Design and Synthesis of Regioisomeric Triazole/Amide Peptidomimetic Macrocycles and Their Dipole Moment Controlled Self-Assembly

Abhijit Ghorai, ${ }^{a}$ E.Padmanaban, ${ }^{a}$ Chaitali Mukhopadhyay, ${ }^{\text {b }}$ Basudeb Achari, ${ }^{\text {a }}$ Partha Chattopadhyay*a

1. General Experimental Information
2. Synthetic Scheme for compounds $\mathbf{2 a}$ and $\mathbf{2 b}$.
3. Preparation and Characterization of compounds $\mathbf{2 a}$ and $\mathbf{2 b}$.
4. Structural determination of Compounds $\mathbf{2 a}$ and $\mathbf{2 b}$ by Multidimensional NMR Studies.
5. General information for Molecular Modelling Studies.
6. TEM and AFM imaging for compounds $\mathbf{2 a}$ and $\mathbf{2 b}$.
7. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR data of $\mathbf{2 a}$.
8. IR spectra of compounds $\mathbf{2 a}$ and $\mathbf{2 b}$.
9. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 a}$.
$10 .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQF-COSY spectrum of $\mathbf{2 a}$ in $\left(\mathrm{CD}_{3} \mathrm{CN}+2 \% \mathrm{H}_{2} \mathrm{O}\right)$ at 298 K
10. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY spectra of $\mathbf{2 a}$ in $\left(\mathrm{CD}_{3} \mathrm{CN}+2 \% \mathrm{H}_{2} \mathrm{O}\right)$ at 298 K
11. Selected region of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY spectrum of $\mathbf{2 a}$ in $\left(\mathrm{CD}_{3} \mathrm{CN}+2 \% \mathrm{H}_{2} \mathrm{O}\right)$
12. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 b}$.
13. Selected region for concentration dependent ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{2 b}$ at 243 K in $(2: 3) \mathrm{CDCl}_{3}: \mathrm{CCl}_{4}$.
14. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQF-COSY spectrum of $\mathbf{2 b}$ in CDCl_{3} at 298 K .
$16 .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY spectrum of $\mathbf{2 b}$ in CDCl_{3} at 298 K .
$17 .{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY spectrum of $\mathbf{2 b}$ in (2:3) $\mathrm{CDCl}_{3}: \mathrm{CCl}_{4}$ at 298 K .
18.Schematic view of self-Assembly of compounds $\mathbf{2 a}$ and $\mathbf{2 b}$ by molecular modeling studies.
15. Coordinates of energy minimized structure of compounds $\mathbf{2 a}$ and $\mathbf{2 b}$ derived by modeling studies.

GENERAL EXPERIMENTAL INFORMATION

Solvents were dried over standard drying agents and freshly distilled prior to use. Melting points were determined in open capillaries and were not corrected. Optical rotations were measured in CHCl_{3} solutions at room temperature using a cell of 1 dm length and $\lambda=589 \mathrm{~nm}$. IR spectra between 400 and $4000 \mathrm{~cm}^{-}$ ${ }^{1}$ were recorded with an FT-IR spectrometer as KBr pellets. Mass spectra were obtained under high resolution (HRMS). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in deuterated solvents on Bruker Avance-600 MHz. ${ }^{1} \mathrm{H}$ NMR multiplicity patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q); all first order splitting patterns are assigned. Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m) or broad (br). Column chromatographic separations were carried out on silica gel (60-120 mesh) and the cyclic peptides $\mathbf{2 a}$ and $\mathbf{2 b}$ were purified by preparative HPLC on Inertsil ODS-3-V, $250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}(\mathrm{C}-18 / \mathrm{AR} / 25)$ with Acetonitrile:water (45:55) as mobile phase. 1-Hydroxybenzotriazole (HOBt) and 1-[3-(dimethylamino)propyl]-3-ethyl-carbodiimide hydrochloride (EDCI) were purchased from Spectrochem. All other reagents and solvents were purchased from Aldrich or Merck.

TEM Imaging

TEM studies were performed with a JEOL-JEM 2010 electron microscope operating at 200 kV and equipped with a double tilt holder $\left(\pm 45^{\circ}\right)$. Samples for electron microscopy were prepared by putting a drop of the nanotube suspension of $\mathbf{2 a}$ in $(4: 1) \mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{2 b}$ in $(2: 3) \mathrm{CDCl}_{3}: \mathrm{CCl}_{4}$ on two different Cu /carbon coated grids, drying overnight and negative staining with uranyl acetate.

The selected area electron diffraction experiment was performed with the TEM operating in diffraction mode with the smallest selector aperture insertion which implies microcrystallinity of the self-assembled structures.

AFM Sample Preparation and Imaging

Aliquots $(10 \mu \mathrm{~L})$ of the samples $\mathbf{2 a}$ and $\mathbf{2 b}$ were deposited onto freshly cleaved muscovite Ruby mica sheet (ASTM V1 Grade Ruby Mica from MICAFAB) for 15-30 minutes. Mica sheets are basically negatively charged so nano materials bind strongly on the mica surface. After 15 min the sample was dried using vacuum dryer. Sometimes the sample was gently washed with 0.5 ml Milli-Q water to remove the molecules that were not firmly attached to the mica and the sample dried as mentioned above.

AAC mode AFM was performed using a Pico plus 5500 ILM AFM (Agilent Technologies USA) with a piezo scanner with maximum range of $9 \mu \mathrm{~m}$. Micro fabricated silicon cantilevers $225 \mu \mathrm{~m}$ in length with a nominal spring force constant of 21-98 N/m were used from Nano sensors, USA. Cantilever oscillation frequency was tuned into resonance frequency. The cantilever resonance frequency was $150-300 \mathrm{kHz}$. The images (256 by 256 pixels) were captured with a scan size of between 0.5 and $5 \mu \mathrm{~m}$ at the scan speed rate of 0.5
lines/S. Images were processed by flattening using Pico view 1.4 version software (Agilent Technologies, USA). Image manipulation has been done through Pico Image Advanced version software (Agilent Technologies, USA).

AFM images of 2a and 2b in $\left(\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}\right)$ and (2:3) $\mathrm{CDCl}_{3}: \mathrm{CCl}_{4}$ respectively.

FT-IR Studies:

FT-IR Measurements were made on a JASCO FT/IR-400 Spectrophotometer using $5-10 \mathrm{mM}$ solution in CHCl_{3} of compound placed in a NaCl cell.

