Supporting Information

Susceptible Electron Spin Adhering to Yttrium Cluster

inside an Azafullerene C₇₉N

Yihan Ma,^{*a,b*} Taishan Wang,^{*a*} Jingyi Wu, ^{*a*} Yongqiang Feng, ^{*a*} Li Jiang, ^{*a*} Chunying Shu ^{*a*} and Chunru Wang^{*a*}

Contents

Experimental Section: Preparation and characterization of $Y_2@C_{79}N$ and its fulleropyrrolidines

Figure S1. MALDI-TOF MS for the toluene extract of the soot containing mostly yttrium endohedral metallofullerenes.

Figure S2. Chromatogram of the isolated $Y_2@C_{79}N$ (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent). The inset shows the MALDI-TOF MS for isolated $Y_2@C_{79}N$.

Figure S3. HPLC profile of reaction mixture (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent).

Figure S4. The first stage HPLC profile of $Y_2@C_{79}N$ fulleropyrrolidine mono-adducts (20×250 mm Buckyprep column; flow rate 6 mL/min; toluene as eluent).

Figure S5. The second stage HPLC profile of $Y_2@C_{79}N$ fulleropyrrolidine mono-adducts (20×250 mm Buckyprep-M column; flow rate 3 mL/min; toluene as eluent)

Figure S6. Chromatogram of the isolated $Y_2@C_{79}N$ fulleropyrrolidine mono-adduc isomer A, B and C (20×250 mm Buckyprep column; flow rate 3mL/min; toluene as eluent).

Figure S7. UV-Vis absorption spectra of $Y_2@C_{79}N$ pristine and its fulleropyrrolidine mono-adducts A, B and C in toluene.

Figure S8. EPR spectrum of $Y_2@C_{79}N$ fulleropyrrolidine mono-adducts C measured in CS₂ solution at 298 K.

Theoretical calculation Section:

Table S1. Energies of sixty-two $Y_2@C_{79}N$ fulleropyrrolidine mono-adducts *Table S2*. Energies of three $Y_2@C_{79}N$ fulleropyrrolidine mono-adducts with different addend orientation

Figure S9. The calculated spin density distributions $Y_2@C_{79}N$ fulleropyrrolidine mono–adducts. The blue area presents the unpaired spin.

Experimental Section:

Graphite rods were core-drilled and subsequently packed with a mixture of Y/Ni_2 alloy and graphite powder in a weight ratio of 2:1. These rods were then vaporized in a Krätschmer-Huffman generator at 192 Torr He and 8 Torr N_2 . The resulting soot was Soxlet-extracted with toluene for 12 h. $Y_2@C_{79}N$ was isolated from various empty fullerenes and other yttrium metallofullerenes by multi-stage HPLC.

The synthesis of $Y_2@C_{79}N$ fulleropyrrolidines was carried out in *o*-dichlorobenzene solution of pure $Y_2@C_{79}N$ with N-ethylglycine and 4-Diphenylaminobenzaldehyde at 393 K for 30 min. The products was isolated and purified by HPLC. The ESR experiments were performed on Bruker E-500 EPR spectrometer after removing oxygen by bubbling nitrogen. The EPR spectrometer utilizes a microwave frequency of 9.77 GHz for ESR experiment at 298 K and 9.52 GHz for ESR experiment at 153 K.

1. The synthesis and purification of $Y_2@C_{79}N$.

Figure S1. MALDI-TOF MS for the toluene extract of the soot containing mostly yttrium endohedral metallofullerenes.

Figure S2. Chromatogram of the isolated $Y_2@C_{79}N$ (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent). The inset shows the MALDI-TOF MS for isolated $Y_2@C_{79}N$.

2. The synthesis and purification of Y2@C79N fulleropyrrolidines

The synthesis of $Y_2@C_{79}N$ fulleropyrrolidines was carried out in *o*-dichlorobenzene solution of pure $Y_2@C_{79}N$ with N-ethylglycine and 4-Diphenylaminobenzaldehyde at 120 °C for 30 min. The products were isolated and purified by high performance liquid chromatography (HPLC).

Figure S3. HPLC profile of reaction mixture (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent).

