Complex anion inclusion compounds: Flexible anionexchange materials

Edward R. Williams and Mark T. Weller*

Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK; Tel:+44 (0) 1225 386531; E-mail:m.t.weller@bath.ac.uk

Rebecca M. Leithall, Robert Raja

School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.

Electronic Supplementary Information

Contents

SI-1 Methods and instrumentation

- (a) Synthetic methods
- (b) Experimental methods and instrumentation

SI-2 Crystallographic information

Table SI-2.1 Crystallographic information

SI-3 Plots describing the relationships between structural features and ionic radii

Figure SI-3.1 Plot showing the linear relationship between lattice parameters and A⁺ ionic radius

Figure SI-3.2 Plot showing the linear relationship between the offset angle of the pyrophosphate groups and A⁺ ionic radius

SI-4 Cs⁺ environments in for Cs₇Cu₆Cl(P₂O₇)₄.[P(O,OH)₄]

Figure SI-4.1 Cesium environment in Cs₇Cu₆Cl(P₂O₇)₄.[P(O,OH)₄] in large pores

SI-5 UV-Vis spectra

$$\label{eq:sigma} \begin{split} \mbox{Figure SI-5.1 UV-vis spectra for $Cs_7Cu_6Cl(P_2O_7)_4$.[P(O,OH)_4] (green line), $K_9Cu_6(P_2O_7)_4Cl.[P(O,OH)_4]Cl_2$ (red line), $Cs_{0.86}K_{8.14}Cu_6Cl(P_2O_7)_4$.Cl_{1.7}$ (black line) and $Cs_7Cu_6Cl(P_2O_7)_4$.[P(O,OH)_4] stirred in KBr in EtOH (blue line) $K_8 = 10^{-10} M_{\odot}^{-10} M_{\odot}^{-10$$

SI-6 Sample SEM and EDAX data

Figure/Table SI-6.1 K₉Cu₆(P₂O₇)₄Cl.[P(O,OH)₄]Cl₂

 $Figure/Table\ SI-6.2\ Cs_9Cu_6(P_2O_7)_4Cl.[P(O,OH)_4]Cl_2$

 $Figure/Table\ SI-6.3\ (NH_4)_9Cu_6(P_2O_7)_4Cl.[CuCl_4]Cl_2$

 $Figure/Table\ SI-6.4\ Rb_9Cu_6(P_2O_7)_4Cl.[CuCl_4]Cl_2$

Figure/Table SI-6.5 Cs₇Cu₆Cl(P₂O₇)₄.[P(O,OH)₄]

 $Figure/Table\ SI-6.6\ Rb_9Cu_6(P_2O_7)_4Cl.[PdCl_4]Cl_2$

 $Figure/Table\ SI-6.7\ K_9Cu_6(P_2O_7)_4Cl.[PtBr_4]Cl_2$

 $Figure/Table\ SI-6.8\ (NH_4)_9Cu_6(P_2O_7)_4Cl.[AuCl_4]Cl_2$

 $Figure/Table\ SI-6.9\ K_9Cu_6(P_2O_7)_4Cl.[AuCl_4]Cl_2$

 $Figure/Table\ SI-6.10\ Rb_9Cu_6(P_2O_7)_4Cl.[AuCl_4]Cl_2$

Figure SI-6.11 Rb₉Cu₆(P₂O₇)₄Cl.[AuCl₄]Cl₂ calcined at 500°C

SI-7 Differences in Cu environments between $Cs_7Cu_6Cl(P_2O_7)_4$.[P(O,OH)₄] and

$Cs_9Cu_6Cl(P_2O_7)_4.[P(O,OH)_4]Cl_2$

Figure SI-7.1 Differenct cross-linking copper environment in $Cs_7Cu_6Cl(P_2O_7)_4$.[P(O,OH)₄] (left) and in

 $Cs_9Cu_6Cl(P_2O_7)_4.[P(O,OH)_4]Cl_2\ (right)$

Table SI-7.1 Summary of copper coordination environments in four selected compounds

SI-8 Variable temperature studies

Figure SI-8.1 Variable temperature X-ray diffraction data for for $Rb_9Cu_6(P_2O_7)_4Cl.[AuCl_4]Cl_2$ Figure SI-8.2 Thermogravimetric analysis of $Rb_9Cu_6(P_2O_7)_4Cl.[CuCl_4]Cl_2$ and $(NH_4)_9Cu_6(P_2O_7)_4Cl.[CuCl_4]Cl_2$ in air Figure SI-8.3 Thermogravimetric analysis of $Rb_9Cu_6(P_2O_7)_4Cl.[AuCl_4]Cl_2$ and $K_9Cu_6(P_2O_7)_4Cl.[PtBr_4]Cl_2$ in air

SI-1 Methods and instrumentation

(a) Synthetic methods

All materials used were purchased from Sigma-Aldrich and used without further purification.

