Electronic Supplementary Information

Synergistic effect of Rh-Ni catalysts on the highly-efficient dehydrogenation of aqueous hydrazine borane for chemical hydrogen storage

Di-Chang Zhong, Kengo Aranishi, Ashish Kumar Singh, Umit B. Demirci and Qiang Xu*

Experimental

General. The HB was synthesized according to the reported literature.¹⁻² Other chemicals were commercial available and used without purification. Hydrazine monohydrate (N₂H₄·H₂O, 99%), sodium borohydride (NaBH₄, 99%) and hexadecyltrimethyl ammonium bromide (CTAB, 95%) were obtained from Aldrich. RhCl₃·3H₂O (95%) and NiCl₂·6H₂O (99.9%) were purchased from Wako Pure Chemical Industries, Ltd. For accuracy and convenience, the RhCl₃ solution (1 mol/L) and NiCl₂ solution (1 mol/L) were prepared from RhCl₃·3H₂O and NiCl₂·6H₂O in advance, respectively.

Mass analysis of the generated gases was recorded on a Balzers Prisma QMS 200 mass spectrometer. Powder X-ray diffraction (XRD) studies were performed on a Rigaku RINT-2000 X-ray diffractometer (Cu K α). Transmission electron microscope (TEM, FEI TECNAI G²) equipped with energy dispersed X-ray detector (EDS) were applied for the detailed microstructure information. The TEM samples were prepared by depositing few droplets of the nanoparticle suspension onto the amorphous carbon coated copper grids, which were dried under argon atmosphere. XPS analysis was carried out on a Shimadzu ESCA-3400 X-ray photoelectron spectrometer using an Mg K α source (10 kV, 10 mA). The Ar sputtering experiments were carried out under the conditions of background vacuum 3.2×10^{-6} Pa, sputtering acceleration voltage 2 kV.

Preparation of Rh-Ni nanocatalysts. The Rh₄Ni alloy nanocatalysts were prepared as a black suspension using a surfactant (hexadecyltrimethyl ammonium bromide, CTAB) aided co-reduction process, by quickly adding an aqueous solution of sodium borohydride (NaBH₄) to an aqueous solution of rhodium(III) chloride and nickel(II) chloride. In a typical synthetic procedure, a 1.0 mL aqueous

solution containing 44.0 μ L RhCl₃·3H₂O (1.0 mol/L) and 11.0 μ L NiCl₂·6H₂O (1.0 mol/L) was added to a 1.0 mL aqueous solution containing 0.050 g of CTAB drop by drop with continuous stirring. After the resulted solution sonicated for 5 min, a 2.0 mL aqueous solution of NaBH₄ (0.010 g) was rapidly added and the content of the flask was vigorously shaked for 2 min, resulting in the generation of Rh₄Ni nanocatalyst as a black suspension, which is used for the catalytic reaction.

The procedure for preparing other Rh-Ni nanocatalysts is similar to that for Rh₄Ni nanocatalyst. The volumes of RhCl₃ solution and NiCl₂ solution were respectively 48.5 μ L and 0.0 μ L for Rh, 48.0 μ L and 3.0 μ L for Rh₁₆Ni, 45.6 μ L and 5.7 μ L for Rh₈Ni, 37.8 μ L and 18.9 μ L for Rh₂Ni, 30.8 μ L and 30.8 μ L for RhNi, 22.6 μ L and 45.2 μ L for RhNi₂, 14.7 μ L and 58.8 μ L for RhNi₄, 8.7 μ L and 69.6 μ L for RhNi₈, 4.8 μ L and 76.8 μ L for RhNi₁₆, 0.0 μ L and 84.8 μ L for Ni.

An important detail that needs to be mentioned is the preparation method of the Rh₄Ni nanocatalyst. We found that the activity of Rh₄Ni nanocatalyst was greatly affected by the reduction rate. As shown in Fig. S5, the hydrogen selectivity of the Rh₄Ni nanocatalyst prepared by adding sodium borohydride drop by drop is obviously lower than that of the Rh₄Ni nanocatalyst synthesized by adding sodium borohydride quickly, which can be attributed to the slightly different microstructures of the nanocatalysts produced by different procedures. The electrode potential of Rh³⁺/Rh pair ($\varphi_{Rh}^{3+}/_{Rh}$, +0.758 V) is much larger than $\varphi_{Ni}^{2+}/_{Ni}$ (-0.257 V),³ which leads to the reduction of Rh³⁺ much easier than that of Ni²⁺. Therefore, when the sodium borohydride was added to the mixed Rh³⁺-Ni²⁺ solution drop by drop, Rh³⁺ will be reduced to Rh firstly, and thus it is difficult to form Rh-Ni alloy catalysts. To prepare the highly-active Rh₄Ni catalyst, the sodium borohydride should be added quickly and the reaction solution should be shaken intensely.

