Supporting Information

Gold(I)-Catalysed Direct Allylic Etherification of Unactivated Alcohols

Paul C. Young, Nina A. Schopf and Ai-Lan Lee*

Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.

A.Lee@hw.ac.uk

Table of Contents

General Experimental Section					
Representative Optimisation Results	4				
Experimental Procedures	7				
¹ H-NMR and ¹³ C-NMR Spectra of Synthesised Compounds	28				
References	53				

General Experimental Section

¹H NMR spectra were recorded on Bruker AV 300 and AV 400 spectrometers at 300 and 400 MHz respectively and referenced to residual solvent. ¹³C NMR spectra were recorded using the same spectrometers at 75 and 100 MHz respectively. Chemical shifts (δ in ppm) were referenced to tetramethylsilane (TMS) or to residual solvent peaks (CDCl₃ at $\delta_{\rm H}$ 7.26). J values are given in Hz and s, d, dd, t, q, qn and m abbreviations correspond to singlet, doublet, doublet of doublet, triplet, quartet, quintet and multiplet. Mass spectra were obtained at the EPSRC National Mass Spectrometry Service Centre in Swansea. Infrared spectra were obtained on Perkin-Elmer Spectrum 100 FT-IR Universal ATR Sampling Accessory, deposited neat or as a chloroform solution to a diamond/ZnSe plate. Flash column chromatography was carried out using Matrix silica gel 60 from Fisher Chemicals and TLC was performed using Merck silica gel 60 F254 precoated sheets and visualised by UV (254 nm) or stained by the use of aqueous acidic KMnO4 or aqueous acidic ceric ammonium molybdate as appropriate. Petrol ether refers to petroleum ether (40-60 °C). Dichloromethane (DCM) was purchased from Fisher and used without further purification. All alcohol nucleophiles were purchased from Sigma-Aldrich or Acros, and used without further purification. The gold(I)-catalysed reactions were carried out without the need for dry solvents or inert atmosphere, unless stated otherwise.

Representative Optimisation Results

Below are representative screens that were carried out in order to optimise the reaction conditions.

Catalyst Screen:

Entry	Catalyst	Yield	E:Z	$S_N 2': S_N 2$
1	(2,4- ^t Bu-Ph-	63%	3 4.1	≈ 10.1
-	O) ₃ PAuCl / AgOTf	0070	0	1011
2	PPh ₃ AuCl / AgOTf	47%	5.3:1	≈ 16:1
3	Echavarren's cat. S1	59%	6.6:1	≈11:1
4	PPh ₃ AuNTf ₂	80%	6.1:1	> 20:1
5	IPr(NHC)AuCl /	260/	5 1.1	~ 10.1
5	AgOTf	30%	3.4.1	~ 10.1

Solvent Screen:

OH 10 equiv. OH O^ Mg 10 mol% PPh₃AuNTf₂ Solvent (0.2 M), 30 °C, 18.5 h

Solvent	Conversion	E:Z	$S_N 2': S_N 2$	Other
DCM	38%	4.8:1	≈ 15.7:1	
Chloroform	26%	4.1:1	≈ 19:1	
DCE	53%	~6.2:1	≈ 10:1	Traces of side- product
Toluene	42%	8:1	> 20:1	Seems cleaner than chlorinated solvents
MeCN	0	N/A	N/A	
DMF	0	N/A	N/A	
Dioxane	14%	No Z-isomer?	≈ 11.5:1	
THF	17%	3.3:1	> 20:1	

Reaction Time Screen:

Entry	Time	Conversion	E:Z	$S_N 2': S_N 2$
1	1 day	42%	5.33:1	> 20:1
2	2 days	60%	7.26:1	> 20:1
3	3 days	87%	7.73:1	> 20:1
4	5 days	90%	8.39:1	≈8:1

ⁱPrOH Equivalents Screen:

OH

QН

M O

Entry	Equiv. ⁱ PrOH	Time	Conversion	E:Z	S _N 2':S _N 2	Comments
		1 day	17%		> 20:1	
1	1	3 days	42%	7.75:1	> 20:1	$\approx 5:1$ S _N 2':self
		1 day	19%		≈ 15:1	
2	2	3 days	45%	7.40:1	≈ 9.5:1	$\approx 6.8:1$ S _N 2':self
		1 days	26%		> 20:1	
3	3	3 days	54%	7.82:1	≈11.5:1	$\approx 8.4:1$ S _N 2':self
4	4	1 day	25%		> 20:1	Self-
4	4	3 days	56%	7.76:1	> 20:1	reaction
5	5	1 day	26%		> 20:1	not
3	5	3 days	57%	8.67:1	> 20:1	observed

Concentration Screen:

Entry	Concentration (mol L ⁻¹)	Conversion	E:Z ratio	$S_N 2': S_N 2$
1	0.05	7%	1:0	> 20:1
s2	0.1	20%	7.5:1	≈ 15.7:1
3	0.2	52%	9.7:1	≈ 15:1
4	0.5	80%	7.7:1	≈ 15.5:1
5	1.0	86%	6.8:1	≈ 13.6:1

Representative screens with tertiary allylic alcohols:

Entry	Equiv. Alcohol	Conversion	$S_N 2': S_N 2$	Comments
1	1	>95%	N/D	Very messy with self- reaction product present
2	2	>95%	15:1	
3	3	>95%	>20:1	
4	5	100%	>20:1	Very clean, only $S_N 2$ '

Entry	Catalyst Loading	Time (h)	Isolated Yield	Comments
1	10 mol%	17.5	57%	
2	5 mol%	17.5	62%	
3	5 mol%	29.5	76%	Reaction requires over 24 hours

^{*i*}PrOH as solvent:

Result: >95% conversion, $S_N 2^{\circ}: S_N 2 \approx 5:1, E: Z \approx 3:1$

Experimental Procedures

Allylic Alcohol Starting Materials:

Allylic alcohol 1b was purchased from Sigma-Aldrich.

Allylic alcohols **1a**, **1c-k** were obtained following known literature procedure with Grignard addition to ketones/aldehydes.¹ Allylic alcohols **1l-m** were obtained following known literature procedures by reduction of alkyne.^{2,3} All characterisation was comparable to literature values; **1a**, **e** & **f**, ¹ **1c**, ⁴ **1d**, ⁵ **1g**, ⁶ **1h**, ⁷ **1i**, ⁸ **1j**, ⁹ **1k**, ¹⁰ **1l**, ¹¹ **1m**.³

A: General Synthetic Procedure for Tertiary Allylic Alcohol Substrates:

The gold-catalysed reactions were all carried out in 1 dram screw-cap vials. To a toluene solution (0.386 M) of allylic alcohol (1 equiv.) and alcohol nucleophile (5 equiv.), 5 mol% of PPh₃AuNTf₂ was added. The reaction mixture was allowed to stir at 50 °C for over 24 hours. The reaction was then filtered through a plug of silica (40:1 petroleum ether:diethyl ether). The filtrate was concentrated under reduced pressure, and a crude ¹H NMR was obtained to determine $S_N2':S_N2$ and E:Z ratios. The crude material was purified by flash column chromatography.

