Anomalous Staudinger reaction at intramolecular frustrated P-B Lewis pair frameworks

Annika Stute, Lukas Heletta, Roland Fröhlich,[‡] Constantin G. Daniliuc,[‡] Gerald Kehr, Gerhard Erker*

Organisch-Chemisches Institut der Universität Münster, Corrensstrasse 40, 48149 Münster,

Germany

Supporting Information

Table of Contents

General Procedures	2
X-ray crystal structure analyses	2
Materials	3
Experimental Procedures	3

* Corresponding author. E-mail: erker@uni-muenster.de

^{*}X-ray crystal structure analyses

General Procedures. All syntheses involving air- and moisture sensitive compounds were carried out using standard Schlenk-type glassware (or in a glove box) under an atmosphere of argon. Solvents were dried with the procedure according to Grubbs (Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520) or were distilled from appropriate drying agents and stored under an argon atmosphere. NMR spectra were recorded on a *Bruker* AC 200 P (¹H: 200 MHz, ¹¹B: 64 MHz, ³¹P: 81 MHz), a *Bruker* AV 300 (¹H: 300 MHz, ¹³C: 76 MHz, ¹¹B: 96 MHz, ¹⁹F: 282 MHz, ³¹P: 122 MHz), a *Bruker* AV 400 (¹H: 400 MHz, ¹³C: 101 MHz, ³¹P: 162 MHz), a *Varian* Inova 500 (¹H: 500 MHz, ¹³C: 126 MHz, ¹¹B:160 MHz, ¹⁹F: 470 MHz, ³¹P: 202 MHz) and on a *Varian* UnityPlus 600 (¹H: 600 MHz, ¹³C: 151 MHz, ¹¹B:192 MHz, ¹⁹F: 564 MHz, ³¹P: 243 MHz). ¹H NMR and ¹³C NMR: chemical shifts δ are given relative to TMS and referenced to the solvent signal. ¹⁹F NMR: chemical shifts δ are given relative to CFCl₃ (external reference), ¹¹B NMR: chemical shifts δ are given relative to BF₃·Et₂O (external reference), ³¹P NMR: chemical shifts δ are given relative to H₃PO₄ (85% in D₂O) (external reference). NMR assignments were supported by additional 2D NMR experiments. Elemental analyses were performed on a Elementar Vario El III. IR spectra were recorded on a Varian 3100 FT-IR (Excalibur Series). Melting points were obtained with a DSC 2010 (TA Instruments). HRMS was recorded on GTC Waters Micromass (Manchester, UK). For irradiation experiments a *Philipps* UV-lamp (type HPK 125 with pyrex filter; λ = 365, 435, 313, 253, 404) was used.

X-Ray crystal structure analyses. Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT (R. W. W. Hooft, Bruker AXS, 2008, Delft, The Netherlands); data reduction Denzo-SMN (Otwinowski, Z.; Minor, W. *Methods Enzymol.* **1997**, *276*, 307-326); absorption correction, Denzo (Otwinowski, Z.; Borek, D.; Majewski, W.; Minor, W. *Acta Crystallogr.* **2003**, *A59*, 228-234); structure solution SHELXS-97 (Sheldrick, G. M. *Acta Crystallogr.* **1990**, *A46*, 467-473); structure refinement SHELXL-97 (Sheldrick, G. M. *Acta Crystallogr.* **2008**, *A64*, 112-122) and graphics, XP (BrukerAXS, 2000). Thermals ellipsoids are shown with 30% probability, *R*-values are given for observed reflections, and wR² values are given for all reflections. [CCDC: 902225-902229].

Exceptions and special features: The carbon atoms of the half benzene molecule in the compound **6a** displayed irregular displacement ellipsoids, which were therefore constrained to be more regular using the program commands SIMU and ISOR.

For the compound **5b** one disordered over three positions dichloromethane molecule and one half pentane molecule were found in the asymmetric unit. Several restraints (SIMU, SADI, SAME, ISOR and DFIX) were used in order to improve refinement stability.