Preparation of compounds 1 and 8 :

Synthetic Scheme for Peptidomimetic Macrocycle 2a:

4

7
2a

Scheme 1. Synthesis of Peptidomimetic Macrocycle 2a: a) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, Na-L-Ascorbate, TBTA, ${ }^{\text {t }} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(2: 1)$ b) $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$ c) $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}: \mathrm{H}_{2} \mathrm{O}(3: 1)$ d) EDC. $\mathrm{HCl}, \mathrm{HOBt}, \mathrm{DCM}$ e) LiOH, THF: $\mathrm{H}_{2} \mathrm{O}(3: 1)$ f) EDC.HCl,PfpOH
g) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}$

Synthetic Scheme for Peptidomimetic Macrocycle 2b:

8
b, c

11

10

f,g,h,i

Scheme 1. Synthesis of Peptidomimetic Macrocycle 2b:a) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, Na-L-Ascorbate, TBTA, ${ }^{\mathrm{t}} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(2: 1)$
b) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$ c) $\mathrm{NaN}_{3}, \mathrm{DMF}$ d) $\mathrm{SnCl}_{2}, \mathrm{PhSH}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}$ e) $\mathrm{CbzCl}, \mathrm{NaHCO}_{3}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(2: 1)$ f) AcOH: $\mathrm{H}_{2} \mathrm{O}(3: 1)$ g) $\mathrm{NaIO}_{4}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ h) $\mathrm{NaClO}_{2}, \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}(30 \%), \mathrm{CH}_{3} \mathrm{CN}$ i) Mel, NaHCO_{3}, DMF j) $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH} k$) LiOH. $\mathrm{H}_{2} \mathrm{O}$, THF: $\left.\mathrm{H}_{2} \mathrm{O}(3: 1) \mathrm{I}\right)$ EDC. $\mathrm{HCl}, \mathrm{HOBt}, \mathrm{DCM}$ m) LiOH, THF: $\left.\mathrm{H}_{2} \mathrm{O}(3: 1) \mathrm{n}\right) \mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{EtOAc}$ O) $\mathrm{DPPA} / \mathrm{Et}_{3} \mathrm{~N}$

Preparation and Characterization of Intermediates for 2a:

Cbz protected dimer methyl ester (3):

To a mixture of azido methyl ester ($245 \mathrm{mg}, 1 \mathrm{mmol}$) and alkyne ($475.5 \mathrm{mg}, 1.5$ $\mathrm{mmol})$ in tert-butanol was slowly added a solution of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(373.5 \mathrm{mg}$, 1.5 mmol) and TBTA (catalytic amount) in 2:1 tert-butanol: $\mathrm{H}_{2} \mathrm{O}(35 \mathrm{~mL})$. Sodium L-Ascorbate ($990 \mathrm{mg}, 5 \mathrm{mmol}$) was introduced to the reaction mixture; it was stirred for another 16 hr , quenched with saturated NaCl solution, and extracted with DCM ($3 \times 25 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum to afford a yellow solid. The solid was purified by column chromatography (PE: EA, 1:2) to yield Cbz dimer methyl ester (3) as Yellow viscous liquid (55\%).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \delta\right): 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}), 5.95(\mathrm{~d}, \mathrm{~J}=3.6$ Hz), $5.46(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}), 5.04(\mathrm{~m}, 3 \mathrm{H}), 4.82$ (broad, 1 H$), 4.63(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \delta\right):$ $170.9,155.9,136.2,128.4,128.1124 .2,112.0,104.1,84.5,72.4,66.9,59.3$, 52.2, 45.6, 34.3, 31.7, 29.6, 29.3, 26.5, 26.0, 22.6. HRMS: $(\mathrm{M}+\mathrm{Na})^{+}$for $\mathrm{C}_{21} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Na}$: calculated 446.1802, found: 446.1795.

Cbz protected tertramer methyl ester (7):

To a solution of compound $3(60 \mathrm{mg}, 0.107 \mathrm{mmol})$ in EtOAc:MeOH ($1: 1$), 10% $\mathrm{w} / \mathrm{w} \mathrm{Pd}-\mathrm{C}(15 \mathrm{mg})$ was added and the mixture was stirred for 2 hr under H_{2} at one atmospheric pressure. After the completion of reaction (TLC), the mixture was filtered through a small pad of celite, washed with $\mathrm{MeOH}(2 \times 10 \mathrm{~mL})$ and the combined filtrate was concentrated under reduced pressure to afford the corresponding amino ester as colorless semisolid (4).

To a stirred solution of compound $4(60 \mathrm{mg}, 0.107 \mathrm{mmol})$ in 15 mL THF: $\mathrm{H}_{2} \mathrm{O}(3: 1)$ at $0^{0} \mathrm{C}$, LiOH. $\mathrm{H}_{2} \mathrm{O}(13.2 \mathrm{mg}, 0.321 \mathrm{mmol})$ was added and stirred for 1 hr . The reaction mixture was acidified with aqueous sodium bisulphate solution and extracted with ethyl acetate $(6 \times 10 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to furnish the corresponding acid 5 as white solid (95%).

To a stirred solution of compound $5(50 \mathrm{mg}, 0.092 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $\mathrm{HOBt}(12 \mathrm{mg}, 0.092 \mathrm{mmol})$ and EDC. $\mathrm{HCl}(18 \mathrm{mg}, 0.092 \mathrm{mmol})$ at $0^{0} \mathrm{C}$. After stirring for 1 hr at $0^{0} \mathrm{C}$ the amino ester ($40 \mathrm{mg}, 0.092 \mathrm{mmol}$) was introduced to the reaction mixture and stirred for further 24 hr at room temperature under N_{2}. It was subsequently washed with $1(\mathrm{~N}) \mathrm{HCl}(1 \times 25 \mathrm{~mL})$, 5% aq. $\mathrm{NaHCO}_{3}(1 \times 25 \mathrm{~mL})$, and saturated NaCl solution $(1 \times 20 \mathrm{~mL})$, and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated to give a yellow solid which was purified by column chromatography using (1:2) PE:EA as
eluent to afford the corresponding Cbz tetramer methyl ester 6 (67\%) as white solid.

To the solution of compound $7(30 \mathrm{mg}, 0.032 \mathrm{mmol})$ in 25 mL THF: $\mathrm{H}_{2} \mathrm{O}$ (3:1) at $0^{0} \mathrm{C}, \mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}(3.8 \mathrm{mg}, 0.096 \mathrm{mmol})$ was added and the mixture was stirred for 1 hr . After the completion of reaction (TLC) it was acidified by aqueous NaHSO_{4} and extracted with ethyl acetate $(3 \times 25 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to furnish the corresponding Cbz tetramer acid as white solid (95 \%).

To a stirred solution of Cbz tetramer acid ($25 \mathrm{mg}, 0.026 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added EDC. $\mathrm{HCl}(6 \mathrm{mg}, 0.032 \mathrm{mmol})$ at $0^{0} \mathrm{C}$. After stirring at $0^{0} \mathrm{C}$ for 10 min pentafluorophenol $(10 \mathrm{mg}, 0.039 \mathrm{mmol})$ was introduced to the reaction mixture and stirred overnight at room temperature under N_{2}. It was washed subsequently with $1(\mathrm{~N}) \mathrm{HCl}(1 \times 25 \mathrm{~mL})$ and saturated NaCl solution $(1 \times 20 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporating the solvent the residue was washed with n-hexane to furnish the Cbz tetramer pentaflourophenyl ester (85%).