B: General Synthetic Procedure for Secondary Allylic Alcohol Substrates:

The gold-catalysed reactions were all carried out in 1 dram screw-cap vials. To a toluene solution (0.386 M) of allylic alcohol (1 equiv.) and alcohol nucleophile (5 equiv.), 10 mol% of PPh₃AuNTf₂ was added. The reaction mixture was allowed to stir at 50 °C for over 48 hours. The reaction was then filtered through a plug of silica (40:1 petroleum ether:diethyl ether). The filtrate was concentrated under reduced pressure, and a crude ¹H NMR was obtained to determine $S_N2':S_N2$ and E:Z ratios. The crude material was purified by flash column chromatography.

C: General Synthetic Procedure for Primary Allylic Alcohol Substrates:

As for **A**, but reaction time was >48 h instead of >24 h.

(*E*)-1-((3,4,4-Trimethylpent-2-en-1-yl)oxy)hexadecane **3a**:

Purified using flash column chromatography; using a gradient eluent system of neat petroleum ether \rightarrow 80:1 petroleum ether:diethyl ether. Product obtained as a colourless oil (33.7 mg, 0.096 mmol, 83%). v_{max}/cm⁻¹ 2955 s 2852 s (C-H), 1651 w (C=C), 1465 m 1360 m (C-H bending), 1106 s (C-O-C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.39 (1H, tq, J = 6.2, 1.2 Hz, OCH₂C<u>H</u>), 4.00 (2H, d, J = 6.2, OC<u>H₂CH</u>), 3.41 (2H, t, J = 6.8 Hz, OC<u>H₂CH₂), 1.64 (3H, d, J = 1.2 Hz, CH=C(C<u>H₃</u>)), 1.25 (28H, s, alkyl CH₂), 1.05 (9H, s, C(C<u>H₃)₃</u>), 0.91 – 0.85 (3H, m, CH₂C<u>H₃</u>); $\delta_{\rm C}$ (75 MHz, CDCl₃) 146.8 (C), 118.5 (CH), 70.7 (CH₂), 68.3 (CH₂), 36.4 (C), 32.1 (CH₂), 30.0 (CH₂), 29.9 (CH₃), 29.82 (3 x CH₂ overlapping peaks), 29.77 (2 x CH₂ overlapping peaks), 29.7 (CH₂), 29.5 (CH₂), 29.0 (3 x CH₂ overlapping peaks), 26.4 (CH₂), 22.9 (CH₂), 14.9 (CH₃), 13.2 (CH₃). Found (ESI) [M+NH₄]⁺ 370.4048, C₂₄H₅₂NO requires 370.4043.</u>

2D NOESY confirms E-isomer is major isomer:

(*E*)-(4-((3,4,4-Trimethylpent-2-en-1-yl)oxy)butyl)benzene **3b**:

Analysis of crude reaction mixture showed that $S_N2^{2}:S_N2$ ratio was 12:1. Purified using flash column chromatography; using a gradient eluent system of neat hexane $\rightarrow 20:1$ hexane:diethyl ether. Product obtained as a colourless oil with $S_N2^{2}:S_N2$ ratio of 15:1 (23.3 mg, 0.089 mmol, 75%). v_{max}/cm^{-1} 3027 w 2954 m 2937 m 2862 m (C-H), 1655 w (C=C), 1604 w 1496 m 1453 m (aromatic C=C), 1107 s (C-O-C); δ_H (400 MHz, CDCl₃) 7.31 – 7.15 (5H, m, aromatic CH), 5.39 (1H, tq, J = 6.2, 1.2 Hz, OCH₂CH), 4.00 (2H, d, J = 6.2 Hz, OCH₂CH), 3.45 (2H, t, J = 6.4 Hz, OCH₂CH₂), 2.65 (2H, t, J = 7.4 Hz, CH₂CH₂Ph), 1.77 – 1.58 (7H, m, alkyl CH₂ & C(CH₃)), 1.06 (9H, s, C(CH₃)₂); δ_C (75 MHz, CDCl₃) 147.0 (C), 142.6 (C), 128.6 (CH), 128.4 (CH), 125.8 (CH), 118.4 (CH), 70.4 (CH₂), 68.3 (CH₂), 36.4 (C), 35.9 (CH₂), 29.6 (CH₂), 29.0 (CH₃), 28.3 (CH₂), 13.2 (CH₃). Found (EI) [M]⁺ 260.2136, C₁₈H₂₈O requires 260.2135.

(*E*)-(2-((3,4,4-Trimethylpent-2-en-1-yl)oxy)ethyl)benzene **3c**:

Purified using flash column chromatography; using a gradient eluent system of neat hexane \rightarrow 50:1 hexane:diethyl ether. Product obtained as a colourless oil (16.7 mg, 0.072 mmol, 76%). v_{max}/cm^{-1} 3028 w 2963 m 2867 m (C-H), 1657 w (C=C), 1605 w 1497 m 1454 m (aromatic C=C), 1105 s (C-O-C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.33 – 7.18 (5H, m, aromatic CH), 5.39 (1H, tq, J = 6.2, 1.1 Hz, OCH₂C<u>H</u>), 4.05 (2H, d, J = 6.2 Hz, OC<u>H</u>₂CH), 3.65 (2H, t, J = 7.4 Hz, OC<u>H</u>₂CH₂), 2.92 (2H, t, J = 7.4 Hz, OCH₂C<u>H</u>₂), 1.64 (3H, d, J = 1.1 Hz, CH=CC<u>H</u>₃), 1.06 (9H, s, C(C<u>H</u>₃)₃); $\delta_{\rm C}$ (101 MHz, CDCl₃) 147.2 (C), 139.2 (C), 129.0 (CH), 128.5 (CH), 126.3 (CH), 118.2 (CH), 71.4 (CH₂), 68.4 (CH₂), 36.6 (CH₂), 36.4 (C), 29.0 (CH₃), 13.2 (CH₃). Found (APCI) [M+H]⁺ 233.1899, C₁₆H₂₅O requires 233.1900.

(*E*)-(((3,4,4-Trimethylpent-2-en-1-yl)oxy)methyl)benzene **3d**:

Purified using flash column chromatography; using a gradient eluent system of neat hexane \rightarrow 50:1 hexane:diethyl ether. Product obtained as a colourless oil (19.9 mg, 0.091 mmol, 77%). v_{max}/cm⁻¹ 2964 s 2867 m (C-H), 1655 w (C=C), 1496 w 1454 m 1360 s (aromatic C=C), 1101 s (C-O-C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.38 – 7.26 (5H, m, aromatic CH), 5.45 (tq, *J* = 6.3, 1.2 Hz, 1H, OCH₂C<u>H</u>), 4.52 (2H, s, OC<u>H₂</u>Ar), 4.06 (2H, dq, *J* = 6.3, 0.7 Hz, OC<u>H₂</u>CH), 1.65 – 1.62 (3H, m, CHCC<u>H₃</u>), 1.06 (9H, s, C(C<u>H₃</u>)₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 147.6 (C), 138.7 (C), 128.5 (CH), 128.0 (CH), 127.7 (CH), 118.1 (CH), 72.4 (CH₂), 67.6 (CH₂), 36.4 (C), 29.0 (CH₃), 13.2 (CH₃). Found (APCI) [M+NH₄]⁺ 236.2007, C₁₅H₂₆NO requires 236.2009.