Materials. B(C₆F₅)₃ [(a) Massey, A. G.; Park, A. J. *J. Organomet. Chem.* **1964**, *2*, 245-250; (b) Massey, A. G.; Park, A. J.; Stone, F. G. A. *Proc. Chem. Soc.* **1963**, 212], HB(C₆F₅)₂ [(a) Parks, D. J.; Spence, R. E.; von, H.; Piers, W. *Angew. Chem.* **1995**, *107*, 895-897; *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 809-811; (b) Piers, W. E.; Chivers, T. *Chem. Soc. Rev.* **1997**, *26*, 345-354], (F₅C₆)₂PCI [Magnelli, D. D.; Tesi, G.; Lowe, J. U.; McQuiston, W. E. *Inorg. Chem.* **1966**, *5*, 457-461; Mancino, G.; Ferguson, A. J.; Beeby, A.; Long, N. J.; Jones, T. S. *J. Am. Chem. Soc.* **2005**, *127*, 524-525] and **4** [Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D. W. *Chem. Commun.* **2007**, 5072-5074] were prepared according to literature procedures.

Experimental Procedures:

Preparation of bis(pentafluorophenyl)-2-propenylphosphane (3)

(C₆F₅)₂P

Bis(pentafluorophenyl)chlorophosphane (7.20 g, 18.0 mmol) was dissolved in thf (150 mL) and cooled down to -78 °C. Isopropenylmagnesiumbromide (36.0 mL, 0.5 M in thf, 18.0 mmol) was added dropwise to the reaction mixture which turned brown. The reaction mixture was stirred at rt for two hours before the solvent was removed *in vacuo*. The residue was suspended in *n*-pentane (100 mL) and filtered in a Schlenk-frit over Celite. The filter pad was washed with *n*-pentane (2 x 80 mL). The filtrate was dried *in vacuo*. Purification by column chromatography (SiO₂ : cyclohexane; R_f = 0.67) gave the product **3** (4.69 g, 11.5 mmol, 64%). Crystals were obtained by slow evaporation of an *n*-pentane solution at rt.

¹H NMR (600 MHz, 299 K, CD₂Cl₂): δ = 5.72 (dm, ³J_{PH} = 39.1 Hz, 1H, ⁼CH_{2,trans}), 5.53 (dm, ³J_{PH} = 16.7 Hz, 1H, ⁼CH_{2,cis}), 2.04 (d, ³J_{PH} = 8.4 Hz, 3H, CH₃).

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): δ = 148.1 (dm, ¹*J*_{FC} = 246.7 Hz, C₆F₅), 142.9 (dm, ¹*J*_{FC} = 258.1 Hz, C₆F₅), 138.1 (dm, ¹*J*_{FC} = 253.3 Hz, C₆F₅), 137.5 (d, ¹*J*_{PC} = 17.2 Hz, ⁼C^P), 128.4 (d, ²*J*_{PC} = 36.8 Hz, ⁼CH₂), 108.1 (m, *i*-C₆F₅), 22.0 (dm, ²*J*_{PC} = 14.1 Hz, CH₃).

¹H,¹H GCOSY (600 MHz, 299 K, CD₂Cl₂): δ = 5.72 / 2.04 (⁼CH_{2,trans} / CH₃), 2.04 / 5.72 (CH₃ / ⁼CH_{2,trans}).

¹H,¹³C GHSQC (600 MHz /151 MHz, 299 K, CD₂Cl₂): δ = 5.72, 5.53 / 128.4 (⁼CH₂), 2.04 / 22.0 (CH₃).

¹H,¹³C GHMBC (600 MHz / 151 MHz, 299 K, CD₂Cl₂): δ = 5.72 / 22.0 (⁼CH_{2,trans} / CH₃), 5.53 / 137.5, 22.0 (⁼CH_{2,cis} / ⁼C^P, CH₃), 2.04 / 137.5, 128.4 (CH₃ / ⁼C^P, ⁼CH₂).

¹⁹F NMR (564 MHz, 299 K, CD₂Cl₂): δ = -130.3 (m, 2F, *o*-C₆F₅), -150.9 (t, ${}^{3}J_{FF}$ = 20.1 Hz, 1F, *p*-C₆F₅), -161.4 (m, 2F, *m*-C₆F₅).