To a solution of compound Cbz tetramer pentaflourophenyl ester (20 mg , 0.018 mmol) in EtOAc, $10 \%(\mathrm{w} / \mathrm{w})$ Pd-C (5 mg) was added and stirred for 12 hr under 1 atm Hydrogen pressure. After the completion of reaction (TLC) the reaction mixture was filtered through a small pad of celite and washed with $\mathrm{MeOH}(2 \times 10 \mathrm{~mL})$. The combined filtrate was concentrated under reduced pressure to afford the crude cyclic peptide which was purified by RP-HPLC $\left(\mathrm{C}_{18}\right.$ column $/ \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \delta\right): 7.71(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 5 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.43(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H})$, 4.83 (broad, 1H), $4.64(\mathrm{~m}, 6 \mathrm{H}), 4.38(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{broad}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$, $2.95(\mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \delta\right): 171.0,169.5,156.0,142.0,136.2,128.5,128.1,124.6$, $124.5,121.2,111.9,104.1,84.5,84.1,72.2,71.6,66.8,59.4,58.3,52.2,45.7$, 45.6, 35.9, 34.2, 26.6, 26.5, 26.08, 26.05. HRMS $(\mathrm{M}+\mathrm{Na})^{+}$calculated for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{8} \mathrm{O}_{11} \mathrm{Na}: 726.2973$, found: 726.2990.

Pseudo Cyclo- β-Peptide (2a):

${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \delta\right): 171.7,141.6,126.7,113.1,104.9,85.2,73.1$, 58.1, 46.8, 36.0, 26.6, 26.3, 24.4. FTIR (KBr, 298K): 3280 (amide A); 3159, 3098, 2990, 2925, 1672 (amide I); 1569 (amide $\mathrm{I}_{\text {II }}$); 1435. HRMS (M+Na) ${ }^{+}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Na}$: 560.2343 , observed: 560.2335 .

Preparation and Characterization of Intermediates for 2b:

Triazolyl alcohol (10):

To a mixture of 3 -azido $(1,2 ; 5,6)$ di-isopropylidene glucofuranose (500 mg , 1.75 mmol) and 3-butyn-1-ol ($0.22 \mathrm{~mL}, 2.63 \mathrm{mmol}$) in tert-butanol, was slowly added a solution of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}(655.2 \mathrm{mg}, 2.63 \mathrm{mmol})$ and TBTA (catalytic amount) in 2:1 tert-butanol: $\mathrm{H}_{2} \mathrm{O}(35 \mathrm{~mL})$. Sodium L-Ascorbate ($1.7 \mathrm{~g}, 8.75$ mmol) was introduced to the reaction mixture; it was stirred for another 16 hr .After the completion of reaction the reaction mixture was quenched with saturated NaCl solution and extracted with $\mathrm{DCM}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was
purified by ($3 \% \mathrm{MeOH}$ in DCM) to yield triazolyl alcohol (6) as a colourless liquid (55\%).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, \delta\right): 7.66(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.34$ (dd, J=3.6, $9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (m, 1H), 3.94 (m, 2H), $3.12(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~m}, 2 \mathrm{H})$, $1.59(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, \delta\right): 112.5,109.7,106.3,83.4,80.4,72.3,67.5$, 65.7, 61.6, 28.5, 26.9, 26.7, 26.1, 25.0.

HRMS $(\mathrm{M}+\mathrm{Na})^{+}$Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}: 355.3862$, Found 355.3869.

Sugar Triazolyl Azide (11):

To a stirred solution of alcohol $6(500 \mathrm{mg}, 1.4 \mathrm{mmol})$ in dry DCM, triethyl amine ($0.36 \mathrm{~mL}, 2.8 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. After 15 minutes methane sulphonyl chloride ($0.17 \mathrm{~mL}, 2.1 \mathrm{mmol}$) was added to the reaction mixture. It was stirred for another 1 hr at $0^{\circ} \mathrm{C}$. After the completion of reaction (TLC control) reaction mixture was poured in to ice-cold water and extracted by DCM $(3 \times 20 \mathrm{~mL})$.The combined organic layer was evaporated under vacuum to give the crude mesyl ester which was dissolved in dry DMF. $\mathrm{NaN}_{3}(125 \mathrm{mg}, 3.2$ $\mathrm{mmol})$ was added to the solution. It was stirred at $70^{\circ} \mathrm{C}$ for 2 hr . EtOAc was added to the reaction mixture and it was extracted with water $(2 \times 20 \mathrm{~mL})$ followed by brine $(1 \times 20 \mathrm{~mL})$.The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and
evaporated to yield the crude azide compound which was purified by column chromatography (PE:EA, 3:1) as white crystalline solid (80% over two steps).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \delta\right): 7.62(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}$, $\mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, \mathrm{J}=3.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}$, $2 H), 3.81(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.45$ $(\mathrm{s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \delta\right): 143.7,124.1,112.4,109.6,106.3,83.3,80.6$, $72.1,67.5,65.5,43.6,42.8,29.0,26.8,26.7,26.1,24.9$.

HRMS $(\mathrm{M}+\mathrm{Na})^{+}$Calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}: 380.1808$, Found: 380.1798 .

Cbz-Protected Sugar Triazolyl Amine (12):

To a solution of triazolyl azide $\mathbf{1 1}(300 \mathrm{mg}, 0.78 \mathrm{mmol})$ in acetonitrile, triethyl amine ($0.35 \mathrm{~mL}, 1.58 \mathrm{mmol}$) and $\mathrm{SnCl}_{2 .} \mathrm{H}_{2} \mathrm{O}(166 \mathrm{mg}, 1.2 \mathrm{mmol})$ were added. To this stirred solution $\mathrm{PhSH}(0.1 \mathrm{~mL}, 0.5 \mathrm{mmol})$ was added at room temperature. After the complete consumption of azide (TLC control), aqueous NaHCO_{3} was added to the mixture and extracted with $\mathrm{DCM}(5 \times 15 \mathrm{~mL})$. The combined organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give crude amine which was directly dissolved in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ (2:1). To this solution $\mathrm{NaHCO}_{3}(100 \mathrm{mg}, 1.2 \mathrm{mmol})$ was added followed by $\mathrm{Cbz}-\mathrm{Cl}$ at $0^{0} \mathrm{C}$. The
stirring was continued for another 2 hr . After the completion of reaction the solvent was removed under reduced pressure and residue was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to give crude product which was again purified by column chromatography (PE:EA, 1:2) as white crystalline solid (60% over two steps).
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \delta\right): 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}), 6.22(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27$ (broad, 1H), 5.15 (d, J=3.6 Hz, 1H), 5.08 (m, 2H), 4.95 (d, J=3.6 Hz, $1 \mathrm{H}), 4.32(\mathrm{dd}, \mathrm{J}=3.6,9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 2.94$ (m, 2H), $1.43(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \delta\right): 175.3,156.4,144.7,136.4,128.5,128.1,128.0$, $123.6,112.5,109.7,106.3,83.4,80.4,72.3,67.4,66.6,65.5,40.2,29.6,26.9$, 26.7, 26.1, 25.8, 24.9.