(*E*)-1-(But-3-en-1-yloxy)-3,4,4-trimethylpent-2-ene **3e**:

Purified using flash column chromatography; using an eluent system of 75:1 petroleum ether: diethyl ether. Product obtained as a colourless oil (16.0 mg, 0.088 mmol, 75%). v_{max}/cm^{-1} 3075 w 2960 m 2925 m 2855 w (C-H), 1642 w (C=C), 1464 w 1360 w (C-H bending), 1087 s (C-O-C); $\delta_{\rm H}$ (300 MHz, CDCl₃) 5.79 (1H, ddt, J = 17.0, 10.2, 6.7 Hz, CH₂=C<u>H</u>), 5.34 (1H, t, J = 6.2 Hz, OCH₂C<u>H</u>=), 5.21 – 4.90 (2H, m, C<u>H</u>₂=CH), 3.98 (2H d, J = 6.2 Hz, OC<u>H</u>₂CH=), 3.44 (2H, t, J = 6.9 Hz, CH₂C<u>H</u>₂O), 2.38 – 2.23 (2H, m, =CHC<u>H</u>₂CH₂), 1.59 (3H, s, C<u>H</u>₃C=), 1.00 (9H, s, (C<u>H</u>₃)₃C); $\delta_{\rm C}$ (75 MHz, CDCl₃) 147.07 (C), 135.81 (CH), 117.94 (CH), 116.21 (CH₂), 69.86 (CH₂), 68.12 (CH₂), 36.56 (C), 34.53 (CH₂), 29.01 (CH₃), 13.45 (CH₃). Found (APCI) [M+H⁺] 183.1744, C₁₂H₂₃O requires 183.1743.

(*E*)-1-(3-Chloropropoxy)-3,4,4-trimethylpent-2-ene **3f**:

Purified using flash column chromatography; using a gradient eluent system of neat petroleum ether \rightarrow 50:1 petroleum ether:diethyl ether. Product obtained as a colourless oil (15.5 mg, 0.076 mmol, 65%). v_{max}/cm^{-1} 2971 s 2902 s (C-H), 1656 w (C=C), 1452 m 1406 m 1394 m 1381 m (C-H bending), 1066 s 1057 s (C-O-C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.37 (tq, J = 6.2, 1.2 Hz, 1H, OCH₂C<u>H</u>), 4.02 (d, J = 6.2 Hz, 2H, OC<u>H₂CH</u>), 3.65 (t, J = 6.5 Hz, 2H, OC<u>H₂CH₂</u>), 3.56 (t, J = 5.9 Hz, 2H, CH₂C<u>H₂Cl</u>), 2.03 (app. p, J = 6.2 Hz, 2H, CH₂C<u>H₂CH₂</u>), 1.66 – 1.63 (m, 3H, CH=C(C<u>H₃</u>)), 1.05 (s, 9H, C(C<u>H₃)₃</u>); $\delta_{\rm C}$ (75 MHz, CDCl₃) 147.5 (C), 118.0 (CH), 68.41 (CH₂), 66.6 (CH₂), 42.3 (CH₂), 36.4 (C), 32.9 (CH₂), 29.0 (CH₃), 13.2 (CH₃). Found (APCI) [M+H]⁺ 205.1356, C₁₁H₂₂ClO requires 205.1354.

(*E*)-2,2-Dimethyl-4-(((3,4,4-trimethylpent-2-en-1-yl)oxy)methyl)-1,3-dioxolane **3g**:

Purified using flash column chromatography; using a gradient eluent system of neat hexane \rightarrow 40:1 hexane:diethyl ether. Product obtained as a colourless oil (22.0 mg, 0.091 mmol, 77%). v_{max}/cm⁻¹ 2965 s 2870 s (C-H), 1655 w (C=C), 1456 m 1370 s (C-H bending), 1068 s 1054 s (C-O-C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.38 (1H, tq, J = 6.2, 1.2 Hz, OCH₂CH=C), 4.29 (1H, app. qn, J = 6.3 Hz, OCHCH₂O), 4.10 – 4.04 (3H, m, OCH₂CH=C & H_a/H_a'), 3.72 (1H, dd, J = 8.3, 6.4 Hz, H_a/H_a'), 3.52 (1H, dd, J = 9.8, 5.9 Hz, H_b/H_b'), 3.42 (1H, dd, J = 9.8, 5.6 Hz, H_b/H_b'), 1.64 (3H, d, J = 1.2 Hz, CH=C(CH₃)), 1.42 (3H, s, OC(CH₃)₂O), 1.36 (3H, s, OC(CH₃)₂O), 1.04 (9H, s, CH=C(CH₃)₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 147.5 (C), 117.9 (CH), 109.5 (C), 74.9 (CH), 71.4 (CH₂), 69.0 (CH₂), 67.2 (CH₂), 36.4 (C), 29.0 (CH₃), 27.0 (CH₃), 25.5 (CH₃), 13.2 (CH₃). Found (ESI) [M+H]⁺ 243.1960, C₁₄H₂₇O₃ requires 243.1955.

(*E*)-Methyl 4-(((3,4,4-trimethylpent-2-en-1-yl)oxy)methyl)benzoate **3h**:

Purified using flash column chromatography; using a gradient eluent system of neat hexane \rightarrow 10:1 hexane:diethyl ether. Product obtained as a colourless oil (23.9 mg, 0.086 mmol, 74%). v_{max}/cm⁻¹ 2954 m 2868 m (C-H), 1722 s (C=O), 1658 w (C=C), 1613 m, 1578 w 1435 m (aromatic C=C), 1275 s 1105 s (C-O-C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.02 (2H, d, *J* = 8.0 Hz, Ar-H), 7.42 (2H, d, *J* = 8.0 Hz, Ar-H), 5.44 (1H, tq, *J* = 6.3, 1.2 Hz, OCH₂C<u>H</u>), 4.56 (2H, s, OCH₂Ar), 4.07 (2H, d, *J* = 6.3 Hz, OCH₂CH), 3.91 (3H, s, OCH₃), 1.63 (3H, d, *J* = 1.2 Hz, CH=C(CH₃)), 1.05 (9H, s, C(CH₃)₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 167.1 (C), 148.0 (C), 144.1 (C), 129.8 (CH), 129.4 (C), 127.5 (CH), 117.7 (CH), 71.7 (CH₂), 67.9 (CH₂), 52.2 (CH₃), 36.4 (C), 29.0 (CH₃), 13.2 (CH₃). Found (ESI) [M+NH₄]⁺ 294.2069, C₁₇H₂₈NO₃ requires 294.2064.