(1-2) $A_9Cu_6(P_2O_7)_4Cl_3([P(O,OH,F)_4]/[CuCl_4])$: Copper(II) fluoride (0.0584 g, 0.575 mmol), 85% w.t. orthophosphoric acid (0.1 mL, 1.456 mmol), 50% w.t. AOH (A=Cs 0.2 mL, 1.177 mmol; A=Rb 0.14 mL, 1.191 mmol; A=K 0.1 mL, 1.165 mmol) or 35% NH₃ (0.03 mL, 1.191 mmol) and ACl (A=Cs 0.196 g, 1.165 mmol; A=Rb 0.140 g, 1.165 mmol; A=K 0.087 g, 1.165 mmol; A=NH₄ 0.062 g, 1.165 mmol) were mixed in the Teflon[®] liner of a Parr 23 ml hydrothermal vessel. The hydrothermal vessel was sealed and heated to 448 K for 2 days (493 K for Cs analogue). The pure solid product formed as brilliant green cuboid crystals and was isolated by filtration, washed with distilled water and dried at 60°C

(3) $Cs_7Cu_6(P_2O_7)_4Cl[P(O,OH,F)_4]$: Copper(II) fluoride (0.0584 g, 0.575 mmol), 85% w.t. orthophosphoric acid solution (0.1 mL, 1.456 mmol), 50% w.t. CsOH (0.2 mL, 1.177 mmol) and CsCl (0.0196 g, 0.1165 mmol) were mixed in the Teflon[®] liner of a Parr 23 ml hydrothermal vessel. The hydrothermal vessel was sealed and heated to 493 K for 2 days. The pure solid product formed as blue cuboid crystals and was isolated by filtration, washed with distilled water and dried at 60°C.

(4-7) $A_9Cu_6(P_2O_7)_4Cl_3[TY_4]$: As (1-2), with a source of [TY₄] added. For (4) PdO (0.0176 g, 0.144 mmol) or K₂PdCl₄ (0.0469 g, 0.144 mmol), for (5) HPtCl₆ (0.07 mL, 0.014 mmol) or K₂PtCl₄ (0.0596 g, 0.144 mmol), for (6) K₂PtBr₄ (0.0852 g, 0.144 mmol) and (7) HAuCl₄ (0.0489 g, 0.144 mmol). The solid products formed as green cuboid crystals and was isolated by filtration,

(b) Experimental methods and instrumentation

Single crystals suitable for structural analysis by X-ray diffraction were isolated from the reaction products. For all compounds cell dimensions and intensity data were recorded at 120K, using a Bruker Nonius APEXII (**1**,**3**) or KappaCCD Roper (**2**) area detector diffractometer mounted at the window of a rotating Mo anode ($l(Mo-K_{\alpha}) = 0.71073$ Å) operating at 50KV, 85mA. The incident beam on the APEXII side was focused using 10cm confocal mirrors, a graphite monochromator was employed on the KappaCCD side. The crystal-to-detector distance was 30mm. φ and ω scans were carried out to fill the asymmetric unit using 2° frames and 10s per frame exposures. Unit cell determination, data collection and processing were carried out using the programs DirAx¹, COLLECT² and DENZO³ and a multi-scan absorption correction was applied using SADABS⁴. The structures were solved via direct methods[REF] and refined by full matrix least squares⁵ on F².

Powder X-ray diffraction patterns were obtained by grinding the sample to a fine powder in an agatepestle and mortar and collecting the data on a Siemens D5000 operating with Cu $K_{\alpha l}$ radiation. Variable temperature powder X-ray diffraction patterns were collected on a Bruker D8 operating with Cu $K_{\alpha l}$ radiation. Thermal analysis data were collected using a Stanton-Redcroft simultaneous DTA/TGA STA 1500 systems. SEM micrographs and EDX analysis data were obtained mainly using a Jeol JSM-5910 electron microscope. Additional EDX measurements were performed using a FEI XL30 ESEM.

