Supporting Information for:

Silyl-Migrations in Frustrated Lewis Pair Chemistry: Reactions of $((CH_3)_3Si)_3P$ and $B(C_6F_4H)_3$ with H_2 and CO_2

Katsuhiko Takeuchi and Douglas W. Stephan*

Katsuhiko Takeuchi and Douglas W. Stephan*

General considerations:

All preparations and manipulations were performed on a double manifold N₂/vacuum line with Schlenk-type glassware or in a N₂-filled M-Braun glove box. Solvents (Aldrich) were dried using an Innovative Technologies solvent system. NMR spectra were obtained on a Bruker or Varian System 400 MHz spectrometer and spectra were referenced to residual solvent (¹H, ¹³C) or externally (¹¹B; BF₃OEt₂, ¹⁹F; CFCl₃, ³¹P; 85% H₃PO₄). NMR solvents were purchased from Cambridge Isotopes, dried over CaH₂, distilled prior to use, and stored over 4 Å molecular sieves in the glove box. Combustion analysis was performed in house on a Perkin-Elmer CHN Analyzer. B(C₆F₄H)₃ was prepared as previously described.

[(TMS)₄P][HB(*p*-C₆F₄H)₃] (1) and (TMS)₂(H)P–B(*p*-C₆F₄H)₃ (2):

In a well-dried Schlenk flask, $(TMS)_3P$ (55 mg, 0.22 mmol) and $B(p-C_6F_4H)_3$ (98 mg, 0.21 mmol) were dissolved in toluene (3 mL). About 3 atm of H₂ was introduced to the Schlenk flask. After standing for 24 h, colorless crystals were precipitated. The ¹H NMR spectrum of the reaction mixture showed that the salt **1** and phosphine–borane adduct **2** were afforded in ratio of 1:1. After removal of the toluene solution, the residue was recrystallized from CH₂Cl₂ (0.5 ml) at -30 °C to give **1** as colorless crystals (80 mg, 43% yield). Single crystals of **1** suitable for X-ray diffraction were grown by layering a C₆D₅Br solution of the product at room temperature. ¹H NMR (CD₂Cl₂, δ): 0.76 (d, ³*J*_{HP} = 6.2 Hz, 36 H, Si*Me*₃), 3.85 (q, ¹*J*_{HB} = 91 Hz, 1 H, B*H*), 6.80-6.93 (m, 3 H, *p*-C*H*); ¹¹B NMR (CD₂Cl₂, δ): -24.7 (d, ¹*J*_{HB} = 91 Hz); ¹³C{¹H} NMR (CD₂Cl₂, δ): 0.0 (d, ²*J*_{CP} = 8.1 Hz, Si*Me*₃), 98.4 (t, ²*J*_{CF} = 23 Hz, *p*-CH), 131.5 (weak, br, *ipso-C*), 143.1 (dm, ¹*J*_{CF} = 245 Hz, *m*-CF), 146.3 (dm, ¹*J*_{CF} = 236 Hz, *o*-CF); ¹⁹F NMR (CD₂Cl₂, δ): -144.5 (m, br, *m*-CF), -134.1 (m, br, *o*-CF); ²⁹Si{¹H} NMR (CD₂Cl₂, δ): 12.5; ³¹P{¹H} NMR (CD₂Cl₂, δ): -201.2; Anal. calcd for C₂₉H₃₀BO₄F₁₂Si₃P + 2/3(CH₂Cl₂): C, 43.88; H, 4.96%; found: C, 44.24; H, 5.10%.

On the other hand, evaporation of the separated toluene solution and recrystallization of the residue from pentane (0.5 ml) at -30 °C gave **2** as colorless powders (32 mg, 25% yield). ¹H NMR (CD₂Cl₂, δ): 0.25 (d, ³*J*_{HP} = 5.6 Hz, 27 H, Si*Me*₃), 3.79 (d, ¹*J*_{HP} = 322 Hz, 1 H, P*H*), 6.95 (tt, ³*J*_{HF} = 9.3 Hz, ⁴*J*_{HF} = 6.6 Hz, 3 H, *p*-C*H*); ¹¹B NMR (CD₂Cl₂, δ): -14.5 (br); ¹³C {¹H} NMR (CD₂Cl₂, δ): 1.4 (d, ²*J*_{CP} = 7.8 Hz, Si*Me*₃), 104.4 (t, ²*J*_{CF} = 23 Hz, *p*-CH), 125.8 (weak, br, *ipso*-C), 146.1 (dm, ¹*J*_{CF} = 245 Hz, *m*-CF), 148.2 (dm, ¹*J*_{CF} = 242 Hz, *o*-CF); ¹⁹F NMR (CD₂Cl₂, δ): -141.7 (m, br, *m*-CF), -129.8 (m, br, *o*-CF); ²⁹Si {¹H} NMR (CD₂Cl₂, δ): 11.3 (d, ¹*J*_{SiP} = 16.8 Hz); ³¹P NMR (CD₂Cl₂, δ): -139.3 (d, ¹*J*_{HP} = 322 Hz); Anal. calcd for C₂₄H₂₂BF₁₂Si₂P: C, 45.30; H, 3.48%; found: C, 44.85; H, 3.35%.

