# Copper-Catalyzed C–N Bond Formation through C–H/N–H Activation: A Novel Approach for the Synthesis of Multisubstituted Ureas

Honglai Jiang, <sup>a</sup> Aijun Lin, <sup>a</sup> Chengjian Zhu,<sup>\*a, b</sup> and Yixiang Cheng <sup>a</sup>

 <sup>a</sup> School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China
<sup>b</sup> State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China Fax: (+86)25-83594886; E-mail:cjzhu@nju.edu.cn

# **General Information**

All manipulations were carried out under air atmosphere. *Tert*-Butyl hydroperoxide (70 % solution in water) was purchased from Acros Organics and used without further purification. Column chromatography was generally performed on silica gel (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> at Bruker ARX-300 MHz spectrometer with chemical shifts referenced to SiMe<sub>4</sub> as internal standard. Chemical shifts are reported in parts per million (ppm) and referenced to the residual solvent resonance. Coupling constant (*J*) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s = singlet, d = double, t = triplet, dd = double doublet, tt = triplet triplet, <math>q = quartet, m = multiplet, b = broad. HRMS were recorded on an Agilent 6210 TOF LC/MS equipped with electrospray ionization (ESI) probe operating in positive or negative ion mode.

#### **General Procedure for the synthesis of ureas 3a–3x:**



The *N*-alkoxyarylamides (0.5 mmol), *N*, *N*-disubstituted formamide (26 mmol),  $CuCl_2 \cdot 2H_2O$  (0.015 mmol, 3 mol%), TBHP (1.5 mmol, 0.2 mL of a 70% aqueous solution) were added to a test tube in air. The reaction mixture was stirred at room temperature for 5 h and was quenched with a saturated solution of  $Na_2SO_3$  (for removal of excess TBHP) and extracted with ethyl acetate. The organic solvent was removed under vacuum and purification by chromatography on a silica gel column afforded the desired product.

## General Procedure: The synthesis of N-alkoxy benzamides

Method A:



Methoxylamine hydrochloride (840 mg, 10 mmol) and potassium carbonate (2.76 g, 20 mmol) were dissolved in a mixture of water (25 mL) and EtOAc (50 mL), and cooled to 0 °C upon which acyl chloride (10 mmol) was added dropwise. The reaction was then allowed to warm to r.t. and stirred for between 5 h and overnight. The product was isolated by diluting the mixture with EtOAc/H<sub>2</sub>O and separating the layers, the organic phase was then washed with brine and dried over MgSO<sub>4</sub>, filtered and concentrated to give the product which was then recrystallized (EtOAc/Hex) to give the target compound(**1a-1m**). Procedure described in Fisher *et al. J. Org. Chem.* 1993, **58**, 3643.

Method B:



*N*-hydroxybenzamide (1.4 g, 10 mmol) and NaOH (o.44 g, 11mol) were dissolved in a mixture of water (2 mL) and EtOH (30 mL), and the alkyl bromide (11 mol) were added dropwise. The reaction was then allowed to warm to reflux and stirred for 16 h. The solvent was removed and diluted with EtOAc/H<sub>2</sub>O and separated the layers, the organic phase was then washed with brine and dried over MgSO<sub>4</sub>, filtered and concentrated which was then purified by column chromatography on silica gel (EtOAc/Hex=1:1) to give the compound(**1n-1t**). Procedure described in Morris T. Reagan et al. *J. Am. Chem. Soc.* 1968, **90**, 4096.

## .The data of new substrates



*N-methoxy-2,4,6-trimethylbenzamide (1h)*. white solid, 33% yield, mp. 146-148°C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.85 (s, 1H), 6.75 (s, 2H), 3.80 (s, 3H), 2.23 (s, 3H), 2.19 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  167.7, 139.3, 135.3, 130.6, 128.2, 64.3, 21.2, 18.9; HRMS (ESI): calculated for C<sub>11</sub>H<sub>15</sub>NNaO<sub>2</sub>: 216.0995 [M+Na]<sup>+</sup>; found: 216.0982.



*N-(prop-2-yn-1-yloxy)benzamide (1P)*. white solid, 78% yield, mp. 85-87°C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  9.93 (s, 1H), 7.76 (d, *J*=7.7, 2H), 7.43 (m, 3H), 4.60 (s, 2H), 2.51 (s, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.5, 132.2, 131.5, 128.67, 127.4, 78.0, 76.4, 63.6; HRMS (ESI): calculated for C<sub>10</sub>H<sub>9</sub>NNaO<sub>2</sub>: 198.0526 [M+Na]<sup>+</sup>; found: 198.0520.



