Supporting Information

Novel Bisimidazolium Pincers as Low Loading Ligands for *in situ* Palladium-Catalyzed Suzuki-Miyaura Reaction in Ambient Atmosphere

Chao Gao, Hongjun Zhou, Siping Wei, Yinsong Zhao, Jingsong You and Ge Gao*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China Fax: 86-28-85412203; E-mail: gg2b@scu.ed.cn

Table of contents

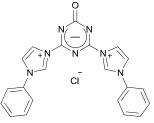
I. General Remarks	S3
II. General Procedure for the Synthesis of the Bisimidazolium Ligands	
III. Procedures and Experimental Data for the Described Ligands	S4
IV. Crystal Growth and X-ray Crystallographic Data of $3a$ (PF ₆ ⁻) and 4	
V. Synthesis and Characterization of the Pd(L _{3a})Cl Complex	
VI. General Procedure for the Suzuki–Miyaura Coupling Reaction	S9
VII. Optimization of the Suzuki–Miyaura Coupling Reaction	S10
VIII. Analytical Data of the Coupling Products	S10
IX. References	S13
X. Copies of ¹ H and ¹³ C NMR spectra	

I. General Remarks

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. $Pd(OAc)_2$ was purchased from Shanxi Kai Da Chemical Engineering (China) CO., Ltd. Cyanuric chloride was purchased from AstaTech (Chengdu) Biopharm CO., Ltd, and recrystallized twice by petroleum ether before use. Acetonitrile was dried by refluxing for at least 6 hours with CaH₂, then distilled and stored under N₂. *N*-Substituted imidazoles **2a-2g**¹ and ligand **3b'**² were synthesized according to published procedures. The test tube for Suzuki reaction must be soaked by HNO₃ for at least 48 hours prior to use. $Pd(OAc)_2$ and bisimidazolium ligands were prepared to use as the 5×10^{-4} M stock solutions in acetonitrile and methanol, respectively.

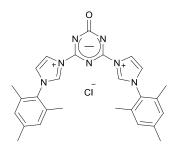
NMR spectra were obtained on a Bruker AMX-400 or a Varian INOVA 400 MHz spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ or DMSO- d_6 as the internal reference (CDCl₃: $\delta = 7.26$ ppm; DMSO- d_6 : $\delta = 2.50$ ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO- d_6 as the internal standard (CDCl₃: $\delta = 77.16$ ppm; DMSO- d_6 : $\delta = 39.52$ ppm). High-resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF Premier (ESI). Elemental analysis was measured using a Euro EA-3000 elemental analyzer. Melting points were determined with XRC-1 instrument and are uncorrected.

X-Ray single-crystal diffraction data were collected on an Oxford CrysAlis CCD diffractometer for **3a** (PF_6^-) and Xcalibur Eos diffractometer for **4**, respectively. The crystallographic data are summarized in Table S1.


II. General Procedure for the Synthesis of the Bisimidazolium Ligands

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with cyanuric chloride (0.184 g, 1.0 mmol) in dry acetonitrile under N_2 atmosphere. A solution of the *N*-substituted imidazole (2.2 mmol) in dry acetonitrile was added dropwise at room temperature within 30 minutes. After the suspension was heated at 110 °C for an indicated time, the reaction mixture was then cooled down to room temperature and filtered. The crude product was purified by column chromatography on silica gel to afford the pure product.

For **3g**, *n*-butyl imidazole (0.273 g, 2.2 mmol) in dry acetonitrile was added dropwise to a solution of cyanuric chloride (0.184 g, 1.0 mmol) in dry acetonitrile under N_2 atmosphere at 0 °C within 10

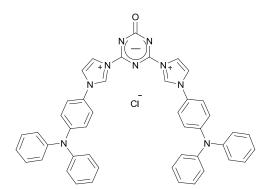

minutes. The suspension was reacted at 0 $\,^{\circ}$ C for further 20 minutes. Then the white precipitate was quickly filtered, washed with cold acetonitrile, and dried in vacuo to afford pure **3g**. **3g** must be stored under nitrogen in a refrigerator.