(*E*)-(2-((3,4,4-Trimethylpent-2-en-1-yl)oxy)propyl)benzene **3i**:

Purified using flash column chromatography; using a gradient eluent system of neat petroleum ether \rightarrow 50:1 petroleum ether:diethyl ether. Product obtained as a colourless oil (20.7 mg, 0.084 mmol, 71%). v_{max}/cm^{-1} 3028 w 2965 s 2867 m (C-H), 1656 w (C=C), 1604 w 1496 m 1453 m (aromatic C=C), 1096 s (C-O-C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.33 (1H, tq, *J* = 6.2, 1.2 Hz, OCH₂C<u>H</u>), 4.06 (1H, dd, *J* = 12.0, 6.2 Hz, OC<u>H</u>H'CH), 3.99 (1H, dd, *J* = 12.0, 6.2 Hz, OCH<u>H</u>'CH), 3.64 (1H, dp, *J* = 6.8, 6.1 Hz, OC<u>H</u>), 2.96 (1H, dd, *J* = 13.4, 6.1 Hz, PhC<u>H</u>H'CH), 2.63 (1H, dd, *J* = 13.4, 6.8 Hz, PhCH<u>H</u>'CH), 1.60 (3H, d, *J* = 1.2 Hz, CH=C(C<u>H₃)), 1.15 (3H, d, *J* = 6.1 Hz, OCHC<u>H₃), 1.03 (9H, s, C(CH₃)a); $\delta_{\rm C}$ (75 MHz, CDCl₃) 146.7 (C), 139.4 (C), 129.6 (CH), 128.3 (CH), 126.1 (CH), 118.7 (CH), 76.1 (CH), 66.1 (CH₂), 43.3 (CH₂), 36.3 (C), 29.0 (CH₃), 19.8 (CH₃), 13.2 (CH₃). Found (APCI) [M+H]⁺ 247.2054, C₁₇H₂₇O requires 247.2056.</u></u>

2D NOESY confirms E-isomer is major isomer:

(*E*)-1-(*tert*-Butoxy)-3,4,4-trimethylpent-2-ene **3j**:

Purified using flash column chromatography; using a gradient eluent system of neat petroleum ether \rightarrow 80:1 petroleum ether:diethyl ether. Product obtained as a colourless oil (12.6 mg, 0.068 mmol, 57%). v_{max}/cm^{-1} 2966 s 2928 m 2869 m (C-H), 1659 w (C=C), 1464 m 1388 m 1361 s (C-H bending), 1055 s (C-O-C); $\delta_{\rm H}$ (300 MHz, CDCl₃) 5.33 (1H, tq, J = 5.9, 1.1 Hz, OCH₂C<u>H</u>), 3.96 (2H, d, J = 5.9 Hz, OC<u>H₂C</u>H), 1.62 (3H, d, J = 1.1 Hz, CC<u>H₃</u>), 1.23 (9H, s, OC(C<u>H₃)₃</u>), 1.04 (9H, s, C(C<u>H₃)₃</u>)); $\delta_{\rm C}$ (75 MHz, CDCl₃) 145.2 (C), 119.8 (CH), 73.0 (C), 59.8 (CH₂), 36.3 (C), 29.0 (CH₃), 27.8 (CH₃), 13.2 (CH₃). Found (APCI) [M-H]⁺ 183.1742, C₁₂H₂₃O requires 183.1743.

2D NOESY confirms *E*-isomer is major isomer:

(2R,3R,4S,5R)-3,4,5-Tris(benzyloxy)-2-((benzyloxy)methyl)-6-(((*E*)-3,4,4-trimethylpent-2-en-1-yl)oxy)tetrahydro-2*H*-pyran **3k**:

For solubility reasons, chloroform was used instead of toluene for this reaction. Purified using flash column chromatography; using a gradient eluent system of neat petroleum ether \rightarrow 2:1 petroleum ether:diethyl ether. Product obtained as a colourless oil as a mixture of anomers with α : β ratio of \approx 3:1 (39.1 mg, 0.060 mmol, 52%). v_{max}/cm^{-1} 2959 w 2913 w 2866 w (C-H), 1694 w (C=C), 1605 w 1496 w 1453 m (aromatic C=C), 1084 s 1069 s (C-O-C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.43 – 7.15 (20H+20H', m, α & β aromatic CH), 5.54 – 5.48 (1H', m, β -OCH₂C<u>H</u>), 5.50 – 5.45 (1H, m, α -OCH₂C<u>H</u>), 5.09 – 3.48 (17H+17H', m, α & β benzyl CH₂ & alkyl CH), 1.70 (3H', d, J = 1.9 Hz, β -CC<u>H₃</u>), 1.69 (3H, d, J = 1.8 Hz, α -CC<u>H₃</u>), 1.10 (9H+9H', d, J = 0.6 Hz, α & β C(C<u>H₃)₃</u>); only major α -anomer characterised by ¹³C NMR; $\delta_{\rm C}$ (101 MHz, CDCl₃) 148.2 (C), 139.2 (C), 138.42 (C), 138.36 (C), 138.1 (C), 128.54 (CH), 128.50 (CH), 128.49 (CH), 127.8 (CH), 127.7 (CH), 117.3 (CH), 95.4 (CH), 82.4 (CH), 79.8 (CH), 78.0 (CH), 75.9 (CH₂), 75.2 (CH₂), 73.6 (CH₂), 73.1 (CH₂), 70.3 (CH), 68.7 (CH₂), 64.3 (CH₂), 36.5 (C), 29.1 (CH₃), 13.2 (CH₃). Found (ESI) [M+NH₄]⁺ 668.3944, C42H₅₄NO₆ requires 668.3946.

α & β Anomer ratio determined with assistance from 2D NMR work (C-H correlation); $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.89 (d, *J* = 4.9 Hz, 4H, α-OC<u>H</u>O), 4.48 (d, *J* = 7.8 Hz, 1H, β-OC<u>H</u>O).

2D NOESY confirms *E*-isomer is major isomer (both $\alpha \& \beta$ anomers):

2-(tert-Butyl)-2-methylchroman 4:

Purified using flash column chromatography; using a gradient eluent system of neat hexane \rightarrow 50:1 hexane:diethyl ether. Product obtained as a colourless oil (12.7 mg, 0.062 mmol, 53%). v_{max}/cm⁻¹ 2965 m 2921 m 2873 (C-H), 1583 m 1488 m 1456 m (aromatic C=C), 1125 s (C-O-C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.11 – 7.01 (2H, m, Ar-H), 6.81 – 6.74 (2H, m, Ar-H), 2.88 – 2.77 (1H, ddd, J = 16.6, 13.1, 6.1 Hz, H_b/H_b[,]), 2.69 (1H, ddd, J = 16.6, 5.8, 1.8 Hz, H_b/H_b[,]), 1.90 (1H, tdq, J = 13.1, 5.8, 0.8 Hz, H_a/H_a[,]), 1.75 (1H, ddd, J = 13.1, 6.1, 1.8 Hz, H_a/H_a[,]), 1.17 (3H, d, J = 0.8 Hz, OCC<u>H₃</u>), 1.04 (9H, s, C(C<u>H₃</u>)₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 154.8 (C), 129.3 (CH), 127.3 (CH), 121.5 (C), 119.3 (CH), 117.4 (CH), 80.1 (C), 37.9 (C), 25.8 (CH₂), 25.3 (CH₃), 22.5 (CH₂), 17.7 (CH₃). Found (APCI) [M+H]⁺ 205.1586, C₁₄H₂₁O₁ requires 205.1587.