³¹P{¹H} NMR (243 MHz, 299 K, CD₂Cl₂): δ = -42.8 (quin, ³J_{PF} = 31.0 Hz).

Exact mass calcd. for C₁₅H₅F₁₀P: 405.9969 g/mol; found: 405.9984 g/mol.

IR (KBr): \tilde{v} = 2930 (w), 1640 (m), 1514 (s), 1467 (s), 1385 (m), 1290 (m), 1143 (w), 1085 (s), 1016 (w), 972 (s), 941 (m), 839 (m), 764v (w), 729 (w), 637 (w), 587 (w), 515 (m).

Elemental analysis: calcd. for C₁₅H₅F₁₀P C 44.36, H 1.24; found C 44.46, H 1.20.

-125 -130 -135 -140 -145 -150 -155 -160 -165

¹⁹F NMR (564 MHz, 299 K, CD₂Cl₂).

Preparation of FLP 4

(C₆F₅)₂P

Bis(pentafluorophenyl)-2-propenylphosphane (**3**) (25.0 mg, 0.062 mmol) and bis(pentafluorophenyl)borane (21.3 mg, 0.062 mmol) were dissolved in CD_2Cl_2 to get compound **4**. It was studied by NMR experiments (temperature 25 - -85 °C).

For all the following reactions with the FLP **4**, compound **4** was prepared *in situ*.

¹H NMR (600 MHz, 299 K, CD₂Cl₂): δ = 3.65 (br, 1H, ^PCH), 2.47 (m, 1H, ^BCH₂), 1.86 (br, 1H, ^BCH₂), 1.22 (dd, ³J_{PH} = 19.7 Hz, ³J_{HH} = 6.7 Hz, 3H, CH₃).

¹H NMR (600 MHz, 218 K, CD₂Cl₂): δ =3.60 (br, 1H, ^PCH), 2.50 (ddd, ³*J*_{PH} = 46.4 Hz, *J*_{HH} = 15.7 Hz, *J*_{HH} = 10.9 Hz, 1H, ^BCH₂), 1.63 (m, 1H, ^BCH₂), 1.18 (dd, ³*J*_{PH} = 19.6 Hz, ³*J*_{HH} = 6.6 Hz, 3H, CH₃).

¹¹B{¹H} MR (192 MHz, 299 K, CD₂Cl₂): δ = 67.8 ($v_{1/2}$ ~ 1160 Hz).

¹⁹F NMR (564 MHz, 299 K, CD₂Cl₂): δ = -129.4 (br, 4F, *o*-P), -130.3 (m, 4F, *o*-B), -147.7 (s, 2F, *p*-B), -148.9, -149.7 (each m, each 1F, *p*-P), -160.7 (br, 4F, *m*-P), -161.3 (br, 4F, *m*-B). ³¹P{¹H} NMR (243 MHz, 299 K, CD₂Cl₂): δ = -32.5 (v_{1/2} ~ 120 Hz).

In situ reaction mixture of **4** with excess of bis(pentafluorophenyl)-2-propenylphosphane (**3**) (NMR scale):

¹H NMR (500 MHz, 299 K, C₆D₆): δ = 3.63 (m, 1H, ^PCH), 2.22 (m, 1H, ^BCH₂), 1.67 (m, 1H, ^BCH₂), 1.10 (dd, ³J_{PH} = 19.2 Hz, ³J_{HH} = 6.8 Hz, 3H, CH₃).

¹³C{¹H} NMR (126 MHz, 299 K, C₆D₆): δ = 113.6 (*i*-^BC₆F₅), 35.8 (br d, ²J_{PC} = 20.3 Hz, CH₂), 27.4 (m, ^PCH), 20.2 (d, ²J_{PC} = 22.8 Hz, CH₃); [C₆F₅ not listed].

¹H, ¹H GCOSY (500 MHz, 299 K, C₆D₆): δ = 3.63 / 2.22, 1.67, 1.10 (^PCH / ^BCH₂, CH₃), 2.22 / 3.63, 1.67 (^BCH₂ / ^PCH, ^BCH₂), 1.67 / 3.63, 2.22, 1.10 (^BCH₂ / ^PCH, ^BCH₂, CH₃), 1.10 / 3.63, 1.67 (CH₃ / ^PCH, ^BCH₂).