III. Procedures and Experimental Data for the Described Ligands

2-Oxo-4,6-bis(1-phenyl-1*H*-imidazol-3-ium-3-yl)-2*H*-1,3,5-triazin-5-ide chloride (3a)

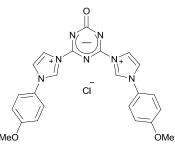
Cyanuric chloride (0.184 g, 1.0 mmol) and 1-phenyl-*1H*-imidazole **2a** (0.317 g, 2.2 mmol) in acetonitrile were heated at 110 °C for 2.5 h. The pure **3a** was obtained as a white solid (0.296 g, 71% yield) after chromatography on silica gel (CH₂Cl₂/MeOH = 5/1, v/v). mp >250 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.97 (s, 2H), 8.84 (s, 2H), 8.58 (s, 2H), 8.03 (d, *J* = 7.6 Hz, 4H), 7.72-7.64 (m, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.4, 159.9, 135.2, 134.7, 130.5, 130.2, 122.8, 122.7, 119.7. HRMS-ESI [M-Cl]⁺ calcd for C₂₁H₁₆N₇O, 382.1411; found, 382.1412. Elemental analysis calcd (%) for C₂₁H₁₆ClN₇O 2.7CH₂Cl₂ 0.4CH₃CN: C, 44.34; H, 3.43; N, 15.62. Found: C, 44.22; H, 3.45; N, 15.76.

2-Oxo-4,6-bis(1-mesityl-1*H*-imidazol-3-ium-3-yl)-2*H*-1,3,5-triazin-5-ide chloride (3b)

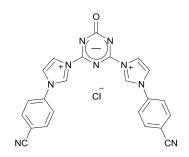

Cyanuric chloride (0.184 g, 1.0 mmol) and 1-mesityl-*1H*-imidazole **2b** (0.409 g, 2.2 mmol) in acetonitrile were heated at 110 °C for 2.5 h. The pure **3b** was obtained as a white solid (0.341 g, 68% yield) after chromatography on silica gel (CH₂Cl₂/MeOH = 10/1, v/v). mp >250 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.57 (s, 2H), 8.84 (s, 2H), 8.19 (s, 2H), 7.18 (s, 4H), 2.34 (s, 6 H), 2.10 (s, 12H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.3, 159.8, 140.6, 137.5, 134.2, 131.1, 129.3, 125.1, 119.7, 20.6, 17.0. HRMS-ESI [M-Cl]⁺ calcd for C₂₇H₂₈N₇O, 466.2350; found, 466.2353. Elemental analysis

calcd (%) for C₂₇H₂₈ClN₇O 0.3CH₂Cl₂ 0.5H₂O: C, 61.12; H, 5.56; N, 18.28. Found: C, 60.95; H, 5.75; N, 18.05.

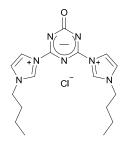
2-Oxo-4,6-bis{1-[4-(dimethylamino)phenyl]-1*H*-imidazol-3-ium-3-yl}-2*H*-1,3,5-triazin-5-ide chloride (3c)


Cyanuric chloride (0.184 g, 1.0 mmol) and 4-(*1H*-imidazol-1-yl)-*N*,*N*-dimethylaniline **2c** (0.412 g, 2.2 mmol) in acetonitrile were heated at 110 °C for 3 h. The pure **3c** was obtained as a greenish solid (0.322 g, 64% yield) after chromatography on silica gel (CH₂Cl₂/MeOH = 6/1, v/v). mp >250 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.64 (s, 2H), 8.75 (s, 2H), 8.43 (s, 2H), 7.75 (d, *J* = 8.4 Hz, 4H), 6.88 (d, *J* = 8.8 Hz, 4H), 3.00 (s, 12H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.8, 160.0, 151.3, 133.9, 123.4, 123.3, 122.7, 119.5, 112.3, 40.1. HRMS-ESI [M-Cl]⁺ calcd for C₂₅H₂₆N₉O, 468.2255; found, 468.2252. Elemental analysis calcd (%) for C₂₅H₂₆ClN₉O: C, 59.58; H, 5.20; N, 25.01. Found: C, 59.64; H, 5.11; N, 24.95.

