl)-2'-*O*-TBDMS-guanosine-3'-*O*-[*O*-(2-cyanoethyl)-*N*,*N*'-ethylmethylphosphoramidite (2a). Purification was achieved via filtration of the crude residue through a short pad of silica gel (1:1 hexane: ethyl acetate, (1% NEt₃), to give 2a as a white solid (0.8:1 diastereotopic mixture).

¹**H NMR** (400 MHz, CDCl₃) δ ppm -0.21 (s, 3H, SiC H_3), -0.17 (s, 3H, SiC H_3), -0.04 (s, 3H, SiC H_3), 0.03 (s, 3H, SiC H_3), 0.52 (d, 6H, J= 6.7 Hz, C H_3), 0.73 (d, 6H, J= 6.8 Hz, CH₃), 0.70 (s, 9H, SiC(C H_3)₃), 0.80 (s, 9H, SiC(C H_3)₃), 1.05-1.29 (m, 8H, NCH₂C H_3 , CHCH₃), 2.42 (d, 3H, J= 6.8 Hz, NC H_3), 2.56 (d, 3H, J= 7.2 Hz, NC H_3), 2.60-2.77 (m, 4H, OCH₂C H_2 CN) 2.84-2.90 (m, 2H, H-5), 3.00-3.04 (m, 4H,

NC H_2 CH₃), 3.52-3.65 (m, 2H, H-5), 3.76-3.96 (m, 16H, OC H_2 CH₂CN, OC H_3), 4.07-4.16 (m, 2H, H-4), 4.27-4.45 (m, 2H, H-3), 4.97-5.20 (m, 2H, H-2), 5.72 (d, 1H, J= 7.3 Hz, H-1), 5.86 (d, 1H, J= 7.8 Hz, H-1), 6.79-6.84 (m, 8H, trityl), 7.23-7.63 (trityl, 20H, N-H), 7.80 (s, 1H, NCH=N), 7.86 (s, 1H, NCH=N), 11.9 (br. s, 2H, NH). ¹³C NMR (125 MHz, CDCl₃) δ ppm -5.13, -5.29 (SiCH₃), -4.77, -4.80 (SiCH₃), 14.6-14.7 (NCH₂CH₃), 14.7-14.8 (NCH₂CH₃), 18.2-18.3 (SiC(CH₃))₃), 18.3-18.4 (SiC(CH₃))₃), 19.9-20.0, 20.1-20.2 (OCH₂CH₂CN), 22.6 (Si-C-(CH₃))₃, 25.5-25.6 (CH₃), 29.6-29.7, 30.1-30.2 (NCH₂CH₃), 35.8 (CH), 44.2-44.4 (NCH₃), 55.3 (OCH₃), 57.1-57.2, 58.7-58.8 (OCH₂CH₂CN), 63.1-63.2 (C-5), 71.9-72.3 (C-3), 73.2, 75.0 (C-2), 84.5 (C-4), 87.3 (C-1), 113.1-113.3 (trityl), 117.2 (NCC=O), 117.8 (CN), 129.9, 130.1, 135.4, 135.7, 136.2 (trityl), 138.2 (NCH=N), 139.2, 144.8-148.4 (trityl), 155.6, 158.7, 178.2 (C=O), 178.7 (C=O). ³¹P NMR (121 MHz, CDCl₃) δ ppm 147.8, 147.9. HRMS (ES, M+H⁺) calculated for C₄₇H₆₂N₇O₉SiP 928.4194, found 928.4206

N-Benzoyl-5'-*O*-(4,4'-dimethoxytrityl)-2'-deoxycytidine-3'-*O*-[*O*-(2-cyanoethyl)-*N*,*N*'-ethylmethylphosphoramidite (2b). Purification was achieved via filtration of the crude residue through

a short pad of silica gel (1:1 hexane: ethyl acetate, (1% NEt₃), to give **2b** as a white solid (0.7:1 diastereotopic mixture).

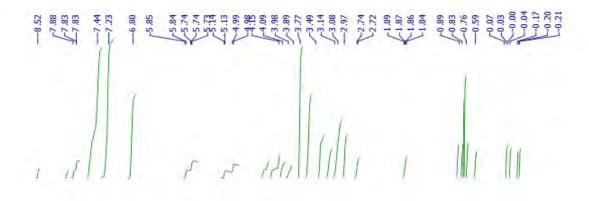
¹H NMR (400 MHz, CDCl₃) δ ppm 1.01-1.43 (m, 6H, NCH₂CH₃), 2.28-2.67 (m, 12H, H-2, NCH₃, OCH₂CH₂CN), 2.89-3.04 (m, 6H, H-2, NCH₂CH₃), 3.39-3.58 (m, 2H, H-5), 3.65-3.74 (m, 2H, H-5), 3.80 (br. s, 12H, OCH₃), 3.94-4.02 (m, 4H, OCH₂CH₂CN), 4.24-4.36 (m, 2H, H-4), 4.64-4.70 (m, 2H, H-3), 6.17-6.24 (m, 2H, H-1), 6.86-6.87 (m, 8H, trityl), 7.20-7.40 (m, 20H, trityl, N-CH=CH), 7.52-7.54 (m, 4H, benzoyl), 7.61-7.64 (m, 2H, benzoyl), 7.85-7.87 (m, 4H, benzoyl), 8.29 (br. m, 2H, N-CH=CH), 8.40 (br. s, 2H, NH). ¹³C NMR (125 MHz, CDCl₃) δ ppm 14.6 (NCH₃), 20.1-20.3 (OCH₂CH₂CN), 36.1 (NCH₂CH₃), 40.6-40.8 (C-2), 43.4 (NCH₃), 55.2, 55.5 (OCH₃), 57.4-57.9, 58.0-58.1 (OCH₂CH₂CN), 61.8 (C-5), 71.1-71.6 (C-3), 85.1-85.7 (C-4), 86.9-87.0 (C-1), 97.1 (N-CH=CH), 113.4 (trityl), 118.4 (CN), 122.1, 123.5, 127.4, 128.0, 128.1, 128.2, 129.1, 130.0, 130.1, 135.2 (trityl, benzoyl) 143.9-144.0 (N-CH=CH), 158.7 (C=O), 158.8 (C=O). ³¹P NMR (121 MHz, CDCl₃) δ ppm 147.2, 147.3. HRMS (ES, M+H⁺) calculated for C₄₃H₄₇N₅O₈P 792.3162, found 792.3126