1-((3-Methylbut-2-en-1-yl)oxy)hexadecane 31:

Analysis of crude reaction mixture showed that $S_N2^{\circ}:S_N2$ ratio was 5:1. Purified using flash column chromatography; using a gradient eluent system of neat hexane $\rightarrow 25:1$ hexane:diethyl ether. Product obtained as a colourless oil with $S_N2^{\circ}:S_N2$ ratio of 6.5:1 (33.1 mg, 0.107 mmol, 62%). v_{max}/cm^{-1} 2922 s 2853 s (C-H), 1675 w (C=C), 1466 m 1377 m (C-H bending), 1089 m (C-O-C); δ_H (300 MHz, CDCl₃) 5.36 (1H, tsept, J = 6.9, 1.4 Hz, OCH₂C<u>H</u>), 3.93 (2H, d, J = 6.9 Hz, OC<u>H₂C</u>H), 3.99 (2H, t, J = 6.7 Hz, OC<u>H₂C</u>H₂), 1.74 (3H, app. s, C(C<u>H₃)₂), 1.67 (3H, app. s, C(C<u>H₃)₂), 1.38-1.16 (28H, m, alkyl CH₂), 0.91 – 0.83 (3H, m, CH₂C<u>H₃); δ_C (75 MHz, CDCl₃) 136.7 (C), 121.5 (CH), 70.6 (CH₂), 67.4 (CH₂), 32.1 (CH₂), 30.0 (CH₂ overlapping signals), 29.9 (CH₂), 29.82 (CH₂), 29.77 (CH₂), 29.7 (CH₂), 29.5 (CH₂), 26.4 (CH₂), 26.0 (CH₃), 22.9 (CH₂), 18.2 (CH₃), 14.3 (CH₃). Found (APCI) [M+NH₄]⁺ 328.3567, C₂₁H₄₆NO requires 328.3574.</u></u></u>

(2-((3-Propylhex-2-en-1-yl)oxy)ethyl)benzene 3m:

Purified using flash column chromatography with silver nitrate impregnated silica; using a gradient eluent system of neat petroleum ether \rightarrow 50:1 petroleum ether:diethyl ether. Product obtained as a colourless oil (19.8 mg, 0.080 mmol, 78%). v_{max}/cm⁻¹ 2959 m 2931 m 2871 m (C-H), 1662 w (C=C), 1605 w 1497 w 1455 m (aromatic C=C), 1093 (C-O-C); $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.33 – 7.17 (5H, m, aromatic CH), 5.34 (1H, t, *J* = 6.7 Hz, OCH₂CH), 4.02 (2H, d, *J* = 6.7 Hz, OCH₂CH), 3.64 (2H, t, *J* = 7.4 Hz, OCH₂CH₂), 2.91 (2H, t, *J* = 7.4 Hz, OCH₂CH₂), 2.07 – 1.93 (4H, m, =CCH₂CH₂), 1.51 – 1.30 (4H, m, =CCH₂CH₂), 0.89 (3H, t, *J* = 7.3 Hz, CH₂CH₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 144.3 (C), 139.2 (C), 129.0 (CH), 128.5 (CH), 126.3 (CH), 121.4 (CH), 71.2 (CH₂), 67.4 (CH₂), 39.1 (CH₂), 36.6 (CH₂), 32.8 (CH₂), 21.9 (CH₂), 21.2 (CH₂), 14.3 (CH₃), 14.1 (CH₃). Found (ESI) [M+NH₄]⁺ 264.2326, C₁₇H₃₀NO requires 264.2322.

(3-Phenethoxyprop-1-ene-1,1-diyl)dicyclohexane 3n:

Purified using flash column chromatography; using a gradient eluent system of neat petroleum ether → 50:1 petroleum ether:diethyl ether. Product obtained as a colourless oil (20.1 mg, 0.062 mmol, 91%). v_{max} /cm⁻¹ 2988 s 2922 s (C-H), 1653 w (C=C), 1495 m 1449 m (aromatic C=C), 1057 s (C-O-C); $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.40 – 7.13 (5H, m, aromatic CH), 5.26 (1H, t, *J* = 6.5 Hz, OCH₂CH), 4.09 (2H, d, *J* = 6.5 Hz, OCH₂CH), 3.64 (2H, t, *J* = 7.3 Hz, OCH₂CH₂), 2.91 (2H, t, *J* = 7.3 Hz, CH₂CH₂Ph), 2.44 – 2.24 (1H, m, cyclohexyl CH), 1.97 – 1.84 (1H, m, cyclohexyl CH'), 1.83 – 1.06 (20H, m, alkyl CH₂); $\delta_{\rm C}$ (75 MHz, CDCl₃) 154.4 (C), 139.3 (C), 129.0 (CH), 128.5 (CH), 126.3 (CH), 119.2 (CH), 71.0 (CH₂), 67.2 (CH₂), 41.4 (CH), 40.8 (CH), 36.6 (CH₂), 34.9 (CH₂), 31.1 (CH₂), 27.3 (CH₂), 26.8 (CH₂), 26.4 (CH₂), 26.3 (CH₂). Found (APCI) [M+H]⁺ 327.2679, C₂₃H₃₅O requires 327.2682.

(*E*)-(4-Phenethoxybut-2-en-2-yl)benzene **30**:

Analysis of crude reaction mixture showed that *E*:*Z* ratio was 6:1. Purified using flash column chromatography; using a gradient eluent system of neat hexane \rightarrow 50:1 hexane:diethyl ether. Product obtained as a colourless oil with *E*:*Z* isomers present in 6:1 ratio (17.1 mg, 0.068 mmol, 67%). v_{max}/cm⁻¹ 3027 m 2919 m 2855 m (C-H), 1647 w (C=C), 1601 w 1495 m 1445 m (aromatic C=C), 1097 (C-O-C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.45 – 7.15 (10H, m, aromatic CH), 5.94 (1H, tq, *J* = 6.5, 1.2 Hz, OCH₂CH), 4.22 (2H, d, *J* = 6.5 Hz, OCH₂CH), 3.72 (2H, t, *J* = 7.3 Hz, OCH₂CH₂), 2.95 (2H, t, *J* = 7.3 Hz, OCH₂CH₂), 2.07 (3H, s, CCH₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 143.0 (C), 139.1 (C), 138.3 (C), 129.1 (CH), 128.5 (CH), 128.3 (CH), 127.3 (CH), 126.3 (CH), 125.9 (CH), 124.5 (CH), 71.5 (CH₂), 68.1 (CH₂), 36.6 (CH₂), 16.3 (CH₃). Found (APCI) [M+NH₄]⁺ 270.1851, C₁₈H₂₄NO requires 270.1858.