¹H,¹³C GHSQC (500 MHz / 126 MHz, 299 K, C₆D₆): δ = 3.63 / 27.4 (^PCH), 2.22, 1.67 / 35.8 (^BCH₂), 1.10 / 20.2 (CH₃).

¹H, ¹³C GHMBC (500 MHz / 126 MHz, 299 K, C₆D₆): δ = 2.22, 1.67 / 113.6, 27.4, 20.2 (^BCH₂ / *i*-^BC₆F₅, ^PCH, CH₃), 1.10 / 35.8, 27.4 (CH₃ / ^BCH₂, ^PCH).

¹¹B{¹H} NMR (160 MHz, 299 K, C₆D₆): δ = 66.0 ($v_{1/2} \approx 1600$ Hz).

¹⁹F NMR (470 MHz, 299 K, C₆D₆): δ = -129.4 (m, 2F, *o*-P^A), -130.0 (m, 2F, *o*-P^B), -130.5 (m, 4F, *o*-B), -145.8 (br, 2F, *p*-B), -147.5 (tm, ${}^{3}J_{FF}$ = 21.1 Hz, 1F, *p*-P^A), -148.5 (tm, ${}^{3}J_{FF}$ = 21.4 Hz, 1F, *p*-P^B), -159.7 (m, 4F, *m*-P^{A+B}), -160.4 (m, 4F, *m*-B).

¹⁹F,¹⁹F GCOSY (470 MHz, 299 K, C₆D₆): $\delta = -129.4 / -147.5, -159.7 (o-P^{A} / p-P^{A}, m-P^{A+B}),$ -130.0 / -148.5, -159.7 (o-P^B / p-P^B, m-P^{A+B}), -130.5 / -160.4 (o-B / m-B), -145.8 / -145.8 (o-B / m-B), -147.5 / -159.7 (p-P^{A} / m-P^{A+B}), -148.5 / -159.7 (p-P^{B} / m-P^{A+B}), -159.7 / -130.0, -147.5, -148.5 (m-P^{A+B} / o-P^{B}, p-P^{A}, p-P^{B}), -160.4 / -130.5 (m-B / o-B). ³¹P{¹H} NMR (202 MHz, 299 K, C₆D₆): $\delta = -34.3$ (quin, ³J_{PF} = 30.5 Hz).

³¹P NMR (202 MHz, 299 K, C₆D₆): δ = -34.3 ($v_{1/2}$ = 85 Hz).

Exact mass calcd. for $C_{27}H_6BF_{20}P + H^+$: 753.00536 g/mol; found: 753.00662 g/mol.

Reaction of FLP 4 with mesityl azide to phosphazide 5a

Bis(pentafluorophenyl)-2-propenylphosphane (**3**) (100 mg, 0.246 mmol) and bis(pentafluorophenyl)borane (85.3 mg, 0.246 mmol) were dissolved in *n*-pentane (5 mL) and after stirring for five minutes the reaction mixture turned cloudy. Mesityl azide (40.0 mg, 0.246 mmol) was added to the reaction mixture which was stirred for one hour at rt. The solution turned slightly yellow and a white solid crushed out. After the solid was isolated *via* filter cannula, washed with *n*-pentane (5 mL) and dried *in vacuo*, **5a** was obtained as a white solid (205.2 mg, 0.255 mmol, 61%).

The solid is stable at rt, but a solution of the product in CD_2Cl_2 turned yellow after a couple of hours at rt. According to NMR measurements the subsequent reaction to **6a** and **7** starts at rt after 30 minutes.

Crystals suitable for X-ray crystal structure analysis were obtained by layering a cold solution of bis(pentafluorophenyl)isopropenylphosphane and bis(pentafluorophenyl)borane in CH_2Cl_2 with a cold solution of mesitylazide in *n*-pentane and subsequent slow diffusion at -30 °C.