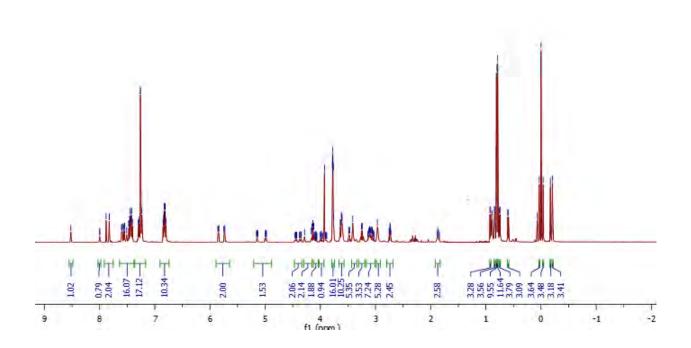
$N\hbox{-Benzoyl-5'-}\textit{O-}(4,4'\hbox{-dimethoxytrityl})\hbox{-}2'\hbox{-deoxyadenosine-3'-}\textit{O-}[\textit{O-}(2\hbox{-cyanoethyl})\hbox{-}\textit{N},N'\hbox{-}l']$

ethylmethylphosphoramidite (2c). Purification was achieved via filtration of the crude residue through a short pad of silica gel (1:1 hexane: ethyl acetate, (1% NEt₃), to give **2c** as a white solid (0.7:1 diastereotopic mixture).

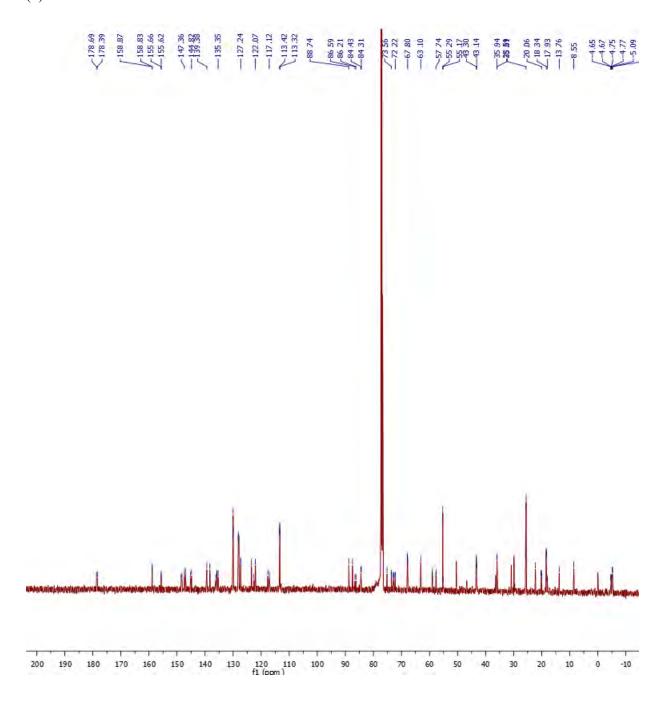
¹**H NMR** (400 MHz, CDCl₃) δ ppm 1.04-1.37 (m, 6H, NCH₂CH₃), 2.47-2.77 (m, 10H, H-2, NCH₃, OCH₂CH₂CN), 2.90-3.22 (m, 6H, H-2, NCH₂CH₃), 3.31-3.47 (m, 4H, H-5), 3.68-3.78 (m, 4H,

OC*H*₂CH₂CN), 3.77 (s, 6H, OC*H*₃), 3.78 (s, 6H, OC*H*₃), 4.26-4.35 (m, 2H, H-4), 4.77-4.81 (m, 2H, H-3), 6.49-6.54 (m, 2H, H-1), 6.78-6.81 (m, 8H, trityl), 7.22-7.29 (m, 10H, trityl), 7.38-7.40 (m, 8H, trityl), 7.51-7.55 (m, 4H, benzoyl), 7.60-6.62 (m, 2H, benzoyl), 8.01-8.03 (m, 4H, benzoyl), 8.20-8.22, (m, 2H, N-C*H*=N), 8.73-8.74 (m, 2H, N=C*H*-N), 9.00 (br. s, 2H, N*H*). ¹³C NMR (125 MHz, CDCl₃) δ ppm 14.6-14.7 (NCH₂CH₃), 20.2-20.4 (OCH₂CH₂CN), 30.1-30.2 (NCH₃), 39.4 (C-2), 42.3-42.4, 42.6-42.7 (NCH₃), 55.2-55.3 (OCH₃), 58.0-58.2 (OCH₂CH₂CN), 63.2-63.3 (C-5), 73.2-73.5 (C-3), 84.8-84.9 (C-1), 85.7-85.8 (C-4), 113.1 (trityl), 117.5 (CN), 122.1, 123.4, 126.9, 127.8, 127.9, 128.1, 130.1, 132.8, 133.6, 135.6 (trityl, benzoyl), 141.6 (N-CH=N), 144.1, 152.3 (N=CH-N), 158.6 (C=O). ³¹P NMR (121 MHz, CDCl₃) δ ppm 146.9, 147.0. HRMS (ES, M+H⁺) calculated for C₄₃H₄₇N₇O₇P 816.3275, found 792.3265