*N-(isopentyloxy)benzamide (1r).* yellow oil, 65% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  10.31 (s, 1H), 7.76 (d, *J*=7.3, 2H), 7.48–7.26 (m, 3H), 3.97 (t, *J*=6.8, 2H), 1.65 (m, 1H), 1.50 (q, *J*=6.8, 2H), 0.86 (s, 3H), 0.83 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.2, 132.0, 131.8, 128.5, 127.3, 75.3, 36.7, 25.0, 22.6; HRMS (ESI): calculated for C<sub>12</sub>H<sub>17</sub>NNaO<sub>2</sub>: 230.1152 [M+Na]<sup>+</sup>; found: 230.1147.



**2-(3-chlorophenyl)-N-methoxyacetamide(1y).** white solid, 82% yield, mp. 72-74°C. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  11.05 (s, 1H), 7.26 (s, 1H), 7.17–7.10 (m, 3H), 3.66 (s, 3H), 3.35 (s, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 136.5, 134.1, 129.7, 129.1, 127.3, 127.1, 63.8, 39.1; HRMS (ESI): calculated for C<sub>9</sub>H<sub>11</sub>ClNO<sub>2</sub>: 200.0473 [M+H]<sup>+</sup>; found: 200.0462.

Table S1: Optimization of reaction conditions.<sup>a</sup>

|                 | O<br>H<br>H<br>1a        | 0<br>│ | conditions<br>-H activation | - OMe<br>3a        | N                    |
|-----------------|--------------------------|--------|-----------------------------|--------------------|----------------------|
| Entry           | Catalyst                 | Ligand | Solvent                     | Oxidant            | $\text{Yield}(\%)^b$ |
| 1               | $CuCl_2 \cdot 2H_2O$     | none   | DMF                         | TBHP               | 77                   |
| 2               | CuBr                     | none   | DMF                         | TBHP               | 72                   |
| 3               | CuI                      | none   | DMF                         | TBHP               | trace                |
| 4               | CuOTf                    | none   | DMF                         | TBHP               | trace                |
| 5               | Cu(OTf) <sub>2</sub>     | none   | DMF                         | TBHP               | 0                    |
| 6               | $Cu(OAc)_2 \cdot H_2O$   | none   | DMF                         | TBHP               | 0                    |
| 7               | $Cu(NO_3)_2 \cdot 3H_2O$ | none   | DMF                         | TBHP               | 0                    |
| 8               | $Cu(ClO_4)_2 \cdot H_2O$ | none   | DMF                         | TBHP               | 0                    |
| 9               | $CuCl_2 \cdot 2H_2O$     | phen   | DMF                         | TBHP               | 63                   |
| 10              | $CuCl_2 \cdot 2H_2O$     | bpy    | DMF                         | TBHP               | 77                   |
| 11              | $CuCl_2 \cdot 2H_2O$     | TMEDA  | DMF                         | TBHP               | 71                   |
| 13              | $CuCl_2 \cdot 2H_2O$     | DMEDA  | DMF                         | TBHP               | 75                   |
| 14              | $CuCl_2 \cdot 2H_2O$     | none   | DMF                         | Air/O <sub>2</sub> | 0                    |
| 15              | $CuCl_2 \cdot 2H_2O$     | none   | DMF                         | TBP                | 0                    |
| 16              | $CuCl_2 \cdot 2H_2O$     | none   | DMF                         | DCP                | 0                    |
| 17              | none                     | none   | DMF                         | TBHP               | 0                    |
| 18 <sup>c</sup> | $CuCl_2 \cdot 2H_2O$     | none   | $CH_2Cl_2$                  | TBHP               | 0                    |
| 19 <sup>c</sup> | $CuCl_2 \cdot 2H_2O$     | none   | THF                         | TBHP               | 18                   |
| 21 <sup>c</sup> | $CuCl_2 \cdot 2H_2O$     | none   | Hexane                      | TBHP               | 38                   |
| $22^c$          | $CuCl_2 \cdot 2H_2O$     | none   | DMSO                        | TBHP               | 60                   |
| 23 <sup>c</sup> | $CuCl_2 \cdot 2H_2O$     | none   | Dioxane                     | TBHP               | 25                   |