2D NOESY confirms *E*-isomer is major isomer:

(*E*)-(2-((3-Cyclohexylbut-2-en-1-yl)oxy)ethyl)benzene **3p**:

Analysis of crude reaction mixture showed that $S_N2^{2}:S_N2$ ratio was >20:1. The *E*:*Z* ratio was found to be ~5:1 Purified using flash column chromatography; using a gradient eluent system of neat hexane \rightarrow 10:1 hexane:diethyl ether. Product obtained as a colourless oil with *E*:*Z* ratio of 5:1 (17.7 mg, 0.068 mmol, 71%). v_{max}/cm^{-1} 3028 w 2923 s 2851 s (C-H), 1661 w (C=C), 1605 w 1496 m 1449 m (aromatic C=C), 1100 s (C-O-C); δ_H (400 MHz, CDCl₃) 7.33 – 7.18 (5H, m, aromatic CH), 5.33 (1H, tp, *J* = 6.6, 1.1 Hz, OCH₂C<u>H</u>), 4.03 (2H, d, *J* = 6.5 Hz, OC<u>H₂CH</u>), 3.64 (2H, t, *J* = 7.4 Hz, OC<u>H₂CH₂</u>), 2.91 (2H, t, *J* = 7.4 Hz, CH₂C<u>H₂Ph</u>), 1.91 – 1.64 (5H, m, alkyl CH₂), 1.62 (3H, app. s, CH=C(C<u>H₃</u>)), 1.36 – 1.09 (5H, m, alkyl CH₂); δ_C (75 MHz, CDCl₃) 145.2 (C), 139.2 (C), 129.0 (CH), 128.5 (CH), 126.3 (CH), 119.1 (CH), 71.2 (CH₂), 67.7 (CH₂), 47.3 (CH), 36.6 (CH₂), 31.7 (CH₂), 26.8 (CH₂), 26.5 (CH₂), 15.0 (CH₃). Found (APCI) [M+NH₄]⁺ 276.2315, C₁₈H₃₀NO requires 276.2322.

2D NOESY confirms *E*-isomer is major isomer:

(*E*)-1-Butoxypent-2-ene **3q**:

To a 4 mL screw capped vial, tridec-1-en-3-ol (15.0 mg, 0.076 mmol) was added. n-Butanol (34.6 μ L, 28.0 mg, 0.378 mmol) was added by microliter syringe. The solution was dissolved in 0.10 mL of toluene, and 2,6-di-*tert*-butylpyridine (1.2 mg, 0.0065 mmol) was added. To this solution, PPh₃AuNTf₂ (5.6 mg, 0.0076 mmol) was added, and washed in with 0.05 mL of toluene. The reaction was stirred at 40 °C for 65 hours, then was filtered through a plug of silica with diethyl ether and concentrated. Analysis of crude reaction mixture showed that *E*:*Z* ratio was 6:1, with S_N2':S_N2 ratio of 10:1. The product was purified using flash column chromatography with silver nitrate impregnated silica; using a gradient eluent system of neat petroleum ether \rightarrow 100:1 petroleum ether:diethyl ether. Product obtained as a colourless oil in 6.3:1 *E*:*Z* ratio, with S_N2':S_N2 ratio of >20:1 (15.7 mg, 0.062 mmol, 82%).

 v_{max} /cm⁻¹ 2958 m 2924 s 2854 s (C-H), 1671 w (C=C), 1104 s (C-O-C); δ_H (300 MHz, CDCl₃) 5.72 – 5.39 (2H, m, C<u>H</u>=C<u>H</u>), 3.83 (2H, d, *J* = 6.0 Hz, OC<u>H₂</u>CH), 3.33 (2H, t, *J* = 6.7 Hz, OC<u>H₂</u>CH₂), 1.96 (2H, q, *J* = 6.6 Hz, CHC<u>H₂</u>CH₂), 1.56 – 1.43 (2H, m, OCH₂C<u>H₂</u>CH₂), 1.41 – 1.08 (18H, m, alkyl CH₂), 0.85 (3H, t, *J* = 7.3 Hz, CH₂C<u>H₃</u>), 0.81 (3H, t, *J* = 6.7 Hz, CH₂C<u>H₃</u>); δ_C (75 MHz, CDCl₃) 134.7 (CH), 126.6 (CH), 71.8 (CH₂), 70.0 (CH₂), 32.5 (CH₂), 32.1 (CH₂), 32.0 (CH₂), 29.8 (CH₂ x 2), 29.7 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.3 (CH₂), 22.9 (CH₂), 19.5 (CH₂), 14.3 (CH₃), 14.1 (CH₃). Found (EI) [M]⁺ 254.2604, C₁₇H₃₄O requires 254.2604.

(*E*)-1-*iso*Propoxypent-2-ene **3r**:

Analysis of crude reaction mixture showed that *E*:*Z* ratio was 8:1, with $S_N2^{\circ}:S_N2$ ratio of 11:1. Purified by flash column chromatography with silver nitrate impregnated silica; using petroleum ether as an eluent. Product obtained as a colourless oil in 13:1 *E*:*Z* ratio, with $S_N2^{\circ}:S_N2$ ratio of >20:1 (22.5 mg, 0.094 mmol, 91%). v_{max}/cm^{-1} 2918 s 2852 s (C-H), 1684 m (C=C), 1453 m 1372 m (C-H bending), 1090 s (C-O-C); δ_H (300 MHz, CDCl₃) 5.76 – 5.46 (2H, m, C<u>H</u>=C<u>H</u>), 3.90 (2H, d, *J* = 6.0 Hz, OC<u>H</u>₂), 3.61 (1H, hept, *J* = 6.1 Hz, OC<u>H</u>(CH₃)₂), 2.03 (2H, q, *J* = 6.7 Hz, CHC<u>H</u>₂CH₂), 1.41 – 1.21 (16H, m, alkyl CH₂), 1.16 (6H, d, *J* = 6.1 Hz, OCH(C<u>H</u>₃)₂), 0.93 – 0.83 (3H, m, CH₂C<u>H</u>₃); δ_C (75 MHz, CDCl₃) 134.4 (CH), 126.9 (CH), 70.7 (CH), 69.1 (CH₂), 32.5 (CH₂), 32.1 (CH₂), 29.8 (CH₂ x 2), 29.7 (CH₂), 29.5 (CH₂), 29.4 (CH₂), 29.2 (CH₂), 22.9 (CH₂), 22.3 (CH₃), 14.3 (CH₃). Found (APCI) [M+NH₄]⁺ 258.2794, C₁₆H₃₆NO requires 258.2791.