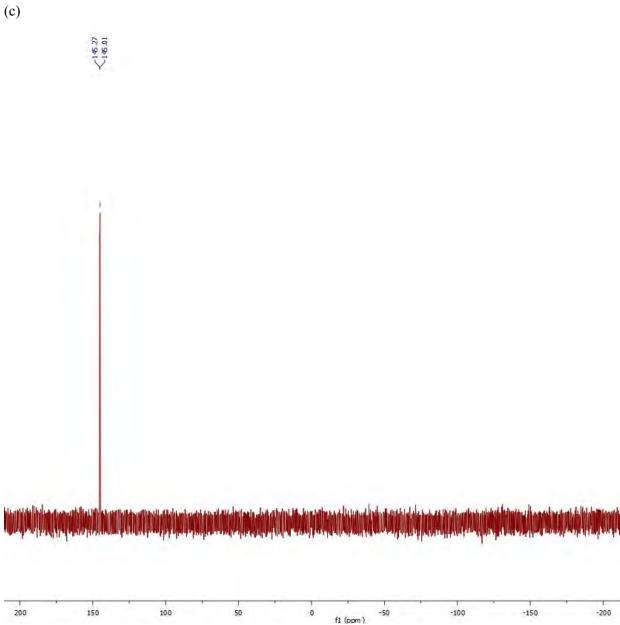

N-Isobutyryl-5'-*O*-(4,4'-dimethoxytrityl)-2'-*O*-TBDMS-guanosine-3'-*O*-[*O*,*O*-(2-cyanoethyl)-phosphoramidite (4a). Purification was achieved via filtration of the crude residue through a short pad of silica gel 1:1 hexane: ethyl acetate, (1% NEt₃), to give 4a as a white solid.

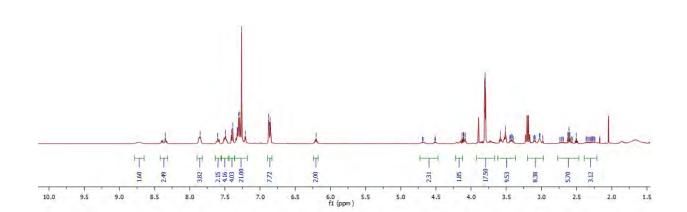

¹H NMR (400 MHz, CDCl₃) δ ppm -0.21 (s, 3H, SiC*H*₃), -0.01 (s, 3H, SiC*H*₃), 0.80 (s, 9H, C*H*₃), 0.85 (d, J= 6.9 Hz, 3H, C*H*₃), 0.98 (d, J= 6.8 Hz, 3H, C*H*₃), 1.84-1.88 (m, 1H, C*H*), 2.54 (t, J= 6.0 Hz, 2H, OCH₂C*H*₂CN), 2.72 (t, J= 6.4 Hz, 2H, OCH₂C*H*₂CN), 3.22-3.25 (m, 1H, H-5), 3.59-3.62 (m, 1H, H-5), 3.78 (s, 3H, OC*H*₃), 3.79 (s, 3H, OC*H*₃), 3.91-3.96 (m, 2H, OC*H*₂CH₂CN), 4.10-4.16 (m, 2H, OC*H*₂CH₂CN), 4.30-4.31 (m, 1H, H-4), 4.65 (ddd, J= 9.2, 4.8, 1.8 Hz 1H, H-3), 4.97 (dd, J= 7.1, 4.8 Hz, 1H, H-2), 5.87 (d, J= 7.2 Hz, 1H, H-1), 6.80-6.87 (m, 4H, trityl), 7.20-7.53 (m, 10H, trityl, N*H*), 7.93 (s, 1H, N=C*H*-N), 12.2 (s, 1H, N*H*). ¹³C NMR (125 MHz, CDCl₃) δ ppm -5.34 (SiCH₃), -4.81 (SiCH₃), 18.5 (SiC(CH₃)₃), 19.3, (SiC(CH₃)₃), 20.0 (d, J= 4.3 Hz, OCH₂C*H*₂CN), 20.2 (d, J= 4.3 Hz, OCH₂C*H*₂CN), 25.5 (C*H*₃), 35.9 (C*H*), 55.4 (OCH₃), 56.9 (d, J= 7.2 Hz, OCH₂CH₂CN), 57.2 (d, J= 7.2 Hz, OCH₂CH₂CN), 63.1 (C-5), 74.0 (d, J= 14.2 Hz, C-3), 75.1 (C-2), 83.9 (C-4), 86.6 (C), 87.6 (C-1), 113.5 (trityl), 117.2 (NCC=O), 117.6 (CN), 121.1, 122.1, 123.5, 127.8, 128.0, 128.4, 130.0, 135.3, 135.7 (trityl), 138.7 (N=CH-N), 144.8, 147.6, 148.9, 158.8, 179.2 (C=O). ³¹P NMR (121 MHz, CDCl₃) δ ppm 137.9. HRMS (ES, M+H⁺) calculated for C₄₇H₅₈N₇O₁₀NaSiP 962.3650, found 962.3672

The corresponding ¹H, ¹³C and ³¹P NMR spectra for **1a-c**, **2a-c** and **4a** are shown in Figure **S5-S11**. The ³¹P NMR and ¹H NMR spectra of **3a** stabilized in [C₆mim][FAP] is shown in Figure **S12**.