 $\frac{24^{c}}{Reaction \ conditions: \ 0.5 \ mmol \ N-methoxybenzamide, \ 3 \ mol\% \ Cu \ catalyst, \ 52 \ equiv \ N, \ N-dimethylformamide, \ r.t, \ 3.0 \ equiv \ oxidant, \ 5h. \ ^{b} \ Isolated \ yield. \ ^{c} \ 6 \ equiv \ N, \ N-dimethylformamide.$ 

#### Transformations of the multisubstituted N-acyl ureas

In order to further show the synthetic application, we tried our best to transform the N-acyl ureas into other diverse derivatives. Although many methods reported by other groups had been tested, <sup>1</sup> the N-deprotected product could not be detected. The compound **3d** was selected as the substrate in the transformation.



References 1. (a) G. W. Wang, T. T. Yuan and D. D. Li, Angew. Chem. Int. Ed., 2011, 50, 1380; (b) J. Willwacher, S. Rakshitb and F. Glorius, Org. Biomol. Chem., 2011, 9, 4736; (c) J. X. Huang, F. Wang, D. M. Du and J. X. Xu, Synthesis., 2005, 13, 2122; (d) H. B. Zhong, D. Yang, S. Q. Wang and J. H. Huang, Chem. Commun., 2012, 48, 3236; (e) L. E. Fisher, J. M. Caroon, Jahangir, S. R. Stabler, S. Lundberg and J. M. Muchowski, J. Org. Chem., 1993, 58, 3643.

#### Effect of the radical scavenger



CuCl<sub>2</sub>·2H<sub>2</sub>O (0.015 mmol), TBHP (1.5 mmol) were placed in a dry sealable tube. To this, dried DMF (2.0 mL), *N*-methoxybenzamide (0.5 mmol) (**1a**) and TEMPO (3.0 equiv) were added. The tube was sealed, and stirred for one night at room temperature. Then it was detected with MS, no product (**3a**) were found and the TEMPO adduct was detected. It indicated that the reaction proceeded through the activation of the sp<sup>2</sup> C–H of formamides by a radical mechanism.

# The TEMPO adduct Spectrum of the MI



## **Compound characterizations**



*N*-(*dimethylcarbamoyl*)-*N*-*methoxybenzamide* (*3a*). colorless oil, 77% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.80–7.62 (m, 2H), 7.47–7.22 (m, 3H), 3.97 (s, 3H), 3.11 (s, 3H), 2.99 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.9, 148.2, 130.4, 130.4, 128.5, 126.1, 63.0, 37.0, 36.9; HRMS (ESI): calculated for C<sub>11</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>3</sub>: 245.0896 [M+Na]<sup>+</sup>; found: 245.0894.



*N*-(*dimethylcarbamoyl*)-*4*-*fluoro-N-methoxybenzamide* (*3b*). colorless oil, 69% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.80–7.62 (m, 2H), 7.15–6.89 (m, 2H), 3.95 (s, 3H), 3.10 (s, 3H), 2.99 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  165.7, 162.4, 149.6 (d, *J*=332.3), 128.1 (d, *J*=9.0), 126.6(d, *J*=3.0), 115.6 (d, *J*=21.2), 63.0, 36.9, 36.8; HRMS (ESI): calculated for C<sub>11</sub>H<sub>13</sub>FN<sub>2</sub>NaO<sub>3</sub>: 263.0802 [M+Na]<sup>+</sup>; found: 263.0811.



4-chloro-N-(dimethylcarbamoyl)-N-methoxybenzamide (3c). colorless oil, 58% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.64 (d, *J*=8.4, 2H), 7.33 (d, *J*=8.4, 2H), 3.96 (s, 3H), 3.10 (s, 3H), 2.99 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 151.8, 147.4, 136.4, 129.0, 128.8, 127.4, 63.1, 37.0, 36.9; HRMS (ESI): calculated for  $C_{11}H_{13}ClN_2NaO_3$ : 279.0507 [M+Na]<sup>+</sup>; found: 279.0513.



4-bromo-N-(dimethylcarbamoyl)-N-methoxybenzamide (3d). colorless oil, 59% yield.