(*E*)-(5-Phenethoxypent-3-en-1-yl)benzene **3s**:

Analysis of crude ¹H NMR spectrum shows that *E*:*Z* ratio is 7:1, with $S_N2^{*}:S_N2$ ratio of 4.5:1 Purified using flash column chromatography; using a gradient eluent system of neat petroleum ether \rightarrow 50:1 petroleum ether:diethyl ether. Product obtained as a colourless oil in 7:1 *E*:*Z* ratio (17.0 mg, 0.064 mmol, 69%). v_{max}/cm^{-1} 3026 m 2922 m 2852 m (C-H), 1669 w (C=C), 1603 w 1496 m 1453 m (aromatic C=C), 1099 m (C-O-C); δ_H (400 MHz, CDCl₃) 7.35 – 7.13 (10H, m, aromatic CH), 5.73 (1H, dtt, *J* = 15.3, 6.4, 1.0 Hz, CH_B), 5.59 (1H, dtt, *J* = 15.3, 6.0, 1.0 Hz, CH_A), 3.94 (2H, dq, *J* = 6.0, 1.0 Hz, OCH₂CH), 3.61 (2H, t, *J* = 7.4 Hz, OCH₂CH₂), 2.90 (2H, t, *J* = 7.4 Hz, OCH₂CH₂Ph), 2.71 (2H, t, *J* = 7.9 Hz, CHCH₂CH₂Ph), 2.43 – 2.33 (2H, m, CH=CHCH₂CH₂).; δ_C (75 MHz, CDCl₃) 141.9 (C_{quat}), 139.1 (C_{quat}), 133.6 (CH), 129.0 (CH), 128.5 (CH), 128.5 (CH), 128.4 (CH), 127.1 (CH), 126.3 (CH), 126.0 (CH), 71.7 (CH₂), 71.1 (CH₂), 36.5 (CH₂), 35.6 (CH₂), 34.2 (CH₂). Found (ESI) [M+NH₄]⁺ 284.2014, C₁₉H₂₆NO requires 284.2009.

(E)-(2-(Cinnamyloxy)ethyl)benzene **3t**:¹²

Analysis of crude ¹H NMR spectrum shows that *E*:*Z* ratio is 17:1. Purified using flash column chromatography; using an eluent system 80:1 petroleum ether:diethyl ether. Product obtained as a colourless oil (16.4 mg, 0.069 mmol, 61%). v_{max}/cm^{-1} 3083 w 3063 w 3027 w 2924 w 2852 w (C-H), 1601 w (C=C), 1577 w 1495 m 1451 m (aromatic C=C), 1099 s 1080 s (C-O-C); $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.37 – 6.96 (10H, m, Ar-H), 6.51 (1H, d, *J* = 16.0 Hz, Ph-C<u>H</u>=CH), 6.21 (1H, dt, *J* = 16.0, 5.9 Hz, Ph-CH=C<u>H</u>), 4.10 (2H, dd, *J* = 5.9, 1.4 Hz, CH=CH-C<u>H</u>₂), 3.64 (2H, t, *J* = 7.2 Hz, CH₂CH₂O), 2.87 (2H, t, *J* = 7.2 Hz, Ph-C<u>H</u>₂CH₂); $\delta_{\rm C}$ (75 MHz, CDCl₃) 138.6 (C), 136.4 (C), 132.0 (CH), 128.7 (CH), 128.2 (CH), 128.1 (CH), 127.3 (CH), 126.2 (CH), 125.94 (CH), 125.85 (CH), 71.2 (CH₂), 71.0 (CH₂), 36.2 (CH₂).

(*E*)-(3-Phenethoxybut-1-en-1-yl)benzene 3u:¹³

Analysis of crude ¹H NMR spectrum shows that $S_N2^{\circ}:S_N2$ ratio is 14:1. Purified using flash column chromatography; using a gradient eluent system of neat petroleum ether \rightarrow 50:1 petroleum ether:diethyl ether. Product obtained as a colourless oil with *E*:*Z* ratio of >20:1 (9.5 mg, 0.038 mmol, 68%). v_{max}/cm^{-1} 3026 m 2972 m 2926 m 2856 m (C-H), 1647 w (C=C), 1601 w 1495 m 1452 m (aromatic C=C), 1089 s (C-O-C); δ_H (400 MHz, CDCl₃) 7.39 – 7.18 (10H, m, aromatic CH), 6.48 (1H, d, *J* = 16.0 Hz, CH=C<u>H</u>Ph), 6.10 (1H, dd, *J* = 16.0, 7.5 Hz, CHC<u>H</u>=CH), 4.07 – 3.98 (1H, m, OC<u>H</u>(CH₃)CH), 3.73 (1H, ddd, *J* = 9.3, 8.0, 6.7 Hz, OC<u>H</u>H'CH₂), 3.58 (1H, ddd, *J* = 9.3, 8.0, 6.7 Hz, OCH<u>H</u>'CH₂), 2.91 (2H, t, *J* = 6.7 Hz, CH₂C<u>H₂Ph), 1.34 (3H, d, *J* = 6.4 Hz, OCH(C<u>H₃)); δ_C (75 MHz, CDCl₃) 139.2 (C), 136.8 (C), 132.0 (CH), 131.1 (CH), 129.1 (CH), 128.7 (CH), 128.4 (CH), 127.7 (CH), 126.6 (CH), 126.3 (CH), 76.8 (CH), 69.6 (CH₂), 36.8 (CH₂), 21.8 (CH₃).</u></u>

(*E*)-(2-Methyl-3-phenethoxy prop-1-en-1-yl)benzene $3\mathbf{v}$ + (2-methyl-1-phenethoxy allyl)benzene $5\mathbf{v}$:

Analysis of crude ¹H NMR spectrum shows that $S_N 2^{\circ}:S_N 2$ ratio is 1:1. Purified using flash column chromatography; using a gradient eluent system of neat petroleum ether \rightarrow 50:1 petroleum ether:diethyl ether. Product **3v** obtained as a colourless oil with *E*:*Z* ratio of >20:1 (9.5 mg, 0.038 mmol, 38%) and **5v** as a colourless oil (9.1 mg, 0.036 mmol, 36%).

3v: v_{max}/cm^{-1} 3025 m 2920 m 2854 m (C-H), 1659 w (C=C), 1600 m 1494 m 1453 m (aromatic C=C), 1095 s (C-O-C); $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.42 – 7.12 (10H, m, aromatic CH), 6.48 (1H, s, C=C<u>H</u>Ph), 4.04 (2H, d, *J* = 1.2 Hz, OC<u>H₂</u>C(CH₃)), 3.69 (2H, t, *J* = 7.1 Hz, OC<u>H₂</u>CH₂), 2.95 (2H, t, *J* = 7.1 Hz, CH₂C<u>H₂Ph</u>), 1.85 (3H, d, *J* = 1.2 Hz, OCH₂C(C<u>H₃</u>)); $\delta_{\rm C}$ (75 MHz, CDCl₃) 139.2 (C), 137.7 (C), 135.4 (C), 129.10 (CH), 129.05 (CH), 128.5 (CH), 128.2 (CH), 126.8 (CH), 126.5 (CH), 126.3 (CH), 77.3 (CH₂), 71.1 (CH₂), 36.6 (CH₂), 15.5 (CH₃). Found (APCI) [M]⁺ 252.1506, C₁₈H₂₀O requires 252.1509.