Figure S5 (a) ¹H, (b) ¹³C and (c) ³¹P NMR spectra of *N*-Isobutyryl-5'-*O*-(4,4'-dimethoxytrityl)-2'-*O*-TBDMS-guanosine-3'-*O*-[*O*-(2-cyanoethyl)-*N*-morpholinophosphoramidite (**1a**).

(a)





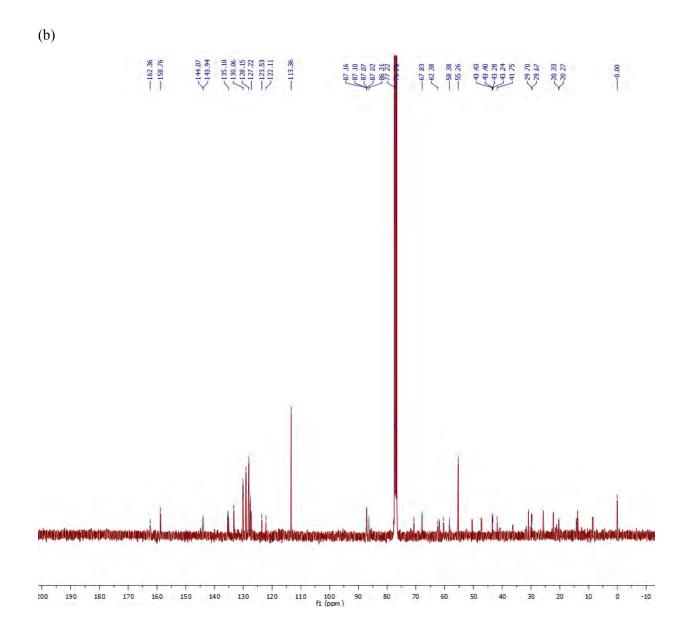
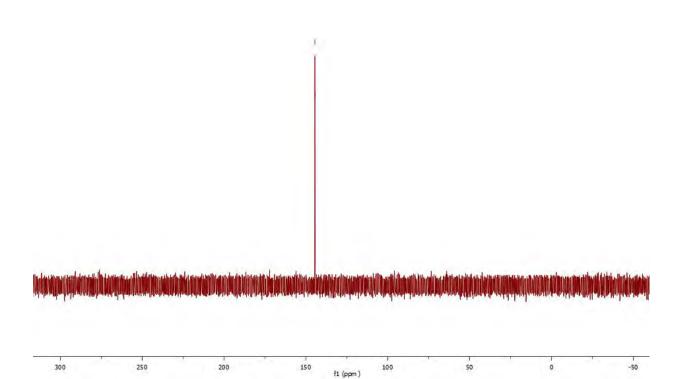
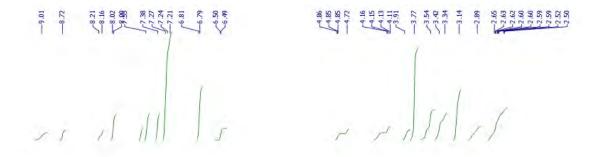
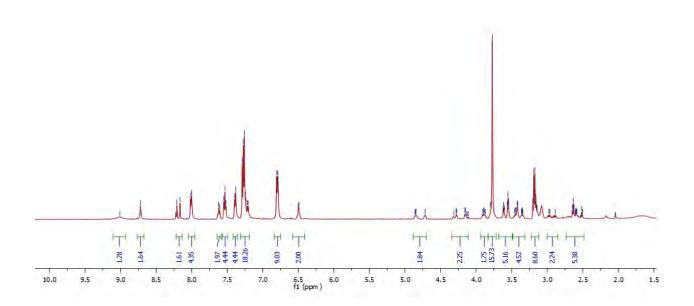
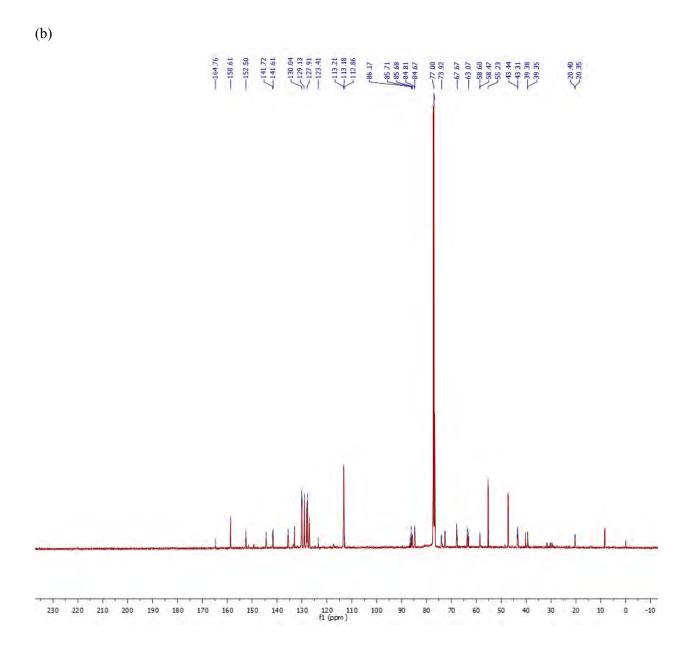