SI-2 Crystallographic information

Table SI-2.1 Crystallographic information

Structure number	Product	Crystallographic Structure Lattice type, lattice parameters (Å) and (°) and cell volume (Å ³)	Refinement details Space group, <i>R</i> -indices and goodness of fit	Structural features
(1)	$A_9Cu_6(P_2O_7)_4Cl.[P(O,OH)_4]Cl_2$	Tetragonal; A = K, a=17.4776(4) c=13.3510(4) V=4078.28(2)*	I4/mcm R1 _{all} =0.084, wR2 _{all} =0.196 R1 _{obs} =0.069, wR2 _{obs} =0.182 GOOF=1.100	Parent structure with disordered free phosphate groups lying along the centre of
		A= Cs, a=18.0964(2) c=13.6666(2) V=4475.53(1)	I4/mcm R1 _{all} =0.042, wR2 _{all} =0.107 R1 _{obs} =0.039, wR2 _{obs} =0.104 GOOF=0.749	the channels.
(2)	$A_9Cu_6(P_2O_7)_4Cl_[CuCl_4]Cl_2$	Tetragonal; A = [NH ₄], a=17.8026(3) c=13.5623(3) V=4298.33(1)	I4cm R1 _{all} =0.079, wR2 _{all} =0.185 R1 _{obs} =0.060, wR2 _{obs} =0.167 GOOF=1.054	As above, with CuCl4 replacing phosphate
		A= Rb, a=17.8432(2) c=13.4932(3) V=4295.96(1)	I4cm R1 _{all} =0.049, wR2 _{all} =0.120 R1 _{obs} =0.040, wR2 _{obs} =0.108 GOOF=0.687	groups along the centre of the channels.
(3)	$Cs_7Cu_6(P_2O_7)_4Cl.[P(O,OH)_4]$	Orthorhombic; a=16.7592(5) b=18.8341(4) c=13.4990(4) V=4260.88(2)*	Ibam R1 _{all} =0.088, wR2 _{all} =0.166 R1 _{obs} =0.068, wR2 _{obs} =0.155 GOOF=1.165	Similar structure to (1), however channels are elongated along the <i>b</i> -axis.
(4)	$[A_9Cu_6(P_2O_7)_4Cl].[PdCl_4]Cl_2$	Tetragonal; A = K, a=17.5838(5) c=13.3127(9) V=4116.15(3)	I4/mcm R1 _{all} =0.140, wR2 _{all} =0.316 R1 _{obs} =0.116, wR2 _{obs} =0.300 GOOF=1.201	
		A= Rb, a=17.8221(3) c=13.4632(3) V=4276.28(1)	I4/mcm R1 _{all} =0.042, wR2 _{all} =0.073 R1 _{obs} =0.032, wR2 _{obs} =0.068 GOOF=1.057	
(5)	$[A_9Cu_6(P_2O_7)_4Cl].[PtCl_4]Cl_2$	Tetragonal; A=K a=17.5582(8) c=13.3199 (9) V=4105.46 (4)	I4-c2 R1 _{all} =0.067, wR2 _{all} =0.191 R1 _{obs} =0.063, wR2 _{obs} =0.188 GOOF=0.549	
		A=Rb a=17.8054(5) c=13.4697(5) V=4270.33(2)	I4/mcm R1 _{all} =0.122, wR2 _{all} =0.154 R1 _{obs} =0.075, wR2 _{obs} =0.134 GOOF=1.103	Same structure as (2), with CuCl4 replaced
(6)	$[K_9Cu_6(P_2O_7)_4Cl].[PtBr_4]Cl_2$	Tetragonal; a=17.6178(3) c=13.3285(3) V=4136.99(1)	I4cm R1 _{all} =0.094, wR2 _{all} =0.212 R1 _{obs} =0.068, wR2 _{obs} =0.188 GOOF=0.866	by TY ₄ square planar species.
(7)	$[A_9Cu_6(P_2O_7)_4Cl].[AuCl_4]Cl_3$	Tetragonal; A = [NH ₄], a=17.8641(4) c=13.5355(4) V=4319.53(2)	I4/mcm R1 _{all} =0.135, wR2 _{all} =0.262 R1 _{obs} =0.101, wR2 _{obs} =0.237 GOOF=1.095	
		A = K, a=17.6499(4) c=13.3030(5) V=4144.14(2)	I4cm R1 _{all} =0.153, wR2 _{all} =0.335 R1 _{obs} =0.106, wR2 _{obs} =0.281 GOOF=0.928	
		A= Rb, a=17.8742(4) c=13.4799(5) V=4306.65(2)*	I4/mcm R1 _{all} =0.126, wR2 _{all} =0.147 R1 _{obs} =0.081, wR2 _{obs} =0.131 GOOF=1.174	
(7,Rb) heated at 500°C for 2 hours	$[Rb_9Cu_6(P_2O_7)_4Cl].[Au(0,III)_{0.55}$$$Cl_{3.18}]Cl_2$	Tetragonal; a=17.7697(17) c=13.4554(10) V=4248.71(7)*	I4/mcm R1 _{all} =0.051, wR2 _{all} =0.146 R1 _{obs} =0.044, wR2 _{obs} =0.139 GOOF=0.648	Loss of electron density confirms the reduction of AuCl ₄ species and the ejection of gold metal.