$(TMS)_2P-C(OTMS)=O\rightarrow B(p-C_6F_4H)_3$ (3):

In a well-dried Schlenk flask, $(TMS)_3P$ (60 mg, 0.24 mmol) and $B(p-C_6F_4H)_3$ (110 mg, 0.24 mmol) were dissolved in pentane (10 mL). 1 atm of CO₂ was introduced to the Schlenk flask. After standing for 24 h, colorless powder was precipitated. After evaporation of the solvent, the residue was recrystallized from CH₂Cl₂ (0.5 ml) at -30 °C to give **3** as colorless crystals (106 mg, 59% yield). $(TMS)_2P^{13}C(OTMS)=O \rightarrow B(p-C_6F_4H)_3$ (**3**-¹³C) was also synthesized by same method using ¹³CO₂. ¹H NMR (CD₂Cl₂, δ): 0.29 (s, 9 H, OSi*Me*₃), 0.33 (d, ³*J*_{HP} = 5.5 Hz, 18 H, P(Si*Me*₃)₂), 7.00-7.15 (m (br), 3 H, *p*-C*H*); ¹¹B NMR (CD₂Cl₂, δ): -13.5 (br); ¹³C{¹H} NMR (CD₂Cl₂, δ): 0.7 (s, OSi*Me*₃), 1.5 (d, ²*J*_{CP} = 12 Hz,PSi*Me*₃), 107.3 (br, *p*-CH), 123.3 (weak, br, *ipso-C*), 146.1 (dm, ¹*J*_{CF} = 247 Hz, *m*-CF), 148.0 (dm, ¹*J*_{CF} = 246 Hz, *o*-CF), 194.2 (very br, quaternary *C*, using ¹³C labeled CO₂); ¹³C{¹H} NMR (233 K, CD₂Cl₂, δ): 199.4 (d, ¹*J*_{CP} = 66 Hz, quaternary *C*, using ¹³C labeled CO₂); ¹⁹F NMR (CD₂Cl₂, δ): -141.1 (m, br, *m*-CF), -131.9 (m, br, *o*-C*F*); ²⁹Si{¹H} NMR (CD₂Cl₂, δ): 7.3 (d, ¹*J*_{SiP} = 23 Hz, PS*i*Me₃), 38.6 (OS*i*Me₃); ³¹P{¹H} NMR (CD₂Cl₂, δ): -104.5 (very br); ³¹P{¹H} NMR (233 K, CD₂Cl₂, δ): -101.6 (d, ¹*J*_{PC} = 66 Hz, using ¹³C labeled CO₂); Anal. calcd for C₂₈H₃₀BO₂F₁₂Si₃P: C, 44.69; H, 4.02%; found: C, 45.08; H, 3.79%.

$(TMSO)_2C=P-C(OTMS)=O\rightarrow B(p-C_6F_4H)_3$ (4)

In a well-dried Schlenk flask, (TMS)₃P (55 mg, 0.22 mmol) and B(p-C₆F₄H)₃ (105 mg, 0.23 mmol) were dissolved in CH₂Cl₂ (10 mL). 1 atm of CO₂ was introduced to the Schlenk flask. After standing for 24 h, the reaction mixture was recrystallized from CH₂Cl₂ at -30 °C to give **4** as pale yellow crystals (140 mg, 80% yield). ¹H NMR (CD₂Cl₂, δ): 0.15 (s, 27 H, Si*Me*₃ x 3), 6.74 (tt, ³*J*_{HF} = 9.0 Hz, ⁴*J*_{HF} = 7.4 Hz, 3 H, *p*-C*H*); ¹¹B NMR (CD₂Cl₂, δ): -0.7; ¹³C NMR (CD₂Cl₂, δ): -0.04 (s, Si*Me*₃), 0.00 (s, Si*Me*₃), 0.04 (s, Si*Me*₃), 104.0 (t, ²*J*_{CF} = 23 Hz, *p*-CH), 126.1 (weak, br, *ipso*-C), 145.8 (dm, ¹*J*_{CF} = 241 Hz, *m*-CF), 148.3 (dm, ¹*J*_{CF} = 243 Hz, *o*-CF), 202.0 (d, ¹*J*_{CP} = 95 Hz, quaternary *C*), 205.5 (d, ¹*J*_{CP} = 91 Hz, quaternary *C*); ¹⁹F NMR (CD₂Cl₂, δ): -142.9 (m, br, *m*-CF), -134.1 (m, br, *o*-CF); ²⁹Si{¹H} NMR (CD₂Cl₂, δ): 7.4, 33.0, 33.4; ³¹P{¹H} NMR (CD₂Cl₂, δ): 2.4; Anal. calcd for C₂₉H₃₀BO₄F₁₂Si₃P: C, 43.73; H, 3.80%; found: C, 43.66; H, 3.55%.

Reaction of 3 with ¹³CO₂:

In a well-dried J-Young NMR tube, 3 (105 mg, 0.23 mmol) was dissolved in CD₂Cl₂ (0.5 mL). 1 atm of ¹³CO₂ was introduced to the Schlenk flask. After standing for 24 h, the NMR reaction mixture spectra of the showed that the almost 1:1 mixture of $(TMSO)_2C=P-^{13}C(OTMS)=O\rightarrow B(p-C_6F_4H)_3$ $4-1-^{13}C$ and

 $(TMSO)_2^{13}C=P-C(OTMS)=O \rightarrow B(p-C_6F_4H)_3$ 4-2-¹³C was produced quantitatively.

Scheme S1 Plausible mechanism for the reaction of 3 with ${}^{13}CO_2$ giving 4-1- ${}^{13}C$ and 4-2- ${}^{13}C$.