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.61–7.55 (m, 2H), 7.52–7.46 (m, 2H), 3.96 (s, 3H), 3.11 (s, 3H), 3.00 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.8, 147.5, 131.8, 129.5, 127.6, 124.8, 63.2, 37.0, 36.9; HRMS (ESI): calculated for C<sub>11</sub>H<sub>13</sub>BrN<sub>2</sub>NaO<sub>3</sub>: 323.0002 [M+Na]<sup>+</sup>; found: 323.0001.



*N*-(*dimethylcarbamoyl*)-*N*-*methoxy*-*4*-*nitrobenzamide* (*3e*). colorless oil, 56% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.22–8.16 (m, 2H), 7.89–7.83 (m, 2H), 4.00 (s, 3H), 3.12 (s, 3H), 3.00 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.5, 148.7, 146.5, 136.6, 126.8, 123.7, 63.5, 37.0, 36.9; HRMS (ESI): calculated for C<sub>11</sub>H<sub>13</sub>N<sub>3</sub>NaO<sub>5</sub>: 290.0747 [M+Na]<sup>+</sup>; found: 290.0745.



**2-chloro-N-(dimethylcarbamoyl)-N-methoxybenzamide (3f).** colorless oil, 63% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.67–7.64 (m, 1H), 7.43–7.25 (m, 3H), 3.99 (s, 3H), 3.09 (s, 3H), 2.94 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.4, 147.2, 132.8, 131.9, 131.2, 130.3, 130.0, 126.9, 63.1, 36.8; HRMS (ESI): calculated for C<sub>11</sub>H<sub>13</sub>ClN<sub>2</sub>NaO<sub>3</sub>: 279.0507 [M+Na]<sup>+</sup>; found: 279.0503.



*N*-(*dimethylcarbamoyl*)-*N*-*methoxy*-*1*-*naphthamide* (*3g*). colorless oil, 56% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.71 (d, *J*=8.5, 1H), 7.94–7.77 (m, 3H), 7.65–7.44 (m, 3H), 4.09 (s, 3H), 3.10 (s, 3H), 2.95 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.9, 148.4, 133.8, 130.9, 130.7, 128.5, 127.9, 127.6, 127.2, 126.2, 125.8, 124.9, 63.0, 36.7; HRMS (ESI): calculated for C<sub>15</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>3</sub>: 295.1053 [M+Na]<sup>+</sup>; found: 295.1056.



*N*-(*dimethylcarbamoyl*)-*N*-*methoxy*-2,4,6-*trimethylbenzamide* (3*h*). colorless oil, 77% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 6.86 (s, 2H), 3.94 (s, 3H), 3.03 (s, 3H), 2.90 (s, 3H), 2.41 (s, 6H), 2.27 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 151.5, 147.4, 139.5, 138.2, 128.7, 127.2, 62.7, 36.8, 21.2, 20.1; HRMS (ESI): calculated for  $C_{14}H_{20}N_2NaO_3$ : 287.1366 [M+Na]<sup>+</sup>; found: 287.1371.



*N*-(*dimethylcarbamoyl*)-*N*,4-*dimethoxybenzamide* (*3i*). colorless oil, 74% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.67–7.59 (m, 2H), 6.90–6.82 (m, 2H), 3.92 (s, 3H), 3.78 (s, 3H), 3.09 (s, 3H), 2.97 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  161.3, 152.0, 148.1, 127.6, 122.7, 113.9, 62.74, 55.3, 36.8, 36.7; HRMS (ESI): calculated for C<sub>12</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>4</sub>: 275.1002 [M+Na]<sup>+</sup>; found: 275.1005.



*N*-(*dimethylcarbamoyl*)-*N*-*methoxycinnamamide* (*3j*). colorless oil, 75% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.49–7.39 (m, 2H), 7.38–7.24 (m, 3H), 6.97 (d, *J*=16.1, 1H), 6.68 (d, *J*=16.1, 1H), 3.93 (s, 3H), 3.11 (s, 3H), 3.01 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.7, 149.5, 135.5, 135.0, 129.0, 128.8, 127.2, 118.2, 62.9, 36.9, 36.8; HRMS (ESI): calculated for C<sub>13</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>3</sub>: 271.1053 [M+Na]<sup>+</sup>; found: 271.1065.