HRMS $(\mathrm{M}+\mathrm{Na})^{+}$Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}: 488.2271$, Found 488.2267.

Cbz-Protected sugar Triazole Amino acid:

Compound $3(300 \mathrm{mg}, 0.6 \mathrm{mmol})$ was dissolved in $\mathrm{AcOH}: \mathrm{H}_{2} \mathrm{O}(3: 1 \mathrm{v} / \mathrm{v})$ and the reaction mixture was stirred overnight at RT. After completion of the reaction (TLC) the mixture was evaporated on a rotary evaporator and dried with azeotropic removal of water. The crude diol was dissolved in aqueous MeOH followed by the addition of sodium periodate $(160 \mathrm{mg}, 0.75 \mathrm{mmol}$, added portionwise) at $0^{\circ} \mathrm{C}$. After 5 h , the reaction mixture was filtered, evaporated, and
the aqueous part was extracted with $\mathrm{DCM}(3 \times 25 \mathrm{~mL})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to furnish the aldehyde (70\%) as colourless oil which was used for the next step without further purification.

The aldehyde ($200 \mathrm{mg}, 0.48 \mathrm{mmol}$) was dissolved in acetonitrile $(5 \mathrm{~mL})$ and to this were added solutions of $\mathrm{NaClO}_{2}(65 \mathrm{mg}, 0.72 \mathrm{mmol})$ in 9 mL of water and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(112 \mathrm{mg}, 0.72 \mathrm{mmol})$ in 5 mL of water, and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.1 \mathrm{~mL}, 2.4$ mmol) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight at room temperature, the solvent was removed under reduced pressure and the remaining content was basified by adding 5% aqueous solution of NaHCO_{3}. The aqueous phase was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$, and then acidified by NaHSO_{4}. The acidic layer was further extracted with $\mathrm{EtOAc}(4 \times 15 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvent under reduced pressure gave the acid as white foam.

CBz-Protected Sugar Triazolyl Methyl Ester (13):

To a solution of acid $\mathbf{4}(100 \mathrm{mg}, 0.23 \mathrm{mmol})$ in dimethyl formamide NaHCO_{3} $(40 \mathrm{mg}, 0.46 \mathrm{mmol})$ and iodomethane $(0.03 \mathrm{~mL}, 0.46 \mathrm{mmol})$ were added. The reaction was stirred for 4 h . EtOAc was added to the reaction mixture and it was extracted by aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution ($2 \times 15 \mathrm{~mL}$) and brine ($1 \times 15 \mathrm{~mL}$). The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to give the corresponding methyl ester as colourless liquid (90\%).

Cbz Protected tetramer methyl ester (16):

To a solution of compound 5 ($60 \mathrm{mg}, 0.107 \mathrm{mmol}$) in EtOAc:MeOH (1:1), $10 \% \mathrm{w} / \mathrm{w}$ Pd-C (15 mg) was added and the mixture was stirred for 2 hr under H_{2} at one atmospheric pressure. After the completion of reaction (TLC), the mixture was filtered through a small pad of celite, washed with $\mathrm{MeOH}(2 \times 10$ mL) and the combined filtrate was concentrated under reduced pressure to afford the corresponding amino ester as colorless semisolid (6).

To a stirred solution of compound $4(50 \mathrm{mg}, 0.092 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $\mathrm{HOBt}(12 \mathrm{mg}, 0.092 \mathrm{mmol})$ and $\mathrm{EDC} . \mathrm{HCl}(18 \mathrm{mg}, 0.092 \mathrm{mmol})$ at $0^{0} \mathrm{C}$. After stirring for 1 hr at $0^{\circ} \mathrm{C}$, the amino ester $6(40 \mathrm{mg}, 0.092 \mathrm{mmol})$ was introduced to the reaction mixture and stirred for further 24 hr at room temperature under N_{2}. It was then subsequently washed with $1(\mathrm{~N}) \mathrm{HCl}(1 \times 25$ $\mathrm{mL}), 5 \%$ aq. $\mathrm{NaHCO}_{3}(1 \times 25 \mathrm{~mL})$, and saturated NaCl solution $(1 \times 20 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated to give a yellow solid which was purified by column chromatography using $4 \% \mathrm{MeOH}$ in DCM as eluent to afford the corresponding Cbz tetramer methyl ester 7 (55\%) as white solid.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, \delta\right): 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 6.53$ (broad, 1H), 6.42 (d, J=3.6 Hz, 1H), 6.35 (d, J=3.6 Hz, 1H), 5.38 (m, 2H), 5.29 (d, J=4.2 Hz, 1H), 5.13 (m, 2H), 5.10 (m, 2H), 5.02 (m,1H), 4.96 (d, J=3.6 Hz, $1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 2.89$ $(\mathrm{m}, 2 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}) 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, \delta\right): 166.9,166.3,144.6,136.5,128.5,128.0$, 123.6, 121.7, 113.3, 113.1, 106.7, 105.9, 83.4, 83.1, 80.3, 78.2, 66.6, 66.2, 65.6, 52.6, 40.0, 37.7, 30.9, 26.9, 26.7, 26.3, 26.2, 25.7, 25.3.

HRMS $(\mathrm{M}+\mathrm{Na})^{+}$Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$: 726.2973, Found: 726.2968.

Pseudo-cyclo- β-peptide 2b:

To a solution of $\mathbf{1 6}$ in THF: $\mathrm{H}_{2} \mathrm{O}$ (3:1) LiOH. $\mathrm{H}_{2} \mathrm{O}$ was added at $0^{0} \mathrm{C}$ and stirring was continued for another 1 hr . After the completion of reaction the mixture was acidified by NaHSO_{4} and extracted by EtOAc $(4 \times 10 \mathrm{~mL})$.The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under rotary to give the crude tetramer Cbz-protected acid (17) as white solid.

To a solution of $\mathbf{1 7}(30 \mathrm{mg}, 0.040 \mathrm{mmol})$ in EtOAc:MeOH (1:1), $10 \%(\mathrm{w} / \mathrm{w})$ Pd-C (10 mg) was added and stirred for 2 hr under 1 atmosphere Hydrogen pressure. After the completion of reaction (TLC) the reaction mixture was filtered through a small pad of celite which was then washed with $\mathrm{MeOH}(2 \times 10$ mL). The combined filtrate was concentrated under reduced pressure to afford the corresponding amino acid as colourless solid.