2-Oxo-4,6-bis{1-[4-(diphenylamino)phenyl]-1*H*-imidazol-3-ium-3-yl}-2*H*-1,3,5-triazin-5-ide chloride (3d)


Cyanuric chloride (0.184 g, 1.0 mmol) and 4-(*1H*-imidazol-1-yl)-*N*,*N*-diphenylaniline **2d** (0.684 g, 2.2 mmol) in acetonitrile were heated at 110 °C for 2.5 h. The pure **3d** was obtained as a yellow solid (0.466 g, 62% yield) after chromatography on silica gel (CH₂Cl₂/MeOH = 10/1, v/v). mp >250 °C. ¹H NMR (400 MHz, CDCl₃): δ 12.23 (s, 2H), 8.60 (s, 2H), 7.90 (d, *J* = 8.8 Hz, 4H), 7.64 (s, 2H),

7.32-7.28 (m, 8H), 7.17-7.11 (m, 16H). ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 160.3, 150.2, 146.6, 135.8, 129.9, 126.9, 125.9, 124.8, 122.8, 121.9, 120.6, 119.9. HRMS-ESI [M-Cl]⁺ calcd for C₄₅H₃₄N₉O, 716.2881; found, 716.2881. Elemental analysis calcd (%) for C₄₅H₃₄ClN₉O 0.5CH₂Cl₂ 0.8CH₃CN: C, 68.36; H, 4.56; N, 16.59. Found: C, 68.50; H, 4.72; N, 16.53.



2-Oxo-4,6-bis[1-(4-methoxyphenyl)-1*H*-imidazol-3-ium-3-yl]-2*H*-1,3,5-triazin-5-ide chloride (3e)

Cyanuric chloride (0.184 g, 1.0 mmol) and 1-(4-methoxyphenyl)-*1H*-imidazole **2e** (0.383 g, 2.2 mmol) in acetonitrile were heated at 110 °C for 2.5 h. The pure **3e** was obtained as a white solid (0.329 g, 69% yield) after chromatography on silica gel (CH₂Cl₂/MeOH = 10/1, v/v). mp >250 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.71 (s, 2 H), 8.79 (s, 2 H), 8.48 (s, 2 H), 7.90 (d, *J* = 8.4 Hz, 4 H), 7.22 (d, *J* = 8.8 Hz, 4H), 3.87 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.0, 160.5, 159.8, 134.8, 127.7, 124.3, 122.9, 119.5, 115.1, 55.9. HRMS-ESI [M-Cl]⁺ calcd for C₂₃H₂₀N₇O₃, 442.1622; found, 442.1624. Elemental analysis calcd (%) for C₂₃H₂₀ClN₇O₃: C, 57.80; H, 4.22; N, 20.52. Found: C, 57.64; H, 4.29; N, 20.62.



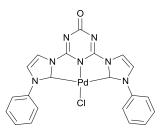
2-Oxo-4,6-bis[1-(4-cyanophenyl)-1*H*-imidazol-3-ium-3-yl]-2*H*-1,3,5-triazin-5-ide chloride (3f) Cyanuric chloride (0.184 g, 1.0 mmol) and 4-(*1H*-imidazol-1-yl)-benzonitrile 2f (0.372 g, 2.2 mmol) in acetonitrile were heated at 110 °C for 3.5 h. The pure 3f was obtained as a brown solid (0.350 g, 75% yield) after a few washes with acetonitrile. mp >250 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 11.04 (s, 2H), 8.90 (s, 2H), 8.67 (s, 2H), 8.30-8.23 (m, 8H). ¹³C NMR (100 MHz, DMSO- d_6): δ 163.2, 150.1, 138.7, 135.5, 134.5, 133.6, 123.2, 122.6, 120.3, 113.7. HRMS-ESI $[M-Cl]^+$ calcd for C₂₃H₁₄N₉O, 432.1316; found, 432.1317. Elemental analysis calcd (%) for C₂₃H₁₄ClN₉O 0.9CH₃OH CH₂Cl₂: C, 51.42; H, 3.40; N, 21.67. Found: C, 51.13; H, 3.45; N, 21.55.

2-Oxo-4,6-bis[1-n-butyl-1H-imidazol-3-ium-3-yl]-2H-1,3,5-triazin-5-ide chloride (3g)

Cyanuric chloride (0.184 g, 1.0 mmol) and 1-butyl-1*H*-imidazole **2g** (0.273 g, 2.2 mmol) in acetonitrile were reacted at 0 °C for 20 min. The pure **3g** was obtained as a white solid (0.196 g, 52% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.39 (s, 2 H), 8.56 (s, 2 H), 8.05 (s, 2 H), 4.30 (t, *J* = 7.0 Hz, 4 H), 1.92-1.85 (m, 4 H), 1.34-1.28 (m, 4H), 0.93 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.7, 159.8, 136.5, 123.4, 119.0, 49.3, 31.0, 18.8, 13.3. HRMS-ESI [M-Cl]⁺ calcd for C₁₇H₂₄N₇O, 342.2037; found, 342.2035. Elemental analysis calcd (%) for C₁₇H₂₄ClN₇O 0.8CH₂Cl₂: C, 47.95; H, 5.79; N, 21.99. Found: C: 48.21; H: 5.89; N: 21.76.