*N*-(*dimethylcarbamoyl*)-*N*-*methoxythiophene-2-carboxamide* (*3k*). colorless oil, 75% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.35–7.29 (m, 2H), 7.04–6.96 (m, 1H), 3.94 (s, 3H), 3.10 (s, 3H), 3.01 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.5, 145.1, 133.1, 128.2, 127.8, 127.2, 63.0, 36.9, 36.8; HRMS (ESI): calculated for C<sub>9</sub>H<sub>12</sub>N<sub>2</sub>NaO<sub>3</sub>S: 251.0461 [M+Na]<sup>+</sup>; found: 251.0450.



*N*-(*dimethylcarbamoyl*)-*N*-*methoxyfuran-2-carboxamide* (*3l*). colorless oil, 80% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.46–7.42 (m, 1H), 6.67 (d, *J*=3.4, 1H), 6.43–6.39 (m, 1H), 3.94 (s, 3H), 3.06 (s, 3H), 2.97 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 151.5, 144.5, 141.6, 112.1, 111.9, 111.5, 63.3, 37.0, 36.8; HRMS (ESI): calculated for C<sub>9</sub>H<sub>12</sub>N<sub>2</sub>NaO<sub>4</sub>: 235.0689 [M+Na]<sup>+</sup>; found: 235.0681.



*N*-(*dimethylcarbamoyl*)-*N*-*ethoxybenzamide* (*3m*). colorless oil, 75% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.77–7.68 (m, 2H), 7.42–7.31 (m, 3H), 4.21 (q, *J*=7.0, 2H), 3.11 (s, 3H), 2.99 (s, 3H), 1.32 (t, *J*=7.0, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  152.1, 148.1, 130.6, 130.2, 128.4, 126.0, 70.6, 36.8, 14.6; HRMS (ESI): calculated for C<sub>12</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>3</sub>: 259.1053 [M+Na]<sup>+</sup>; found: 259.1057.



*N*-(*dimethylcarbamoyl*)-*N*-propoxybenzamide (3n). colorless oil, 76% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.72–7.75 (m, 2H), 7.41–7.31 (m, 3H), 4.12 (t, *J*=6.6, 2H), 3.10 (s, 3H), 2.99 (s, 3H), 1.81 – 1.63 (m, 2H), 0.96 (t, *J*=7.4, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  152.1, 148.2, 130.6, 130.1, 128.4, 126.0, 76.5, 36.8, 22.3, 10.3; HRMS (ESI): calculated for C<sub>13</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>3</sub>: 273.1210 [M+Na]<sup>+</sup>; found: 273.1211.



N-(dimethylcarbamoyl)-N-isopropoxybenzamide (30). colorless oil, 67% yield. <sup>1</sup>H

NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.79–7.69 (m, 2H), 7.44–7.30 (m, 3H), 4.50–4.33 (m, 1H), 3.10 (s, 3H), 2.99 (s, 3H), 1.31–1.29 (d, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  152.3, 148.0, 130.8, 130.0, 128.4, 126.0, 76.4, 36.8, 21.5; HRMS (ESI): calculated for C<sub>13</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>3</sub>: 273.1210 [M+Na]<sup>+</sup>; found: 273.1222.



*N*-(*dimethylcarbamoyl*)-*N*-(*prop-2-yn-1-yloxy*)*benzamide* (*3p*). colorless oil, 77% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.72–7.75 (m, 2H), 7.44–7.31 (m, 3H), 4.74 (d, *J*=2.3, 2H), 3.12 (s, 3H), 2.99 (s, 3H), 2.50 (t, *J*=2.3, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.8, 149.5 130.6, 130.0, 128.5, 126.3, 79.3, 75.0, 62.5, 36.9; HRMS (ESI): calculated for C<sub>13</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>3</sub>: 269.0897 [M+Na]<sup>+</sup>; found: 269.0930.



*N*-(*dimethylcarbamoyl*)-*N*-(*pentyloxy*)*benzamide* (*3q*). colorless oil, 74% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.77–7.70 (m, 2H), 7.40–7.31 (m, 3H), 4.16 (t, *J*=6.7, 2H), 3.10 (s, 3H), 2.99 (s, 3H), 1.72 (m, 2H), 1.40–1.32 (m, 4H), 0.92 (t, *J*=7.0, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 152.1, 148.2, 130.6, 130.1, 128.4, 126.0, 75.1, 36.8, 28.7, 28.0, 22.5, 14.1; HRMS (ESI): calculated for  $C_{15}H_{22}N_2NaO_3$ : 301.1528 [M+Na]<sup>+</sup>; found: 301.1522.