The crude product was dissolved in distilled acetonitrile $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ then DIEA (0.6 mmol) and DPPA (0.4 mmol) were added. The mixture was stirred for 48 h at room temperature. After evaporation of solvent under reduced pressure, the crude material was dissolved in ethyl acetate $(20 \mathrm{~mL})$ and washed with saturated NaHCO_{3} solution $(2 \times 10 \mathrm{~mL})$, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(2 \times 10$ $\mathrm{mL})$ then brine $(10 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to afford the crude product which was purified by HPLC (C 18 column $/ \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, \delta\right): 166.6,144.9,121.9,112.9,106.6,82.3,80.4$, 65.7, 38.1, 26.7, 26.2, 24.0. $[\alpha]^{26}{ }_{\mathrm{D}}=1.8\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. HRMS $(\mathrm{M}+\mathrm{Na})^{+}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Na}$: 560.2343, observed: 560.2352.

Structural Determination by Multidimensional NMR:

NMR Spectra (1D and 2D) of the Pseudo cyclic peptides 2a and 2b were recorded by Bruker Avance- 600 MHz with TCI CYROPROBE in Acetonitriled_{3} or (2:3) $\mathrm{CDCl}_{3}: \mathrm{CCl}_{4}$ using tetra methyl silane for CDCl_{3} as internal standard and chemical shifts are shown in ppm. All the two dimensional NMR studies (DQF COSY, ROESY) were carried out in phase-sensitive mode. The 2D spectra were acquired with 2×256 or 2×192 free induction decays (FID) containing 16-32 scans with relaxation delays of 1.5 s . The ROESY experiments were performed with mixing time of 0.2 to 0.3 s and the TOCSY experiments were performed with mixing time of 0.02 s . The two dimensional data were processed with Gaussian apodization in both the dimensions. The spectra (One Dimensional, DQF COSY and ROESY) are given in the supporting information.
${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY cross peaks at 300 ms were assigned and integrated and the respective volumes were converted to distance restraints. When symmetric pairs of cross peaks were present, the larger peak volume was converted to the
distance restraint. Cross-peaks were categorized as strong, medium, weak, and very weak based on their intensities. Inter-proton distances (r) were derived from the ROE intensities (S) with the known relationship $\mathrm{r}=\mathrm{c}(\mathrm{S})^{-1 / 6}$, where c is a coefficient determined on the basis of ROE corresponding to a known distance. The distance constraints were determined from volume integrals of ROESY cross peaks using reference distance $2.40 \mathrm{~A}^{0}$ for vicinal cis-sugar ring protons. The conservative upper distances were fixed respectively as $3.5,4.0,4.5$ and 6.0 \AA and the lower distance limit was fixed at $2.0 \AA$. Corrections of $0.1 \AA$ were applied to the upper bound distances derived from NOEs to account for any spin diffusion effect. The dihedral angles (φ) were calculated from the ${ }^{3} \mathrm{~J}_{\mathrm{HN}-\mathrm{H} \beta}$ coupling constants measured from the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQF-COSY spectra using the modified Karplus ${ }^{1}$ equation. The φ 's thus obtained were used as dihedral restraints.

NMR Analysis:

${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CD}_{3} \mathrm{CN}+2 \% \mathrm{H}_{2} \mathrm{O}\right)$ of all entries in Table-1 were assigned from the corresponding double-quantum-filtered 2D DQF-COSY spectrum acquired at the concentration and temperature indicated. Spectra were acquired using Bruker- 600 MHz spectrometer as indicated for $\mathbf{2 a}$ and $\mathbf{2 b}$ and were referenced to residual CHCl_{3} solvent peak (7.24 ppm). Signals for S and β-A are shown in the structures of $\mathbf{2 a}$ and $\mathbf{2 b}$.

Residue name	$\mathrm{NH} / \mathrm{Tr}$	H_{α}	$\mathrm{H}_{\alpha^{\prime}}$	H_{β}	$\mathrm{H}_{\beta^{\prime}}$	H_{γ}	H_{δ}
S	7.76 (d) $\mathrm{J}_{\mathrm{NH}, \beta}=7.8$	5.36 (d) $\mathrm{J}_{\alpha, \beta}=3.6$		$4.22(\mathrm{dd})$ $\mathrm{J}_{\beta, \alpha}=3.6$ $\mathrm{~J}_{\beta, \mathrm{NH}}=7.8$		4.64 (d) $\mathrm{J}_{\gamma, \delta}=4.2$	$5.94(\mathrm{~d})$ $\mathrm{J}_{\delta, \gamma}=4.2$
$\beta-\mathrm{A}$	$7.61(\mathrm{~s})$	$2.77(\mathrm{~m})$	$2.84(\mathrm{~m})$	$4.60(\mathrm{~m})$	$4.40(\mathrm{~m})$		

Other Methyls: 1.20, 1.47
Table 1: ${ }^{1} \mathrm{H}$ NMR Chemical Shifts (ppm) $\left(\mathrm{CD}_{3} \mathrm{CN}+2 \% \mathrm{H}_{2} \mathrm{O}, 600 \mathrm{MHz}, 300 \mathrm{~K}\right)$ and coupling constant (Hz) of pseudo-cyclo- β-peptide 2a

Residue Name	$\mathrm{NH} / \mathrm{Tr}-\mathrm{H}$	$\mathrm{C} \alpha \mathrm{H}$	$\mathrm{Ca}^{1} \mathrm{H}$	$\mathrm{C} \beta \mathrm{H}$	$C \beta^{1} \mathrm{H}$	$\mathrm{C} Y \mathrm{H}$	COH
S	7.31(s)	$\begin{aligned} & 4.99 \\ & \mathrm{~J} \beta, \alpha=3.6 \end{aligned}$		$\begin{gathered} 5.12 \\ J \beta, \alpha=3.6 \end{gathered}$		$\begin{aligned} & 5.38 \\ & J_{\gamma}, \delta=3.6 \end{aligned}$	$\begin{aligned} & 6.51 \\ & \mathrm{~J} \gamma, \delta=3.6 \end{aligned}$
$\beta-A$	$\begin{gathered} 7.60(\mathrm{t}) \\ \mathrm{J}_{\mathrm{NH}, \beta^{\prime}}=6.1 \\ \mathrm{~J}_{\mathrm{NH}, \beta^{\prime}}=5.4 \end{gathered}$	$\begin{aligned} & 2.64(\mathrm{ddd}) \\ & \mathrm{J} \alpha, \alpha^{\prime}=16 \\ & \mathrm{~J} \alpha, \beta^{\prime}=9 \\ & \mathrm{~J} \alpha, \beta=3 \\ & \hline \end{aligned}$	$\begin{gathered} 2.41 \text { (ddd) } \\ \mathrm{J} \alpha, \alpha^{\prime}=16 \\ \mathrm{~J} \alpha^{\prime}, \beta=8.9 \\ \mathrm{~J} \alpha^{\prime}, \beta^{\prime}=2.8 \end{gathered}$	3.37(m)	3.29(m)		

Other Methyls: 1.60, 1.25; S=Sugar; $\beta-A=\beta$-Alanine
Table 2: ${ }^{1} \mathrm{H}$ NMR Chemical Shifts (ppm) $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 300 \mathrm{~K}\right)$ and coupling constant (Hz) of pseudo-cyclo- β-peptide 2b

NMR Studies:

NMR Spectra of the Pseudo cyclic peptide were recorded by Bruker 600 MHz in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{d}_{3}$ or (2:3) $\mathrm{CDCl}_{3}: \mathrm{CCl}_{4}(7 \mathrm{mM})$ using tetramethyl silane as internal standard and chemical shifts are shown in ppm.The dihedral angles (φ) were
calculated from the ${ }^{3} \mathrm{~J}_{\mathrm{HN}-\mathrm{H} \mathrm{\beta}}$ coupling constants measured from the DQF-Cosy spectra using the modified Karplus equation ${ }^{1}$.