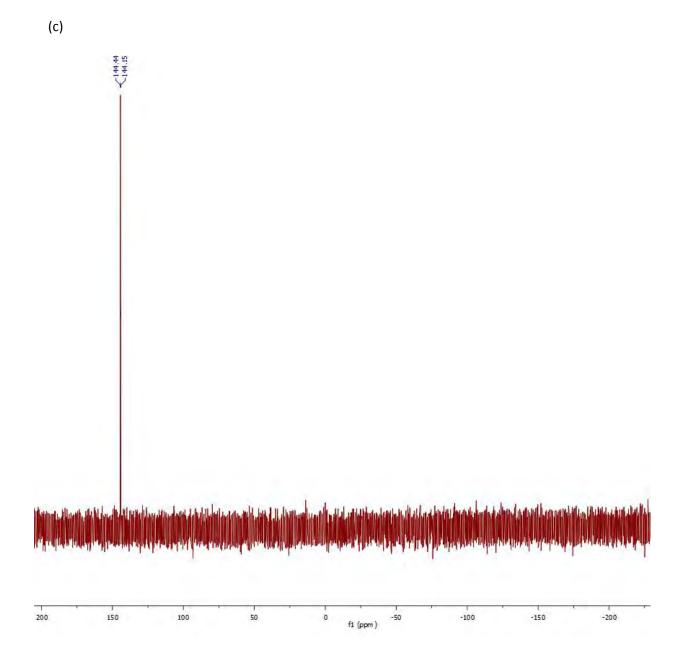
Figure S6 (a) ¹H, (b) ¹³C and (c) ³¹P NMR spectra of *N*-Benzoyl-5'-*O*-(4,4'-dimethoxytrityl)-2'-deoxycytidine-3'-*O*-[*O*-(2-cyanoethyl)-*N*-morpholinophosphoramidite **(1b).**

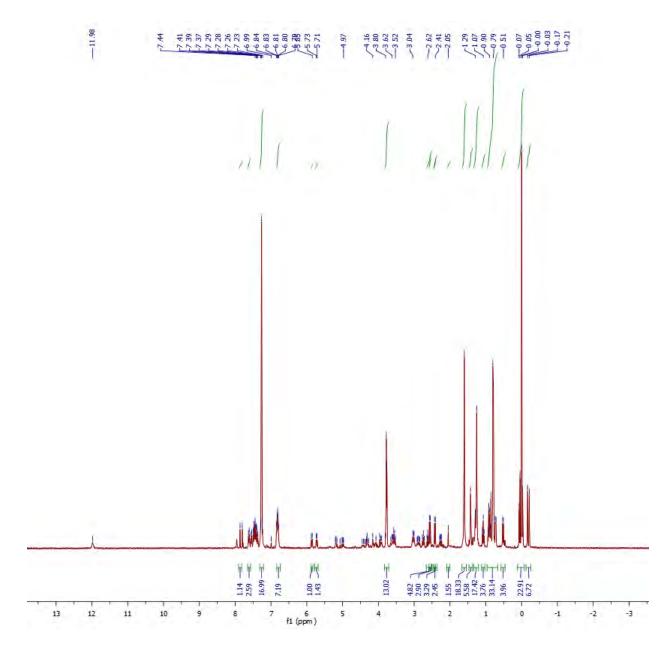


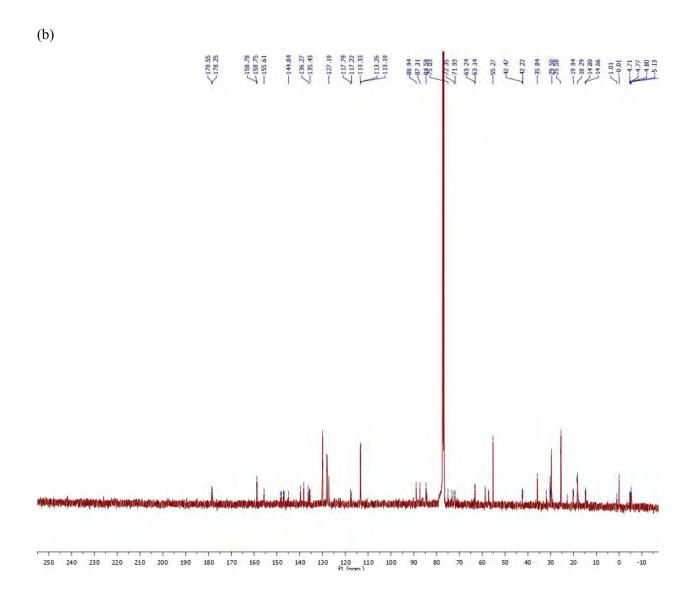







Figure S7 (a) ¹H, (b) ¹³C and (c) ³¹P NMR spectra of *N*-Benzoyl-5'-*O*-(4,4'-dimethoxytrityl)-2'-deoxyadenosine-3'-*O*-[*O*-(2-cyanoethyl)-*N*-morpholinophosphoramidite (**1c**).