SI-3 Plots describing the relationships between structural features and ionic radii

Figure SI-3.1 Plot showing the linear relationship between lattice parameters and A⁺ ionic radius

 $\label{eq:sigma} \begin{array}{c} \mbox{lonic radius / Å} \\ \mbox{Figure SI-3.2 Plot showing the linear relationship between the offset angle of the pyrophosphate groups} \\ \mbox{and A^{+} ionic radius} \end{array}$

SI-4 Cs⁺ environments in for Cs₇Cu₆Cl(P₂O₇)₄.[P(O,OH)₄]

Figure SI-4.1 Cesium environment in $Cs_7Cu_6Cl(P_2O_7)_4$.[P(O,OH)₄] in large pores (left: Cs2, right: Cs3). Both Cs are 11-coordinate, including interactions with the free phosphates within the channels

SI-5 UV-Vis spectra

Figure SI-5.1 UV-vis spectra for $Cs_7Cu_6Cl(P_2O_7)_4$.[P(O,OH)₄] (green line), $K_9Cu_6(P_2O_7)_4Cl.[P(O,OH)_4]Cl_2$ (red line), $Cs_{0.86}K_{8.14}Cu_6Cl(P_2O_7)_4$.Cl_{1.7} (black line) and $Cs_7Cu_6Cl(P_2O_7)_4$.[P(O,OH)₄] stirred in KBr in EtOH (blue line).

SI-6 Sample SEM and EDAX data

Collected on Jeol JSM-5910 electron microscope

Figure/Table SI-6.1 K₉Cu₆(P₂O₇)₄Cl.[P(O,OH)₄]Cl₂

Elements	Theoretical	Experimental	Experimental
	Atomic Ratio	Atomic %	Atomic Ratio
К	9	21.14	9
Cu	6	9.43	4
Р	9	16.18	7
Cl	3	11.89	5

$\underline{Figure/Table\ SI-6.2\ Cs_9Cu_6(P_2O_7)_4Cl.[P(O,OH)_4]Cl_2}$

Elements	Theoretical	Experimental	Experimental
	Atomic Ratio	Atomic %	Atomic Ratio
Cs	9	25.82	8
Cu	6	20.70	6
Р	9	18.65	6
Cl	3	12.84	4

Elements	Theoretical	Experimental	Experimental
	Atomic Ratio	Atomic %	Atomic Ratio
Cu	7	22.48	6
Р	8	23.87	6
Cl	7	22.47	6

Figure/Table SI-6.3 [(NH₄)₉Cu₆(P₂O₇)₄Cl].[CuCl₄]Cl₂

Figure/Table SI-6.4 Rb₉Cu₆(P₂O₇)₄Cl.[CuCl₄]Cl₂ *

Elements	Theoretical	Experimental	Experimental
	Atomic Ratio	Atomic %	Atomic Ratio
Rb	9	21.47	7
Cu	7	8.90	3
Р	8	20.77	7
Cl	7	10.52	3

Elements	Theoretical	Experimental	Experimental
	Atomic Ratio	Atomic %	Atomic Ratio
Cs	7	15.49	9
Cu	6	9.17	6
Р	9	18.01	10
Cl	1	1.68	1

Figure/Table SI-6.5 Cs₇Cu₆Cl(P₂O₇)₄.[P(O,OH)₄]

Figure/Table SI-6.6 Rb9Cu6(P2O7)4Cl.[PdCl4]Cl2 *

Elements	Theoretical	Experimental	Experimental
	Atomic Ratio	Atomic %	Atomic Ratio
Rb	9	12.09	3
Cu	6	11.67	3
Р	8	31.64	8
Cl	7	12.40	12
Pd	1	4.02	1

Elements	Theoretical	oretical Experimental	
	Atomic Ratio	Atomic %	Atomic Ratio
K	9	19.20	10
Cu	6	8.43	4.5
Р	8	15.50	8
Cl	3	7.94	4
Pt	1	1.88	1
Br	4	6.43	3.5