2,6-Bis(1-mesityl-1*H*-imidazol-3-ium-3-yl)pyridine dibromide² (3b')

A sealed glass tube immersed in an oil bath containing a mixture of 2,6-dibromopyridine (0.50 g, 2.1 mmol) and 1-mesityl-*1H*-imidazole (1.08 g, 5.8 mmol) was heated at 150 °C for 3 days. After cooling to room temperature, the black residue was triturated with Et₂O and filtered. The resulting black solid was dissolved in a minimum amount of methanol and reprecipitated by adding Et₂O. The precipitate was collected by filtration and dried in vacuo to afford **3b'** as a brown solid (0.89 g, 70% yield). ¹H NMR (DMSO-*d*₆): δ 10.78 (s, 2H), 9.25 (s, 2H), 8.70 (t, *J* = 8.0 Hz, 1H), 8.48 (d, *J* = 8.0 Hz, 2H), 8.32 (s, 2H), 7.21 (s, 4H), 2.36 (s, 6H), 2.15 (s, 12H).


IV. Crystal Growth and X-ray Crystallographic Data of 3a (PF₆)⁻CH₃OH and 4⁻(CH₃)₂CO

Compound **3a** (PF_6) was easily obtained from **3a** through anion exchange with NH_4PF_6 , and the single crystal was obtained by slow diffusion of MeOH/CH₂Cl₂ at ambient temperature for several days. The single crystal **4** was grown in acetone/EtOH/H₂O in the same way.

5 5			
	3a (PF_6)	4	
Empirical formula	$C_{22}H_{20}F_6N_7O_2P$	$C_{13}H_{19}N_5O_3$	
Formula weight	559.42	293.33	
Temperature/K	100(2)	293.15	
Crystal system	orthorhombic	triclinic	
Space group	P n m a	P-1	
a/Å	18.2455(3)	8.0418(5)	
b/Å	15.6917(2)	9.8200(6)	
$c/{ m \AA}$	8.0286(10)	10.9614(8)	
α / °	90.000	89.012(5)	
eta/ °	90.000	77.986(6)	
γ/°	90.000	65.983(6)	
Volume/Å ³	2298.61(6)	771.15(9)	
Ζ	4	2	
Calculated density (mg/mm ³)	1.617	1.263	
m/mm^{-1}	0.207	0.093	
<i>F</i> (000)	1144	312.0	
Crystal size/mm ³	0.58 imes 0.38 imes 0.20	$0.29\times 0.23\times 0.20$	
2Θ range for data collection	2.58 to 29.27°	6.1 to 49.98°	
Index ranges	-24 \leq h \leq 23, -19 \leq k \leq 21, -11 \leq	$-9 \le h \le 9, -11 \le k \le 11, -12$	
	$1 \le 10$	$\leq l \leq 13$	
Reflections collected	18885	5798	
Independent reflections	2998[R(int)=0.0256]	2722[R(int) = 0.0185]	
Data/restraints/parameters	2998 / 0 / 194	2722/0/193	
Goodness-of-fit on F^2	1.170	1.068	
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	R1 = 0.0312, $wR2 = 0.0861$	$R_1 = 0.0644, wR_2 = 0.1793$	
Final R indexes [all data]	R1 = 0.0415, $wR2 = 0.0882$	$R_1 = 0.0849, wR_2 = 0.1972$	
Largest diff. peak/hole (e Å ⁻³)	0.255/-0.369	0.61/-0.31	
CCDC No.	898254	898255	

Table S1 Summary of Crystal Data for **3a**(PF₆)⁻CH₃OH and **4**⁻(CH₃)₂CO

V. Synthesis and Characterization of the Pd(L_{3a})Cl Complex

2-Oxo-4,6-bis(1-phenyl-1*H*-imidazol-2-ylidene-3-yl)-2*H*-1,3,5-triazin-5-ide chloropalladium (Pd(L_{3a})Cl)