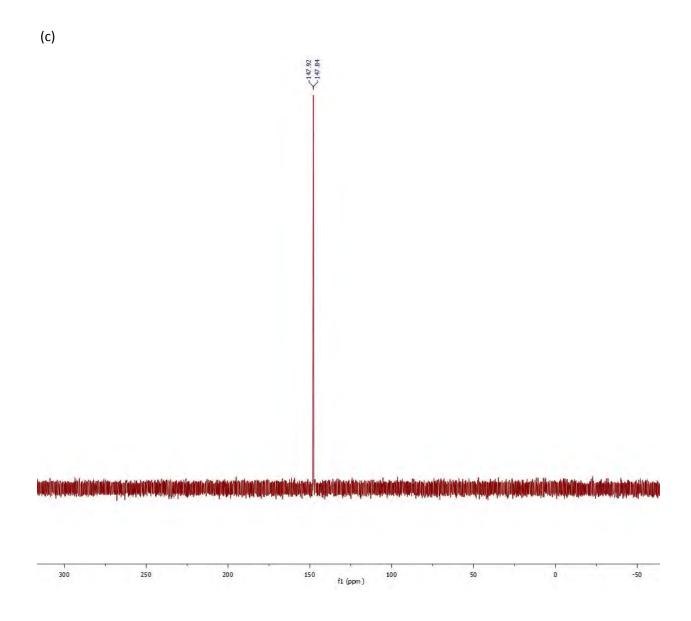
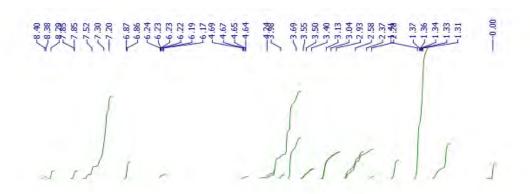
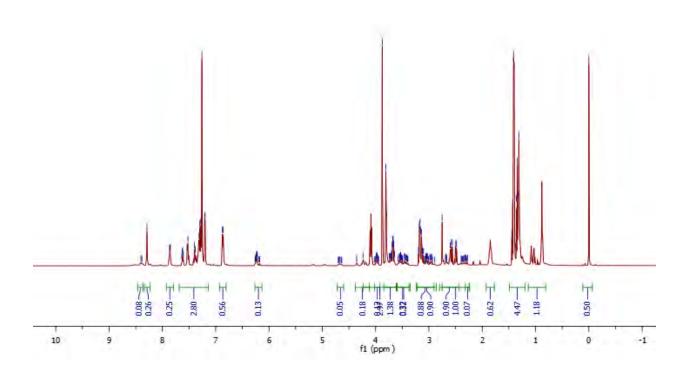
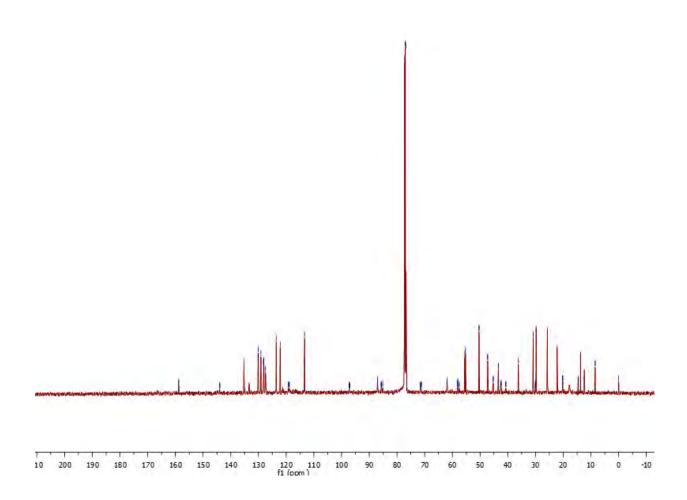


Figure S8 (a) ¹H, (b) ¹³C and (c) ³¹P NMR spectra of *N*-Isobutyryl-5'-*O*-(4,4'-dimethoxytrityl)-2'-*O*-TBDMS-guanosine-3'-*O*-[*O*-(2-cyanoethyl)-*N*,*N*'-ethylmethylphosphoramidite (**2a**).(a)