Figure/Table SI-6.7 K₂Cu₆(P₂O₇)₄Cl.[PtBr₄]Cl₂

<u>Figure/Table SI-6.8 (NH₄) $_9$ Cu₆(P₂O₇)₄Cl.[AuCl₄]Cl₂ *</u>

Elements	Theoretical Experimental		Experimental
	Atomic Ratio	Atomic %	Atomic Ratio
Cu	6	14.25	16.5
Р	8	14.22	16.5
Cl	7	10.38	12
Au	1	0.86	1

Elements Theoretical		Experimental	Experimental
	Atomic Ratio	Atomic %	Atomic Ratio
K	9	17.06	9
Cu	6	10.19	5
Р	8	14.19	7
Cl	7	16.07	8
Au	1	1.93	1

Figure/Table SI-6.9 K₉Cu₆(P₂O₇)₄Cl.[AuCl₄]Cl₂

Figure/Table SI-6.10 Rb₉Cu₆(P₂O₇)₄Cl.[AuCl₄]Cl₂

Elements	Theoretical	Experimental	Experimental
	Atomic Ratio	Atomic %	Atomic Ratio
Rb	9	14.12	5.5
Cu	6	11.04	4
Р	8	13.84	7
Cl	7	14.30	5.6
Au	1	2.57	1

100µm ¹ Electron Image 1

Figure SI-6.11 Rb₂Cu₆(P₂O₇)₄Cl.[AuCl₄]Cl₂ calcined at 500°C

*Samples found to be unpure, resulting in inconsistencies between theoretically atomic ratios and those found experimentally.

SI-7 Differences in Cu environments between $Cs_7Cu_6Cl(P_2O_7)_4$.[P(O,OH)₄] and $Cs_9Cu_6Cl(P_2O_7)_4$.[P(O,OH)₄]Cl₂

Figure SI-7.1Differenct cross-linking copper environment in $Cs_7Cu_6Cl(P_2O_7)_4$.[P(O,OH)₄] (left) and in $Cs_9Cu_6Cl(P_2O_7)_4$.[P(O,OH)₄]Cl₂ (right)

Compound	Color	Cross- linking copper environment	Bond distances (Å)
$K_9Cu_6(P_2O_7)_4Cl.[P(O,OH)_4]Cl_2$	Bright lime green	CuO ₄ Cl	Cu-O 1.933(5) Cu-Cl 2.715(3)
$Rb_9Cu_6(P_2O_7)_4Cl_[CuCl_4]Cl_2$	Gold/green	CuO ₄ Cl	Cu-O 1.954(4) Cu-Cl 2.634(3)
$Cs_9Cu_6Cl(P_2O_7)_4.[P(O,OH)_4]Cl_2$	Bright lime green	CuO ₄ Cl	Cu-O 1.967(6) Cu-Cl 2.533(3)
Cs ₇ Cu ₆ (P ₂ O ₇) ₄ Cl.[P(O,OH) ₄]	Pale blue	CuO ₄ (O)	Cu-O 1.931(9), 1.941(9) Cu-(O) 2.281(16)

Table SI-7 1 Summar	v of conner	coordination	environments in	n four	selected (compounds
Lable SI-1.1 Sullilla	y of copper	coorumation	environments n	i ioui	selected	compounds

SI-8 Variable temperature studies

Figure SI-8.1 Variable temperature X-ray diffraction data for $Rb_9Cu_6(P_2O_7)_4Cl.[AuCl_4]Cl_2$. Top pattern displays predicted pattern, subsequent patterns were collected at 50 °C intervals between 100 and 600 °C.

 $(NH_4)_9Cu_6(P_2O_7)_4Cl.[CuCl_4]Cl_2$ in air

Figure SI-8.3 Thermogravimetric analysis of $Rb_9Cu_6(P_2O_7)_4Cl.[AuCl_4]Cl_2$ and $K_9Cu_6(P_2O_7)_4Cl.[PtBr_4]Cl_2$ in air

References

- 1 Duisenberg, A. J. M. Indexing in single-crystal diffractometry with an obstinate list of reflections. *Journal of Applied Crystallography* **25**, 92-96, doi:10.1107/s0021889891010634 (1992).
- 2 Nonius, B. V. COLLECT data collection software. (1998).
- 3 Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. *Macromolecular Crystallography, Pt A* **276**, 307-326, doi:10.1016/s0076-6879(97)76066-x (1997).
- 4 Sheldrick, G. M. SADABS Bruker Nonius area detector scaling absorption correction V2.10.
- 5 Sheldrick, G. M. *Release* 97-2. (University of Göttingen, Germany, 1997).