¹H NMR (600 MHz, 203 K, CD₂Cl₂): δ = 6.75 (br, 2H, *m*-Mes), 3.54 (br m, 1H, ^PCH), 2.15 (s, 3H, *p*-CH₃^{Mes}), 1.88/1.80 (each m, each 1H, ^BCH₂), 1.72 (s, 6H, *o*-CH₃^{Mes}), 1.21 (br d, ³J_{PH} = 22.4 Hz, 3H, CH₃).

¹³C{¹H} NMR (151 MHz, 203 K, CD₂Cl₂): δ = 142.5 (*i*-Mes), 137.3 (*p*-Mes), 130.4 (*o*-Mes), 129.1 (*m*-Mes), 31.0 (br d, ${}^{1}J_{PC}$ = 59.7 Hz, P CH), 27.7 (br, B CH₂), 20.4 (*p*-CH₃^{Mes}), 17.8 (br, *o*-CH₃^{Mes}), 14.1 (br, CH₃), [C₆F₅ not listed].

¹H,¹H GCOSY (600 MHz, 203 K, CD₂Cl₂): $\delta = 6.75 / 2.15$, 1.72 (*m*-Mes / *p*-CH₃^{Mes}, *o*-CH₃^{Mes}), 3.54 / 1.88, 1.80 (^PCH / ^BCH₂), 1.88 / 3.54 (^BCH₂ / ^PCH), 1.21 / 3.54 (CH₃ / ^PCH).

¹H, ¹³C GHSQC (600 / 151 MHz, 203 K, CD₂Cl₂): δ = 6.75 / 129.1 (*m*-Mes), 3.54 / 31.0 (^PCH), 2.15 / 20.4 (*p*-CH₃^{Mes}), 1.88, 1.80 / 27.7 (^BCH₂), 1.72 / 17.8 (*o*-CH₃^{Mes}), 1.21 / 14.1 (CH₃).

¹H,¹³C GHMBC (600 MHz / 151 MHz, 203 K, CD_2CI_2): $\delta = 6.75 / 142.5$, 129.1, 20.4, 17.8 (*m*-Mes / *i*-Mes, *m*-Mes, *p*-CH₃^{Mes}, *o*-CH₃^{Mes}), 2.15 / 137.3, 129.1 (*p*-CH₃^{Mes} / *p*-Mes, *m*-Mes), 1.72 / 142.5, 130.4, 129.1 (*o*-CH₃^{Mes} / *i*-Mes, *o*-Mes, *m*-Mes), 1.21 / 31.0 (CH₃ / ^PCH).

¹¹B{¹H} NMR (192 MHz, 203 K, CD₂Cl₂): δ = -5.9 (v_{1/2} ≈ 1500 Hz).

¹⁹F NMR (564 MHz, 253 K, CD₂Cl₂): δ = -122.2, -126.0, -127.7, -134.9 (each br, each 1F, *o*-P), -131.5, -135.8 (each br, each 2F, *o*-B), -138.6, -139.7 (each m, each 1F, *p*-P), -155.7 (1F), -156.6 (3F) (each br, *m*-P), -159.4 (t, ${}^{3}J_{FF}$ = 20.1 Hz, 1F *p*-B), -160.6 (t, ${}^{3}J_{FF}$ = 20.0 Hz, 1F, *p*-B), -165.3 (m, 4F, *m*-B).

¹⁹F,¹⁹F GCOSY (564 MHz, 253 K, CD₂Cl₂): δ = -159.4 / -165.3 (*p*-B / *m*-B), -160.6 / -165.3 (*p*-B / *m*-B), -165.3 / -159.4, -160.6 (*m*-B / *p*-B).

³¹P{¹H} NMR (243 MHz, 203 K, CD₂Cl₂): δ = 18.1 (v_{1/2} ≈ 25 Hz).

³¹P NMR (243 MHz, 203 K, CD₂Cl₂): δ = 18.1 ($v_{1/2} \approx$ 90Hz).