2D NOESY confirms *E*-isomer is major isomer:

5v: v_{max}/cm^{-1} 3027 m 2918 m 2857 m (C-H), 1650 w (C=C), 1602 w 1493 m 1451 m (aromatic C=C), 1096 s (C-O-C); $\delta_{\rm H}$ (300 MHz, CDCl₃) 7.30 – 7.13 (10H, m, aromatic CH), 5.06 (1H, dq, J = 1.5, 0.9 Hz, C=CH<u>H</u>), 4.90 (1H, app. p, J = 1.5 Hz, C=C<u>H</u>H), 4.68 (1H, s, OC<u>H</u>Ph), 3.68 – 3.48 (2H, m, OC<u>H₂</u>CH₂), 2.91 (2H, t, J = 7.1 Hz, OCH₂C<u>H₂), 1.49 – 1.45 (3H, m, C(CH₂)CH₃); $\delta_{\rm C}$ (75 MHz, CDCl₃) 145.4 (C), 140.8 (C), 139.4 (C), 129.2 (CH), 128.4 (CH), 128.2 (CH), 127.4 (CH), 126.7 (CH), 126.2 (CH), 113.0 (CH₂), 85.5 (CH), 69.7 (CH₂), 36.6 (CH₂), 17.6 (CH₃). Found (APCI) [M+H]⁺ 253.1585, C₁₈H₂₁O requires 253.1587.</u>

(3-Phenethoxypent-4-en-1-yl)benzene **3w**:

Analysis of crude ¹H NMR spectrum shows that $S_N2':S_N2$ ratio is 6:1. Purified using flash column chromatography; using a eluent system of 50:1 hexane:diethyl ether. Product obtained as a colourless oil (15.4 mg, 0.058 mmol, 63%). v_{max}/cm^{-1} 3083 w 3063 w 3026 m 2920 m 2857 m (C-H), 1603 m (C=C), 1495 m 1453 m 1420 m (aromatic C=C), 1088 s (C-O-C). δ_H (300 MHz, CDCl₃) 7.30 – 7.00 (10H, m, Ar-H), 5.63 (1H, ddd, J = 16.9, 10.6, 7.6 Hz, CH=CH₂), 5.16 – 5.00 (2H, m, CH=CH₂), 3.66 (1H, ddd, J = 9.3, 7.5, 6.7 Hz, H_a/H_b), 3.54 (1H, app.q, J = 7.6 Hz, CHOCH₂), 3.37 (1H, ddd, J = 9.3, 7.7, 7.0 Hz, H_a/H_b), 2.89 – 2.75 (2H, m, PhCH₂CH₂CHO), 2.67 – 2.49 (2H, m, PhCH₂CH₂O), 1.93 – 1.62 (2H, m, PhCH₂CH₂CHO); δ_C (75 MHz, CDCl₃) 142.2 (C), 139.4 (C), 139.2 (CH), 129.1 (CH), 128.6 (CH), 128.4 (2 x CH), 126.3 (CH), 125.8 (CH), 117.0 (CH₂), 80.7 (CH), 69.6 (CH₂), 37.2 (CH₂), 36.7 (CH₂), 31.6 (CH₂). Found (APCI) [M+NH₄]⁺ 284.2012, C₁₉H₂₆NO requires 284.2009.

¹H-NMR and ¹³C-NMR Spectra of Synthesised Compounds

1H 400.1MHz Job 19726 Young Paul C C549 CDCl3 25.0°C

1H 400.1MHz Job 19665 Young Paul C B523 CDCl3 25.0°C

pcycb523.1.fid 13C 75.5MHz Job 16342 Young Paul C B523 CDCl3 22.2°C 0 hour 36 min Isolated

220	210	200	190	180	170	160	150	140	130	120	110 f1 (p	100 opm)	90	80	70	60	50	40	30	20	10	Ó	-10

1H 400.1MHz Job 19614 Young Paul C A489 CDCl3 25.0°C

1H 400.1MHz Job 19706 Young Paul C B532 CDCl3 25.0°C

1H 400.1MHz Job 19666 Young Paul C B522 CDCl3 25.0°C

1H 400.1MHz Job 19673 Young Paul C B525 CDCl3 25.0°C

1H 400.1MHz Job 19735 Young Paul C B563 CDCl3 25.0°C

pcyha589.1.fid 1H 300.1MHz Job 18895 Young Paul C A589 CDCl3 25.0°C Isolated

										1											
220	210	200	190	180	170	160	150	140	130	120 f1	110 (ppm)	100	90	80	70	60	50	40	30	20	10

pcyca583.1.fid 13C 100.6MHz Job 19775 Young Paul C A583 CDCl3 25.0°C 0 hour 43 min

pcycb605.1.fid 13C 75.5MHz Job 20127 Young Paul C B605 CDCl3 25.0°C 1 hour 48 min Isolated

pcyhb528.1.fid 1H 300.1MHz Job 16521 Young Paul C B528 CDCl3 21.2°C Columned

Ó -10 110 100 f1 (ppm)

1H 400.1MHz Job 19676 Young Paul C B527 CDCl3 25.0°C

Ó -10 110 100 f1 (ppm)

pcyhb452.1.fid 1H 300.1MHz Job 13711 Young Paul C B452 CDCl3 25.1°C Isolated

pcyhb438.1.fid 1H 300.1MHz Job 13185 Young Paul C B438 CDCl3 25.1°C Isolated Product

1H 400.1MHz Job 19768 Young Paul C B560 CDCl3 25.0°C

References

- 1. C. Morrill and R. H. Grubbs, *Journal of the American Chemical Society*, 2005, **127**, 2842-2843.
- 2. A. Kulshrestha, J. M. Schomaker, D. Holmes, R. J. Staples, J. E. Jackson and B. Borhan, *Chemistry A European Journal*, 2011, **17**, 12326-12339.
- 3. I. S. Kim, G. R. Dong and Y. H. Jung, *The Journal of Organic Chemistry*, 2007, **72**, 5424-5426.
- 4. N. Kishali, M. F. Polat, R. Altundas and Y. Kara, *Helvetica Chimica Acta*, 2008, **91**, 67-72.
- 5. Y. Masuda, M. Hoshi and A. Arase, *Bulletin of the Chemical Society of Japan*, 1992, **65**, 3294-3299.
- 6. A. Yazbak, S. C. Sinha and E. Keinan, *The Journal of Organic Chemistry*, 1998, **63**, 5863-5868.
- 7. L. J. Gazzard, W. B. Motherwell and D. A. Sandham, *Journal of the Chemical Society, Perkin Transactions 1*, 1999, 979-994.
- 8. N. Marion, R. Gealageas and S. P. Nolan, Organic Letters, 2007, 9, 2653-2656.
- 9. D. Wang, D. Chen, J. X. Haberman and C.-J. Li, *Tetrahedron*, 1998, **54**, 5129-5142.
- 10. P. G. Stevens, O. C. W. Allenby and A. S. DuBois, *Journal of the American Chemical Society*, 1940, **62**, 1424-1428.
- 11. T. Borg, J. Danielsson, M. Mohiti, P. Restorp and P. Somfai, *Advanced Synthesis & Catalysis*, 2011, **353**, 2022-2036.
- 12. W. Zhang, A. R. Haight and M. C. Hsu, Tetrahedron Letters, 2002, 43, 6575-6578.
- 13. Z. Zhang and R. A. Widenhoefer, Organic Letters, 2008, 10, 2079-2081.