Molecular Modeling studies:

Construction of molecular model and structural analysis of different obtained conformations were achieved by Insight-II. The Discover software was used for molecular modelling calculation and also energy minimization. The CVFF MSI version with default parameter was used as a force field throughout the calculation in chloroform ($\varepsilon=4.8$) and in vacuo ($\varepsilon=1.8$) respectively for $\mathbf{2 b}$ and 2a. Structure refinement was carried out by incorporating NMR derived distance and torsion angle constraints. Energy minimization of each structure was carried out by steepest descent method followed by conjugate gradient method, until an RMS deviation of 0.001 Kcal was arrived.
(1) C. A. G. Haasnoot ; F. A. A. M. de Leeuw; H. P. M.de Leeuw; C. Altona, Org. Magn. Reson. 1981, 15, 43.

1D spectra of compound 2a:

Fig. $1{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 a}\left(\mathrm{CD}_{3} \mathrm{CN}+2 \% \mathrm{H}_{2} \mathrm{O}, 600 \mathrm{MHz}, 300 \mathrm{~K}\right)$

Fig. $2{ }^{13} \mathrm{CNMR}$ spectrum of compound 2a in $\mathrm{CD}_{3} \mathrm{CN}+2 \% \mathrm{H}_{2} \mathrm{O}$ at 298 K in 600 MHz

2D NMR of compound 2a:

Fig. $3{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQF-COSY of $\mathbf{2 a}$ in $\mathrm{CD}_{3} \mathrm{CN}+2 \%_{2} \mathrm{O}$ at 298 K in 600 MHz

Fig.4. ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ ROESY of compound 2a in $\mathrm{CD}_{3} \mathrm{CN}+2 \% \mathrm{H}_{2} \mathrm{O}$ at 300 K in 600 MHz

Fig. 5 Selected region of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY of $\mathbf{2 a}$ in $\left(\mathrm{CD}_{3} \mathrm{CN}+2 \% \mathrm{H}_{2} \mathrm{O}\right)$ showing Parallel Homostacking between two sugar components as suggested by $\mathrm{SH}_{\alpha^{-}}$ SH_{δ} cross peaks.

Fig.6: IR Spectrum of compound 2a in KBr

Fig.7: ESI mass Spectrum for compound 2a in $\mathrm{CH}_{3} \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O}$ showing Pseudomolecular monomeric and dimeric species

1D NMR compound 2b:

Fig.8: ${ }^{1} \mathrm{H}$ NMR Spectrum of compound 2b in CDCl_{3} at 298 in 600 MHz

Fig.9: ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 b}$ in CDCl_{3} at 298 K in 600 MHz

Concentration dependent NMR studies:

Compound 2b

Fig.10: Selected Region of ${ }^{1} \mathrm{H}$ NMR Spectra of 2b: a) 2 mM in $\mathrm{CD}_{3} \mathrm{CN}$ at 298 K , b) 2 mM in $(2: 3) \mathrm{CDCl}_{3}: \mathrm{CCl}_{4}$, c) 0.5 mM , and d) 0.125 mM in (2:3) $\mathrm{CDCl}_{3}: \mathrm{CCl}_{4}$ at 243 K .

FT-IR Studies:

Fig.11: FT-IR Spectrum of 15 mM solution of compound $\mathbf{2 b}$ in CHCl_{3}

2D NMR of compound 2b:

Fig.12. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ DQF-COSY of 2b in CDCl_{3} at 300 K in 600 MHz

Fig.13: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY of 2b in CDCl_{3} at 300 K in 600 MHz

Structure Analysis by NMR spectroscopy:

NMR analysis of compound $\mathbf{2 b}$ at 298 K in $\mathrm{CDCl}_{3}(600 \mathrm{MHz})$ indicates the ring conformation which resembles the D-L,-homologous conformation of triazole/amide functional group. DQF COSY showing the coupling constants around 9 Hz and around 3 Hz indicates the presence of gauche conformation in β-alanine moiety. Again the ROESY spectrum showed the cross-peaks between NH and $\mathrm{C} \alpha$ protons as weak whereas the cross-peak between triazole proton and $C \beta$-proton is very strong.

\longleftarrow Strong ROE connectivity

Fig.14. Summary of ROE connectivity observed in compound 2b in CDCl_{3} at 300 K . The observed coupling constant and these ROE connectivities are used as conformational restraints in Molecular modeling studies in silicon graphics O_{2} work station to achieve the minimized structure in chloroform.

Fig.15: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY of $\mathbf{2 b}$ in $2: 3\left(\mathrm{CDCl}_{3}: \mathrm{CCl}_{4}\right)$ at 300 K in 600 MHz

Fig.16: A typical schematic side view for self-assembly of compound a) for 2a and b) for $\mathbf{2 b}$ by molecular modeling without isopropylidene moiety for the sake of clarity.

Co-ordinates of energy minimized structure of compound 2a:

ATOM	1	01	CPEN	1	4.532	1.389	-10.214	1.00	0.00
\bigcirc									
ATOM	2	C2	CPEN	1	4.498	0.840	-8.876	1.00	0.00
C									
ATOM	3	C3	CPEN	1	5.079	-0.595	-9.000	1.00	0.00
C									
ATOM	4	N32	CPEN	1	6.574	-0.651	-8.976	1.00	0.00
N									
ATOM	5	C32	CPEN	1	7.249	-1.505	-8.205	1.00	0.00
C									
ATOM	6	032	CPEN	1	6.715	-2.449	-7.626	1.00	0.00
\bigcirc									
ATOM	7	C1	CPEN	1	8.762	-1.271	-8.077	1.00	0.00
C									
ATOM	8	C4	CPEN	1	9.240	0.099	-7.509	1.00	0.00
C									
ATOM	9	C13	CPEN	1	4.427	0.307	-11.162	1.00	0.00
C 0 l									
ATOM	10	C33	CPEN	1	4.550	-1.001	-10.387	1.00	0.00
C									
ATOM	11	H2	CPEN	1	3.430	0.737	-8.598	1.00	0.00
H									
ATOM	12	н3	CPEN	1	4.634	-1.245	-8.217	1.00	0.00
H									
ATOM	13	H32	CPEN	1	7.156	0.124	-9.302	1.00	0.00
H									
ATOM	14	1H1	CPEN	1	9.207	-1.431	-9.075	1.00	0.00
H									
ATOM	15	2H1	CPEN	1	9.181	-2.086	-7.457	1.00	0.00
H									
ATOM	16	1H4	CPEN	1	10.316	0.210	-7.746	1.00	0.00
H									
ATOM	17	2H4	CPEN	1	8.752	0.936	-8.044	1.00	0.00
H									
ATOM	18	H13	CPEN	1	5.213	0.401	-11.935	1.00	0.00
H									
ATOM	19	H33	CPEN	1	5.198	-1.735	-10.904	1.00	0.00
H									
ATOM	20	N	PYRO	1B	4.935	1.624	-6.451	1.00	0.00
N									
ATOM	21	N1	PYRO	1B	5.748	2.516	-5.848	1.00	0.00
N									
ATOM	22	N2	PYRO	1B	6.425	3.246	-6.770	1.00	0.00
N									
ATOM	23	C	PYRO	1B	6.025	2.777	-8.006	1.00	0.00
C									
ATOM	24	C1	PYRO	1B	5.110	1.764	-7.809	1.00	0.00
C									
ATOM	25	C2	PYRO	1B	7.482	4.257	-6.437	1.00	0.00
C									
ATOM	26	C3	PYRO	1B	7.210	5.132	-5.176	1.00	0.00
C									

ATOM C
ATOM N

ATOM 0 ATOM H ATOM H
ATOM
H
ATOM H

ATOM H ATOM H ATOM C
ATOM C

ATOM 0 ATOM C ATOM C
ATOM H
ATOM H ATOM H ATOM H ATOM N
ATOM N
ATOM N
ATOM C ATOM C ATOM H
ATOM 0

ATOM C ATOM C ATOM C

27 C4 PYRO 1B 28 N3 PYRO 1B 29 PYRO 1B 30 HC PYRO 1B 31 1H2 PYRO 1B 32 2H2 PYRO 1B 33 1H3 PYRO 1B 34 2H3 PYRO 1B 35 H3 PYRO 1B

36 C1 CPEN 1C

37 C2 CPEN 1C

38 O3 CPEN 1C
39 C13 CPEN 1C 40 C33 CPEN 1C

41 H1 CPEN 1C

42 H2 CPEN 1C
43 H13 CPEN 1C
44 H33 CPEN 1C
45 N1 PYRO 1D
46 N2 PYRO 1D
47 N3 PYRO 1D
48 C4 PYRO 1D
49 C5 PYRO 1D
50 H4 PYRO 1D
51 O CPEN 1E

52 C CPEN 1E
53 C1 CPEN 1E
54 C2 CPEN 1E

7.367	4.471	-3.798	1.00	0.00
8.568	3.965	-3.510	1.00	0.00
6.421	4.436	-3.014	1.00	0.00
6.404	3.105	-8.962	1.00	0.00
8.457	3.741	-6.351	1.00	0.00
7.605	4.937	-7.303	1.00	0.00
7.869	6.019	-5.195	1.00	0.00
6.188	5.549	-5.239	1.00	0.00
9.361	4.193	-4.126	1.00	0.00
9.758	3.763	-1.330	1.00	0.00
11.154	3.293	-1.730	1.00	0.00
10.999	2.180	-2.635	1.00	0.00
8.807	3.080	-2.328	1.00	0.00
9.607	1.789	-2.657	1.00	0.00
9.672	4.866	-1.329	1.00	0.00
11.734	4.100	-2.216	1.00	0.00
7.856	2.808	-1.823	1.00	0.00
9.456	1.087	-1.812	1.00	0.00
8.043	0.273	-4.051	1.00	0.00
7.970	-0.130	-5.336	1.00	0.00
9.055	0.293	-6.032	1.00	0.00
9.833	1.007	-5.142	1.00	0.00
9.201	1.005	-3.916	1.00	0.00
10.750	1.527	-5.375	1.00	0.00
3.131	0.297	-11.763	1.00	0.00
2.401	-0.833	-11.276	1.00	0.00
2.084	-1.771	-12.440	1.00	0.00
1.124	-0.348	-10.597	1.00	0.00

ATOM	55	01	CPEN	1E	3.211	-1.520	-10.315	1.00	0.00
\bigcirc									
ATOM	56	1H13	CPEN	1E	1.535	-2.667	-12.098	1.00	0.00
H									
Атом	57	2H13	CPEN	1E	1.472	-1.268	-13.210	1.00	0.00
H									
Atom	58	3H13	CPEn	1E	3.010	-2.119	-12.928	1.00	0.00
H									
ATOM	59	1H1	CPEN	1E	0.545	-1.188	-10.173	1.00	0.00
H									
Атом	60	2H1	CPEN	1E	1.358	0.342	-9.768	1.00	0.00
H									
ATOM	61	3H1	CPEn	1E	0.472	0.198	-11.302	1.00	0.00
H									
ATOM	62	02	CPEN	1F	9.569	3.272	0.008	1.00	0.00
Атом	63	C3	CPEN	1F	10.842	2.888	0.540	1.00	0.00
C									
Атом	64	C31	CPEN	1F	11.280	3.903	1.595	1.00	0.00
C									
ATOM	65	C1	CPEN	1F	10.732	1.488	1.137	1.00	0.00
ATOM	66	033	CPEN	1F	11.795	2.870	-0.526	1.00	0.00
0									
Атом	67	1H31	CPEn	1F	12.268	3.647	2.017	1.00	0.00
H									
Атом	68	2H31	CPEN	1F	11.359	4.914	1.159	1.00	0.00
H									
Атом	69	3H31	CPEN	1F	10.557	3.959	2.427	1.00	0.00
H									
Атом	70	1H1	CPEN	1F	11.697	1.147	1.552	1.00	0.00
H									
Атом	71	2H1	CPEN	1F	9.978	1.448	1.943	1.00	0.00
H									
ATOM	72	3H1	CPEN	1F	10.431	0.756	0.368	1.00	0.00
H									

Co-ordinates of energy minimized structure of compound 2 b :