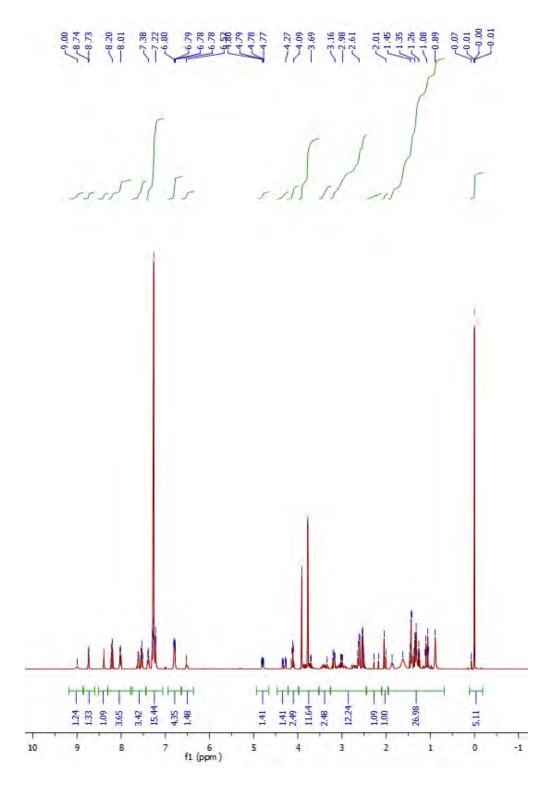


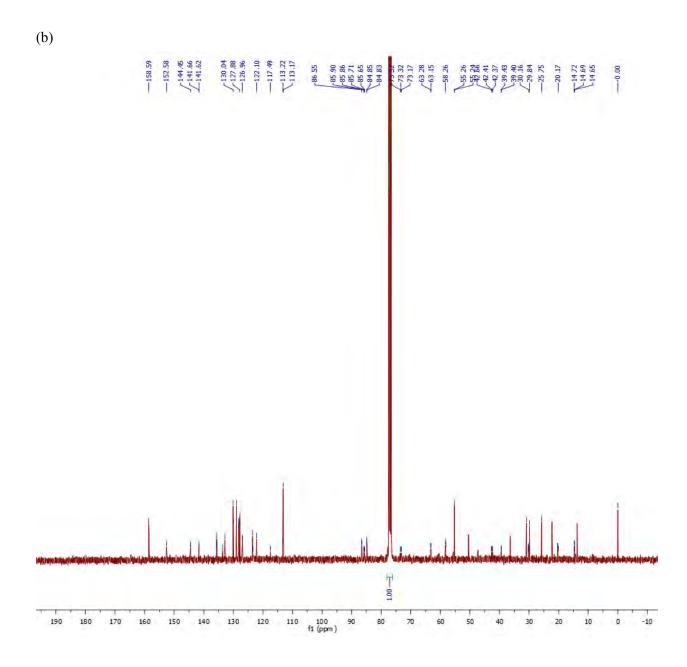


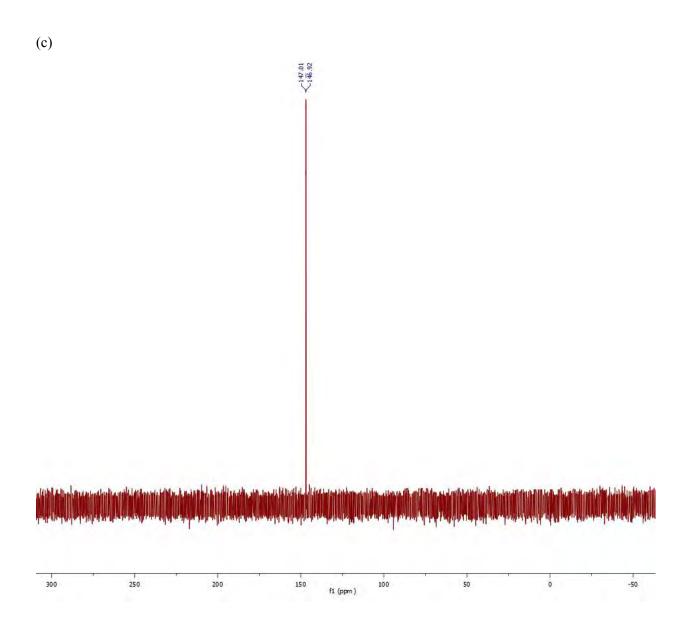

Figure S9 (a) 1 H, (b) 13 C and (c) 31 P NMR spectra of *N*-Benzoyl-5'-O-(4,4'-dimethoxytrityl)-2'-deoxycytidine-3'-O-[O-(2-cyanoethyl)-N,N'-ethylmethylphosphoramidite (**2b**).

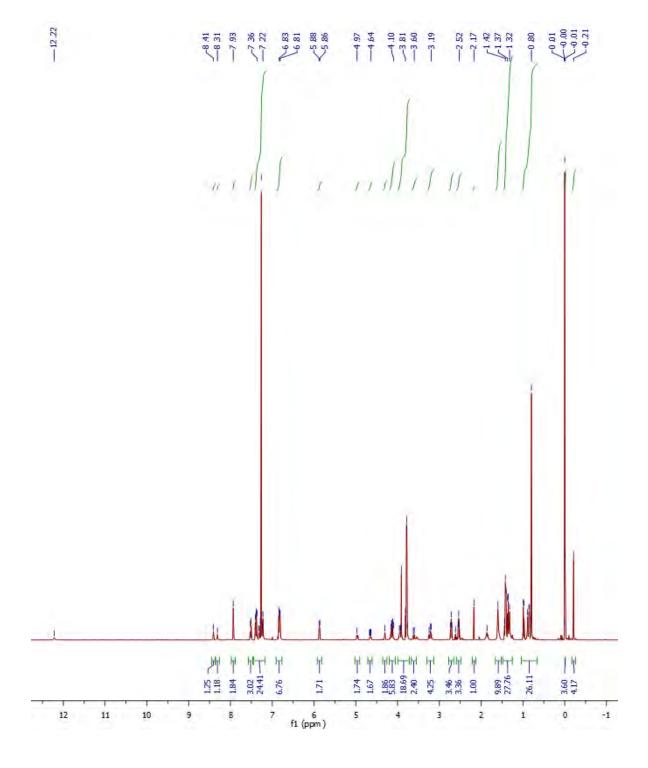
(a)