A mixture of the ligand **3a** (0.42 g, 1.0 mmol), ^{*t*}BuONa (0.24 g, 2.4 mmol), and Pd(OAc)₂ (0.27 g, 1.2 mmol) in dry THF (8 mL) were allowed to react in a flame-dried Schlenk test tube at room temperature under N₂ atmosphere for 5 h. After reaction, the volatiles were removed under reduced pressure. The residue was then dispersed in 50 mL CH₂Cl₂ and filtered. The organic phase was concentrated and passed through a silica gel column (CH₂Cl₂/MeOH = 10/1, v/v) to afford the complex as a white solid (0.24 g, 46% yield). mp >250 °C. ¹H NMR (400 MHz, DMSO): δ 8.51 (br, 2H), 7.46-7.42 (m, 6H), 7.36-7.30 (m, 6H). ¹³C NMR (100 MHz, DMSO): δ 170.0, 161.4, 129.9, 129.4, 128.8, 126.3, 123.5, 122.6, 119.1. HRMS (ESI-TOF) (CH₃OH): m/z: 524.0211 [Pd(L_{3a})Cl+H]⁺, 542.0385 [Pd(L_{3a})Cl+H₂O+H]⁺, 556.0380 [Pd(L_{3a})+CH₃OH+H]⁺, 560.0439 [Pd(L_{3a})Cl+2H₂O+H]⁺. Elemental analysis calcd (%) for C₂₁H₁₆ClN₇OPd 0.8CH₂Cl₂: C, 44.21; H, 3.00; N, 16.56. Found: C, 44.48; H, 3.22; N, 16.84.

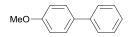
VI. General Procedure for the Suzuki–Miyaura Coupling Reaction

A mixture of a bromoarene (1.0 mmol), an arylboronic acid (1.1 mmol), $Pd(OAc)_2$ (0.10 mL, 5.0×10^{-5} mmol), a ligand (0.10 mL, 5.0×10^{-5} mmol) and a base (0.424 g, 2.0 mmol) in a solvent (1 mL) were allowed to react in a sealed tube at 100 °C for 7 h. After reaction, the volatiles were removed under reduced pressure. The residue was then dispersed in 20 mL CH₂Cl₂ and filtered. The organic phase was concentrated and passed through a silica gel column to afford the desired coupling product.

VII. Optimization of the Suzuki–Miyaura Coupling Reaction

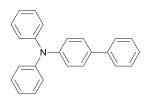
	B(OH) ₂ + Br	base	c) ₂ , Ligand , solvent °C, 7 h	N N
Entry	Solvent	Base	Ligand	$\operatorname{Yield}^{b}(\%)$
1	1,4-dioxane	K ₃ PO ₄	3 a	12
2	DMF	K ₃ PO ₄	3a	18
3	H_2O	K_3PO_4	3 a	39
4	MeOH	K_3PO_4	3 a	64
5	MeOH/H ₂ O	K_3PO_4	3 a	67
6	MeOH/H ₂ O	K_2CO_3	3 a	56
7	MeOH/H ₂ O	NaOAc	3 a	12
8	MeOH/H ₂ O	Et ₃ N	3 a	25
9	MeOH/H ₂ O	K_3PO_4	3b	77
10	MeOH/H ₂ O	K ₃ PO ₄	3c	94
11	MeOH/H ₂ O	K ₃ PO ₄	3d	75
12	MeOH/H ₂ O	K_3PO_4	3 e	83
13	MeOH/H ₂ O	K ₃ PO ₄	3f	30
14	MeOH/H ₂ O	K_3PO_4	3b′	56
15	MeOH/H ₂ O	K_3PO_4	None	63

Table S2 Optimization of the Suzuki–Miyaura coupling reaction.^a

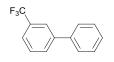

^{*a*} Reaction conditions: 4-bromo-*N*,*N*-dimethylaniline (1.0 mmol), phenylboronic acid (1.1 mmol), $Pd(OAc)_2$ (0.005 mol%), ligand (0.005 mol%), base (2.0 mmol), solvent (1 mL) at 100 °C for 7 h. ^{*b*} Isolated yield.

VIII. Analytical Data of the Coupling Products

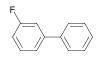
$$\overline{}$$


Biphenyl

White solid (0.151 g, 98% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 7.2 Hz, 4H), 7.43 (t, J = 7.6 Hz, 4H), 7.33 (t, J = 7.2 Hz, 2H).


4-Methoxybiphenyl

White solid (0.173 g, 94% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.53 (m, 4H), 7.45-7.41 (m, 2H), 7.33-7.29 (m, 1H), 6.98 (d, *J* = 8.4 Hz, 2H), 3.86 (s, 3H).