ATOM	1	C	CPEN	1	1.510	2.057	-8.721	1.00	0.00
C									
ATOM	2	C1	CPEN	1	2.863	2.387	-8.050	1.00	0.00
C									
ATOM	3	C2	CPEN	1	3.880	1.714	-9.020	1.00	0.00
C									
ATOM	4	C3	CPEN	1	4.382	0.262	-8.749	1.00	0.00
C									
ATOM	5	0	CPEN	1	5.577	0.069	-8.507	1.00	0.00
\bigcirc									
ATOM	6	N	CPEN	1	3.476	-0.726	-8.770	1.00	0.00
N									
ATOM	7	C4	CPEN	1	3.812	-2.127	-8.438	1.00	0.00
C									
ATOM	8	C5	CPEN	1	2.559	-2.937	-8.037	1.00	0.00
C									
ATOM	9	C6	CPEN	1	1.845	1.950	-10.200	1.00	0.00
C									
ATOM	10	01	CPEN	1	3.273	1.816	-10.327	1.00	0.00
\bigcirc									
ATOM	11	H1	CPEN	1	1.079	1.107	-8.349	1.00	0.00
H									
ATOM	12	H2	CPEN	1	3.019	3.479	-8.141	1.00	0.00
H									
ATOM	13	H3	CPEN	1	4.784	2.352	-9.028	1.00	0.00
H									
ATOM	14	H32	CPEN	1	2.515	-0.426	-8.965	1.00	0.00
H									
ATOM	15	1H32	CPEN	1	4.284	-2.596	-9.322	1.00	0.00
H									
ATOM	16	2H32	CPEN	1	4.570	-2.181	-7.630	1.00	0.00
H									
ATOM	17	1H6	CPEN	1	2.821	-4.011	-8.080	1.00	0.00
H									
ATOM	18	2H6	CPEN	1	1.770	-2.825	-8.806	1.00	0.00
H									
ATOM	19	H13	CPEN	1	1.331	1.088	-10.667	1.00	0.00
H									
ATOM	20	N	PYRO	1B	2.985	2.030	-6.583	1.00	0.00
N									
ATOM	21	C	PYRO	1B	4.112	1.833	-5.803	1.00	0.00
C									
ATOM	22	C1	PYRO	1B	3.708	1.592	-4.510	1.00	0.00
C									
ATOM	23	N1	PYRO	1B	2.334	1.671	-4.481	1.00	0.00
N									
ATOM	24	N2	PYRO	1B	1.924	1.945	-5.737	1.00	0.00
N									
ATOM	25	C2	PYRO	1B	4.613	1.296	-3.311	1.00	0.00
C									
ATOM	26	C3	PYRO	1B	4.997	-0.189	-3.145	1.00	0.00
C									

ATOM N
ATOM C

ATOM 0 ATOM H ATOM H
ATOM H
ATOM H

ATOM H ATOM H
ATOM C
ATOM C
ATOM 0
ATOM C
ATOM C
ATOM H
ATOM H ATOM H ATOM H ATOM N
ATOM C
ATOM C ATOM N ATOM N ATOM H
ATOM 0 ATOM C ATOM C ATOM C

27 N3 PYRO 1B
28 C4 PYRO 1B 29 O PYRO 1B 30 HC PYRO 1B 31 1H2 PYRO 1B

32 2H2 PYRO 1B
33 1H3 PYRO 1B
34 2H3 PYRO 1B
35 H3 PYRO 1B
36 C1 CPEN 1C
37 C2 CPEN 1C
38 O3 CPEN 1C
39 C13 CPEN 1C
40 C33 CPEN 1C
41 H1 CPEN 1C

42 H2 CPEN 1C
43 H13 CPEN 1C
44 H33 CPEN 1C
45 N1 PYRO 1D
46 C2 PYRO 1D
47 C3 PYRO 1D
48 N4 PYRO 1D
49 N5 PYRO 1D
50 H2 PYRO 1D
51 O CPEN 1E
52 C CPEN 1E
53 C1 CPEN 1E
54 C2 CPEN 1E

3.861	-1.010	-2.676	1.00	0.00
3.895	-2.351	-2.671	1.00	0.00
4.874	-2.999	-3.051	1.00	0.00
5.133	1.846	-6.157	1.00	0.00
5.542	1.887	-3.417	1.00	0.00
4.149	1.678	-2.382	1.00	0.00
5.821	-0.269	-2.411	1.00	0.00
5.405	-0.585	-4.096	1.00	0.00
3.011	-0.535	-2.340	1.00	0.00
1.354	-3.178	-3.070	1.00	0.00
2.624	-3.100	-2.178	1.00	0.00
2.135	-2.531	-0.936	1.00	0.00
0.445	-2.317	-2.183	1.00	0.00
0.731	-2.821	-0.754	1.00	0.00
0.972	-4.217	-3.054	1.00	0.00
2.942	-4.140	-1.966	1.00	0.00
0.683	-1.234	-2.311	1.00	0.00
1.062	-2.407	0.216	1.00	0.00
1.496	-2.751	-4.516	1.00	0.00
2.201	-3.337	-5.542	1.00	0.00
1.990	-2.618	-6.646	1.00	0.00
1.208	-1.654	-6.400	1.00	0.00
0.875	-1.696	-5.092	1.00	0.00
2.816	-4.222	-5.459	1.00	0.00
0.570	3.132	-8.605	1.00	0.00
0.467	3.799	-9.879	1.00	0.00
0.863	5.274	-9.712	1.00	0.00
-0.970	3.666	-10.411	1.00	0.00

ATOM	55	O1	CPEN	1E	1.383	3.168	-10.792	1.00	0.00
\bigcirc									
ATOM	56	1H13	CPEN	1E	0.815	5.822	-10.670	1.00	0.00
H									
ATOM	57	2H13	CPEN	1 E	0.205	5.796	-8.993	1.00	0.00
H									
ATOM	58	3H13	CPEN	1E	1.898	5.369	-9.335	1.00	0.00
H									
ATOM	59	1H1	CPEN	1E	-1.087	4.148	-11.399	1.00	0.00
H									
ATOM	60	2 H 1	CPEN	1E	-1.256	2.605	-10.529	1.00	0.00
H									
ATOM	61	3 H 1	CPEN	1E	-1.705	4.127	-9.725	1.00	0.00
H									
ATOM	62	0	CPEN	1 F	-0.950	-2.519	-2.406	1.00	0.00
\bigcirc									
ATOM	63	C	CPEN	1F	-1.518	-2.197	-1.139	1.00	0.00
C									
ATOM	64	C1	CPEN	1 F	-2.415	-3.349	-0.649	1.00	0.00
C									
ATOM	65	C2	CPEN	1F	-2.300	-0.877	-1.231	1.00	0.00
C									
ATOM	66	01	CPEN	1F	-0.377	-2.022	-0.275	1.00	0.00
\bigcirc									
ATOM	67	1H13	CPEN	1F	-2.822	-3.148	0.359	1.00	0.00
H									
ATOM	68	2H13	CPEN	1F	-3.271	-3.517	-1.328	1.00	0.00
H									
ATOM	69	3H13	CPEN	1F	-1.855	-4.300	-0.591	1.00	0.00
H									
ATOM	70	1H1	CPEN	1F	-2.707	-0.573	-0.249	1.00	0.00
H									
ATOM	71	2H1	CPEN	1F	-1.655	-0.053	-1.586	1.00	0.00
H									
ATOM	72	3H1	CPEN	1F	-3.149	-0.953	-1.936	1.00	0.00