*N*-(*dimethylcarbamoyl*)-*N*-(*isopentyloxy*)*benzamide* (*3r*). colorless oil, 70% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.78–7.70 (m, 2H), 7.41–7.32 (m, 3H), 4.21 (t, *J*=6.7, 2H), 3.11 (s, 3H), 3.00 (s, 3H), 1.83–1.68 (m, 1H), 1.62 (q, *J*=6.7, 2H), 0.97 (s, 3H), 0.95 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  152.1, 148.2, 130.5, 130.1, 128.4, 126.0, 73.7, 37.7, 36.78, 25.1, 22.7; HRMS (ESI): calculated for C<sub>15</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>3</sub>: 301.1528 [M+Na]<sup>+</sup>; found: 301.1527.



*N-(benzyloxy)-N-(dimethylcarbamoyl)benzamide (3s).* colorless oil, 64% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.78–7.72 (m, 2H), 7.46–7.30 (m, 8H), 5.22 (s, 2H), 3.07 (s, 3H), 2.97 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  152.1, 149.0, 137.4, 130.4, 128.8, 128.5, 128.4, 128.2, 128.0, 126.2, 76.9, 36.9; HRMS (ESI): calculated for C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>3</sub>: 321.1210 [M+Na]<sup>+</sup>; found: 321.1204.



*N*-(*dimethylcarbamoyl*)-*N*-phenethoxybenzamide (3t). colorless oil, 64% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.84–7.77 (m, 2H), 7.46–7.23 (m, 8H), 4.45 (t, *J*=7.0, 2H), 3.15 – 3.05 (m, 5H), 3.00 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.9, 148.5, 138.5, 130.4, 130.3, 129.1, 128.4, 128.3, 126.2, 126.0, 75.4, 36.8, 36.7, 35.6; HRMS (ESI): calculated for C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>NaO<sub>3</sub>: 335.1366 [M+Na]<sup>+</sup>; found: 335.1364.



*N*-(*diethylcarbamoyl*)-*N*-*methoxybenzamide* (*3u*). colorless oil, 66% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.79–7.67 (m, 2H), 7.43–7.32 (m, 3H), 3.96 (s, 3H), 3.41 (m, 4H), 1.24 (m, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.4, 148.5, 130.6, 130.3, 128.5, 126.1, 62.9, 42.4, 14.2, 13.3; HRMS (ESI): calculated for C<sub>13</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>3</sub>: 273.1210 [M+Na]<sup>+</sup>; found: 273.1222.



*N-benzoyl-N-methoxypiperidine-1-carboxamide* (*3v*). colorless oil, 43% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.75–7.67 (m, 2H), 7.42–7.32 (m, 3H), 3.97 (s, 3H), 3.62 (s, 2H), 3.49 (s, 2H), 1.65 (s, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  150.8, 148.4, 130.5, 130.4, 128.5, 126.1, 62.98, 46.3, 45.5, 26.0, 25.5, 24.4; HRMS (ESI): calculated for C<sub>14</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>3</sub>: 285.1210 [M+Na]+; found: 285.1207.



*N-benzoyl-N-methoxymorpholine-4-carboxamide* (*3w*). colorless oil, 61% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.75–7.66 (m, 2H), 7.44–7.32 (m, 3H), 3.98 (s, 3H), 3.78–3.71 (m, 4H), 3.68 (s, 2H), 3.56 (s, 2H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  150.8, 148.0, 130.5, 130.1, 128.6, 126.1, 66.6, 63.1, 45.6, 44.5; HRMS (ESI): calculated for C<sub>13</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>4</sub>: 287.1002 [M+Na]<sup>+</sup>; found: 287.1000.



*N*-(*dimethylcarbamoyl*)-*N*-*methoxy*-2-*phenylacetamide* (3*x*). colorless oil, 52% yield. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.27–7.16 (m, 4H), 3.83 (s, 3H), 3.67 (s, 2H), 2.91 (s, 3H), 2.80(s, 3H); HRMS (ESI): <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  151.5, 149.0, 136.8, 134.3, 129.8, 129.4, 127.5, 127.4, 62.5, 37.2, 36.8, 36.6; calculated for C<sub>12</sub>H<sub>16</sub>ClN<sub>2</sub>O<sub>3</sub>: 271.0844 [M+H]<sup>+</sup>; found: 271.0851.















<sup>1</sup>H and <sup>13</sup>C spectra of novel compounds











































155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 1