N,N-Diphenylbiphenyl-4-amine

White solid (0.308 g, 96% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, J = 7.6 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.32-7.24 (m, 5H), 7.12 (d, J = 8.0 Hz, 6H), 7.00 (t, J = 7.6 Hz, 2H).

3-(Trifluoromethyl)biphenyl

Yellow oil (0.198 g, 89% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (s, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.62-7.54 (m, 4H), 7.47 (t, J = 7.4 Hz, 2H), 7.39 (t, J = 7.2 Hz, 1H).

3-Fluorobiphenyl

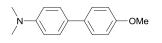
Colorless oil (0.156 g, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.57 (m, 2H), 7.47-7.36 (m, 5H), 7.31-7.28 (m, 1H), 7.06-7.02 (m, 1H).

2-Methoxybiphenyl

Colorless oil (0.164 g, 89% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.53 (d, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.35-7.32 (m, 3H), 7.06-6.99 (m, 2H), 3.89 (s, 3H).

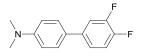
MeO

3-Methoxybiphenyl

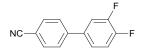

Yellow oil (0.178 g, 97% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 7.6 Hz, 2H), 7.44 (t, J =

7.6 Hz, 2H), 7.40-7.36 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 1H), 7.16 (s, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 3.89

(s, 3H).


N,*N*-Dimethylbiphenyl-4-amine

White solid (0.185 g, 94% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.58 (d, *J* = 7.6 Hz, 2H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.30-7.27 (m, 1H), 6.84 (d, *J* = 8.4 Hz, 2H), 3.02 (s, 6H).


4'-Methoxy-N,N-dimethylbiphenyl-4-amine

Yellow solid (0.213 g, 94% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.46 (m, 4H), 6.94 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 7.6 Hz, 2H), 3.84 (s, 3H), 2.99 (s, 6H).

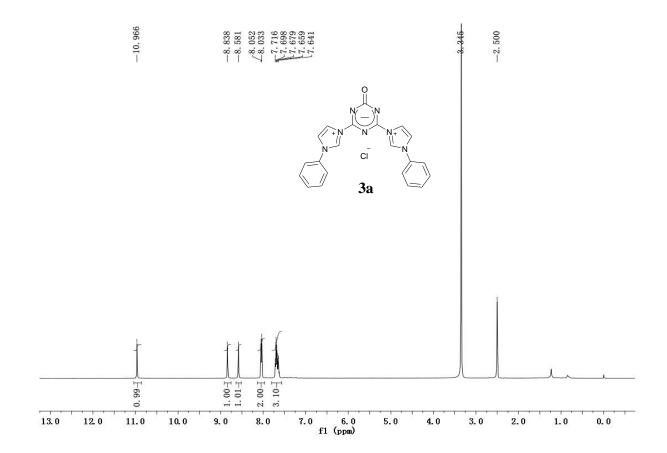
3',4'-Difluoro-N,N-dimethylbiphenyl-4-amine

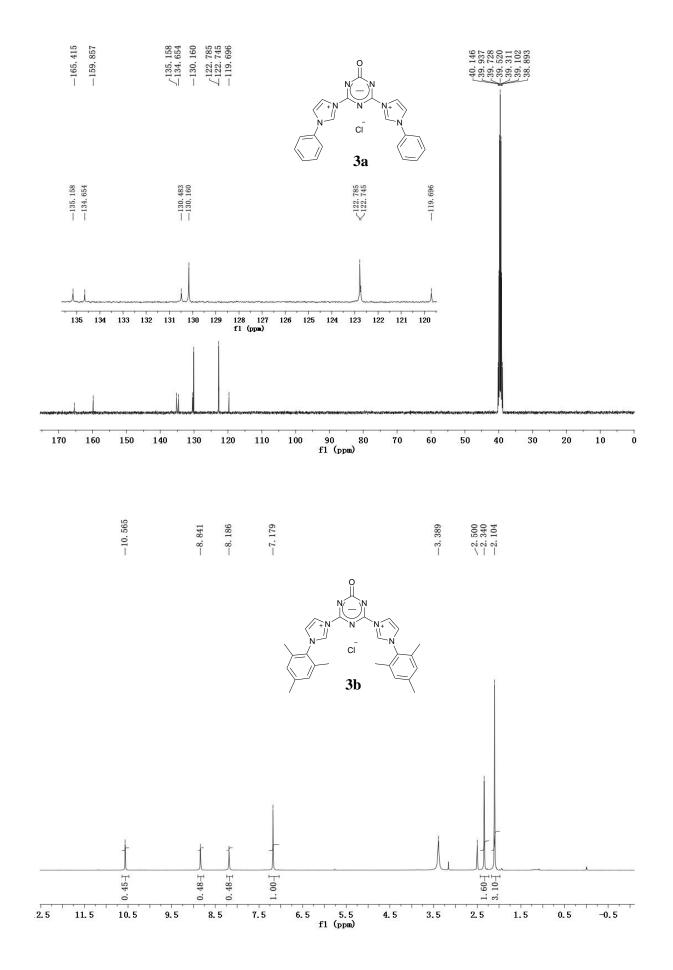
White solid (0.214 g, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, *J* = 8.4 Hz, 2H), 7.35-7.30 (m, 1H), 7.25-7.23 (m, 1H), 7.19-7.13 (m, 1H), 6.78 (d, *J* = 8.4 Hz, 2H), 3.00 (s, 6H).