HB/N₂H₄·H₂O dehydrogenation reaction. Catalytic reactions were carried out at 50 °C using a two-necked round bottom flask with one of the flask openings connected to a gas burette and the other for the introduction of HB / hydrazine monohydrate. Catalytic dehydrogenation reaction of aqueous HB / hydrazine for the release of hydrogen (along with nitrogen) was initiated by adding 0.5 mmol (0.024 g) of HB / by injecting 0.5 mmol (0.025 μ L) of N₂H₄·H₂O to the Rh-Ni catalytic system (prepared as

described above). The gas released during the reaction was passed through a trap containing 1.0 mol/L hydrochloric acid to ensure the absorption of ammonia, if produced, of which the volume was monitored using the gas burette.

Characterization of nanocatalysts. After the hydrazine decomposition reaction the suspension was centrifuged (15000 rpm, 10 min, 25 °C) to separate the solution and the nanocatalyst, which was washed twice with 5.0 mL of hot water, dried at 100 °C for 10 h and then used for XRD, TEM and XPS characterizations. For the XPS measurements, the dried Rh_4Ni sample was mounted on a carbon adhesive tape, which was adhered to an indium plate in advance. The indium plate was further attached to a stainless sample holder through a carbon adhesive tape, which was then put inside of the sample-preparation chamber through a manipulator.

References

- 1 J. Hannauer, O. Akdim, U. B. Demirci, C. Geantet, J. M. Herrmann, P. Miele and Q. Xu, *Energy Environ. Sci.*, 2011, **4**, 3355.
- R. Moury, G. Moussa, U. B. Demirci, J. Hannauer, S. Bernard, E. Petit, A. van der Lee and P. Miele, *Phys. Chem. Chem. Phys.*, 2012, 14, 1768.
- 3 (a) G. Milazzo, S. Garoli and V. K. Sharma, Tables of Stardard Electrode Potentials, Wiley, Chichester, 1978; (b) A. J. Bard, R. Parsons and J. Jordan. Stardard Potentials in Aqueous Solutions, Marcel Dekker, New York, 1985.

Fig. S1 Durability characterization of Rh₄Ni in three runs for dehydrogenation of aqueous HB.

Fig. S2 Time course plots for dehydrogenation of aqueous HB catalyzed by Rh-Ni nanocatalysts at 50 °C (catalyst: 5 mg; HB: 0.5 mmol).

Fig. S3 (a) Time course plots for decomposition of N_2H_4 · H_2O catalyzed by Rh₄Ni nanocatalyst at 50 °C (catalyst: 5 mg; N_2H_4 · H_2O : 0.5 mmol). (b) Time course plots for decomposition of N_2H_4 · H_2O (0.5 mmol), which was added to the solution where the dehydrogenation of HB just finished.

Fig. S4 Time course plots for dehydrogenation of aqueous HB and N_2H_4 · H_2O catalyzed by Rh₄Ni nanocatalyst at 50 °C (catalyst: 5 mg; HB/N₂H₄· H_2O : 0.5 mmol).

Fig. S5 Time course plots for dehydrogenation of aqueous HB catalyzed by Rh₄Ni nanocatalysts prepared by (a) quick and (b) slow reduction processes using sodium borohydride.

Fig. S6 Mass spectral profile of gases released from the dehydrogenation of aqueous HB using the Rh_4Ni nanocatalyst under an argon atmosphere at 50 °C.

Fig. S7 SAED of the Rh₄Ni nanoparticle.

Fig. S8 (a) HAADF–STEM image of Rh_4Ni nanocatalyst with the corresponding EDS spectra. (b) EDS spectrum for the bulk area of Rh_4Ni nanocatalyst.

Fig. S9 The XRD pattern for Rh₄Ni catalyst.

Fig. S10 The XPS profiles of (a) Rh and (b) Ni in the Rh₄Ni nanocatalyst before (0 min) and after (1~120 min) argon sputtering.