3. HPLC data of purified Y₂@C₇₉N fulleropyrrolidine mono-adducts

The stage 1 and 2 separations were executed to obtain purified $Y_2@C_{79}N$ fulleropyrrolidine mono-adducts. Figure S3 and Figure S4 show the HPLC data of purified $Y_2@C_{79}N$ fulleropyrrolidine mono-adduct isomer **A**, **B** and **C** and with Buckyprep columns.

Figure S4. The first stage HPLC profile of $Y_2@C_{79}N$ fulleropyrrolidine mono-adducts (20×250 mm Buckyprep column; flow rate 6 mL/min; toluene as eluent).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012

Figure S5. The second stage HPLC profile of $Y_2@C_{79}N$ fulleropyrrolidine mono-adducts (20×250 mm Buckyprep-M column; flow rate 3 mL/min; toluene as eluent)

Figure S6. Chromatogram of the isolated $Y_2@C_{79}N$ fulleropyrrolidine mono-adduc isomer A, B and C (20×250 mm Buckyprep column; flow rate 3mL/min; toluene as eluent).

Figure S7. UV-Vis absorption spectra of Y2@C79N pristine and its fulleropyrrolidine mono-adducts A, B and C in toluene.

5. EPR spectrum of Y₂@C₇₉N fulleropyrrolidine mono-adducts C.

Figure S7 presents the experimental ESR spectrum of $Y_2@C_{79}N$ fulleropyrrolidine mono-adduct isomers C, which possesses nearly identical paramagnetic performance with isomer B.

Figure S8. EPR spectrum of Y2@C79N fulleropyrrolidine mono-adducts C measured in CS2 solution at 298 K.

Theoretical calculation Section:

Density functional theory (DFT) calculations were preformed to study the energies of sixty-two $Y_2@C_{79}N$ fulleropyrrolidine mono-adducts. And the possible reaction sites were listed according to the calculations.

6 5	
Mono-adducts	ΔE (kcal/mol)
isomer 17	0.000
isomer 19	0.212
isomer 11	1.088
isomer 8	1.567
isomer 15	1.942
isomer 16	2.231
isomer 2	2.256
isomer 14	2.528
isomer 7	2.547
isomer 5	2.907
isomer 20	3.123
isomer 6	3.229
isomer 23	3.488
isomer 13	3.562
isomer 21	3.705
isomer 31	4.445
isomer 4	5.911
isomer 53	6.414
isomer 33	6.672
isomer 59	6.871
isomer 24	7.036
isomer 45	7.040
isomer 55	7.135
isomer 50	7.603
isomer 62	8.250
isomer 35	8.804
isomer 26	9.103
isomer 10	9.233
isomer 9	9.263
isomer 46	9.264
isomer 29	9.348
isomer 30	9.348
isomer 28	9.886
isomer 42	10.301
isomer 39	10.384
isomer 43	10.403
isomer 27	10.584

Table S1. Energies of sixty-two Y2@C79N fulleropyrrolidine mono-adducts

isomer 12	10.612
isomer 47	10.785
isomer 44	10.838
isomer 25	10.888
isomer 61	11.053
isomer 56	11.091
isomer 48	11.315
isomer 1	11.620
isomer 22	11.759
isomer 49	12.012
isomer 52	12.023
isomer 51	12.251
isomer 3	13.158
isomer 34	13.561
isomer 40	13.925
isomer 41	13.925
isomer 18	13.937
isomer 32	14.260
isomer 54	14.569
isomer 60	15.039
isomer 57	17.701
isomer 58	19.580
isomer 37	22.680
isomer 38	22.861
isomer 36	22.861

Theoretical calculations were also executed to disclose the influence of addend orientation on the relative stability and also on the spin localization. And the results showed that the addend orientation has no effect on relative stability as well as spin distributions.

Mono-adducts	ΔE (kcal/mol)
isomer 17	0.000
isomer 17-trans	2.787
isomer 19	0.212
isomer 19-trans	0.497
isomer 11	1.088
isomer 11-trans	1.236

Table S2. Energies of Energies of three Y2@C79N fulleropyrrolidine mono-adducts with different addend orientation

Figure S9. The calculated spin density distributions $Y_2@C_{79}N$ fulleropyrrolidine mono–adducts. The blue area presents the unpaired spin.