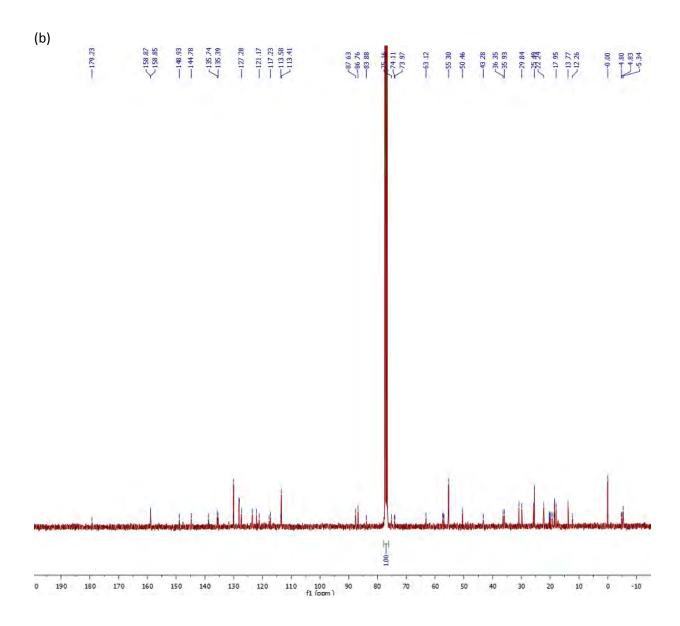


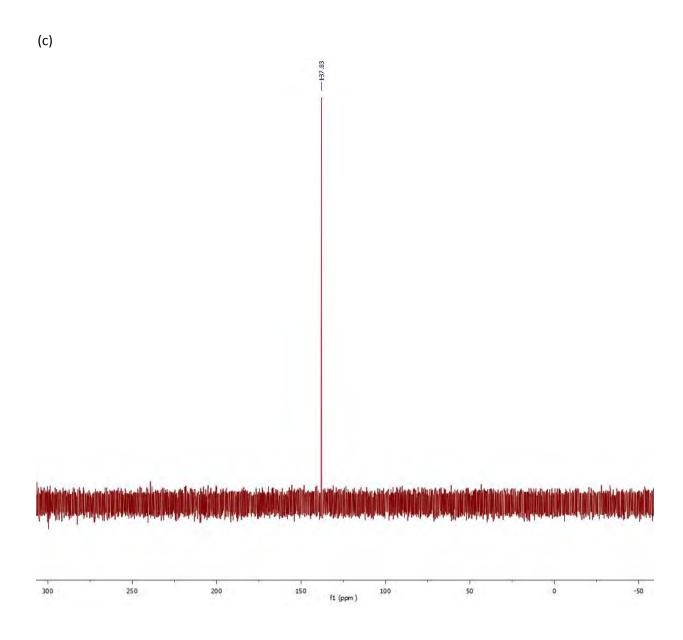


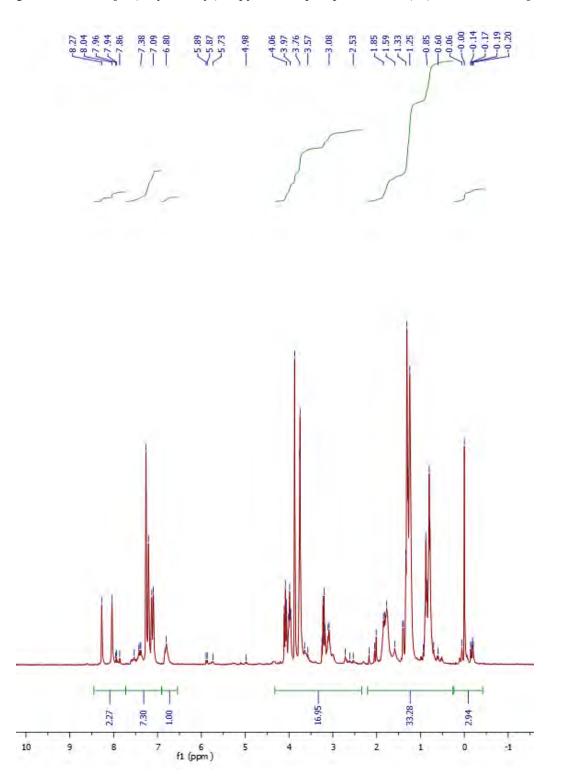





Figure S10 (a) 1 H, (b) 13 C and (c) 31 P NMR spectra of *N*-Benzoyl-5'-*O*-(4,4'-dimethoxytrityl)-2'-deoxyadenosine-3'-*O*-[*O*-(2-cyanoethyl)-*N*,*N*'-ethylmethylphosphoramidite (**2c**).(a)






Figure S11 (a) ¹H, (b) ¹³C and (c) ³¹P NMR spectra of *N*-Isobutyryl-5'-*O*-(4,4'-dimethoxytrityl)-2'-*O*-TBDMS-guanosine-3'-*O*-[*O*,*O*-(2-cyanoethyl)-phosphoramidite (**4a**).(a)

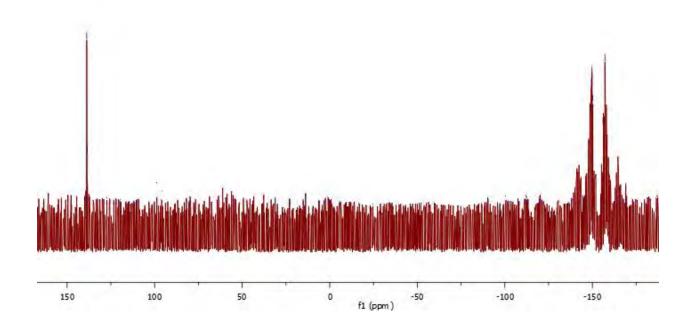


Figure S12 (a) ¹H and (b) ³¹P NMR spectra of *N*-Isobutyryl-5'-*O*-(4,4'-dimethoxytrityl)-2'-*O*-TBDMS-guanosine-3'-*O*-[*O*-(2-cyanoethyl)-*N*-pyrrolidinophosphoramidite (**3a**) in stabilized in [C₆mim][FAP].(a)

References

P. Bonhôte, A. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel, *Inorg. Chem.*, 1996, **35**, 1168-1178