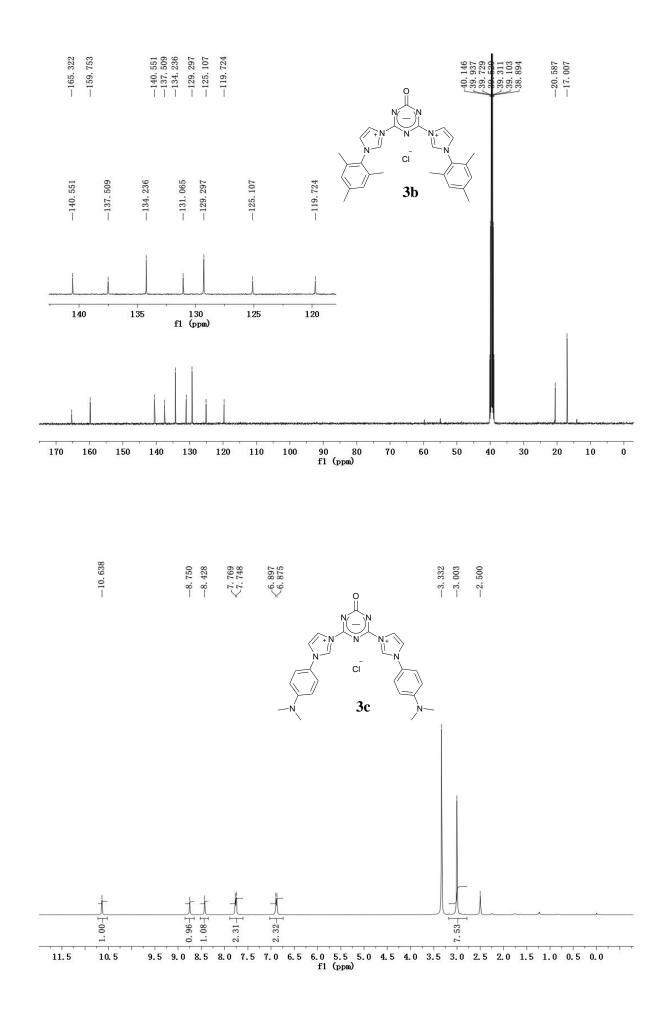
3',4'-Difluorobiphenyl-4-carbonitrile

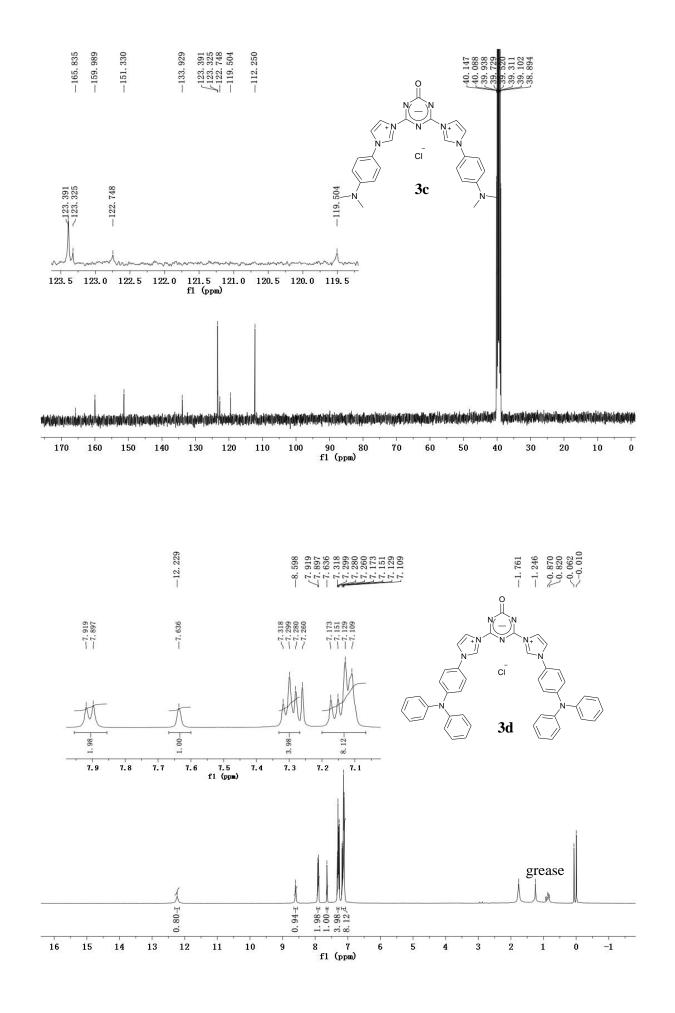
White solid (0.206 g, 96% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.42-7.37 (m, 1H), 7.30-7.24 (m, 2H).

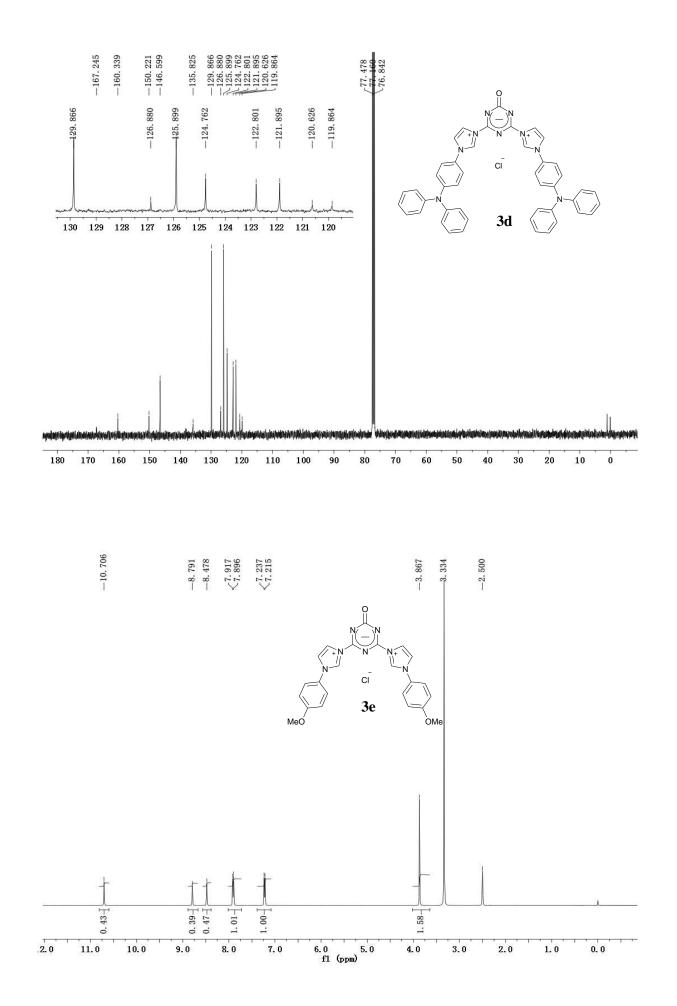
1-(4'-Methoxybiphenyl-4-yl)ethanone


White solid (0.221 g, 98% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 3.86 (s, 3H), 2.63 (s, 3H).


IX. References


(1) (*a*) L. Zhu, P. Guo, G. Li, J. Lan, R. Xie and J. You, *J. Org. Chem.*, 2007, **72**, 8535; (*b*) A. J. Arduengo, F. P. Gentry, P. K. Taverkere, H. E. Simmons, **US** 6177575, 2001; (*c*) J.-Y. Cheng and Y.-H. Chu, *Tetrahedron Lett.*, 2006, **47**, 1575.


(2) D. Serra, P. Cao, J. Cabrera, R. Padilla, F. Rominger and M. Limbach, *Organometallics*, 2011, **30**, 1885.


X. Copies of ¹H NMR and ¹³C NMR Spectra