Exact mass calcd. for $C_{36}H_{17}BF_{20}N_3P + H^+: 914.10128 \text{ g/mol}; \text{ found: } 914.10144 \text{ g/mol};$ $C_{36}H_{17}BF_{20}N_3P + Na^+: 936.08322 \text{ g/mol}; \text{ found: } 936.08378 \text{ g/mol};$ $C_{36}H_{17}BF_{20}N_3P + K^+: 952.05716 \text{ g/mol}; \text{ found: } 952.05777 \text{ g/mol}.$

IR (KBr): $\tilde{v} = 2962$ (w), 2928 (w), 1772 (w), 1734 (w), 1700 (w), 1645 (m), 1616 (w), 159 (w), 1520 (s), 1478 (s), 1386 (m), 1304 (m), 1279 (m), 1263 (m), 1228 (w), 1108 (s), 1036 (m), 982 (m), 881 (w), 838 (w), 814 (m), 729 (w), 686 (w), 652 (w), 629 (w), 592 (w), 574 (w), 546 (w).

Elemental analysis: calcd. for C ₃₆H₁₇BF₂₀N₃P C 47.34, H 1.88, N 4.06; found C 47.23, H 1.51, N 4.51.

Decomposition point: 135 °C.

¹H NMR (600 MHz, 203 K, CD₂Cl₂(*)); p: pentane.

X-ray crystal structure analysis of 5a: formula $C_{36}H_{17}BF_{20}N_3P$, M = 913.31, colourless crystal, 0.25 x 0.25 x 0.04 mm, a = 38.3358(8), b = 11.6945(6), c = 17.4973(5) Å, $\beta = 111.156(2)$ °, V = 7315.7(5) Å³, $\rho_{calc} = 1.658$ gcm⁻³, $\mu = 1.930$ mm⁻¹, empirical absorption correction (0.644 $\leq T \leq 0.926$), Z = 8, monoclinic, space group C2/c (No. 15), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 41872 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 6388 independent ($R_{int} = 0.052$) and 5475 observed reflections [$I > 2\sigma(I)$], 554 refined parameters, R = 0.037, $wR^2 = 0.101$, max. (min.) residual electron density 0.21 (-0.24) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Preparation of phosphinimine 6a and indazole 7

$$(C_6F_5)_2P \gtrsim N \sim B(C_6F_5)_2$$

5a (58.0 mg, 0.064 mmol) was placed into a small Schlenk and closed with a cooling finger. Heating to 150 °C under vacuum for one hour gave an orange residue and a white/pale yellow solid at the cooling finger (**7**: 4.97 mg, 0.034 mmol, 53%). The residue was purified by column chromatography (SiO₂ : CH₂Cl₂:*n*-pentane = 1:4; R_f = 0.35) to give the product as a white solid (49.3 mg, 0.064 mmol, 75%).

Crystals suitable for X-ray crystal structure analysis were obtained by layering a solution of the starting material **5a** in C_6D_6 and CD_2Cl_2 with *n*-pentane at rt.

Initiating the reaction by UV irradiation of the starting material **5a** gave no conversion in the solid state, but full conversion in solution (CD_2Cl_2) after 4.5 h.

¹H NMR (600 MHz, 299 K, C₆D₆/CD₂Cl₂): δ = 3.81 (d, ²J_{PH} = 9.3 Hz, 1H, NH), 3.17 (m, 1H, ^PCH), 2.14 (ddd, ³J_{PH} = 35.3 Hz, ²J_{HH} = 14.7 Hz, ³J_{HH} = 6.0 Hz, ^BCH₂^a), 1.62 (td, ³J_{PH} \approx ²J_{HH} = 14.7 Hz, ³J_{HH} = 10.8 Hz, 1H, ^BCH₂^b), 0.99 (dd, ³J_{PH} = 24.5 Hz, ³J_{HH} = 6.9 Hz, CH₃).

¹H{³¹P} NMR (600 MHz, 299 K, C₆D₆/CD₂Cl₂): δ = 3.81 (s, 1H, NH), 3.17 (m, 1H, ^PCH), 2.14 (dd, ²J_{HH} = 14.7 Hz, ³J_{HH} = 6.0 Hz, ^BCH₂^a), 1.62 (dd, ²J_{HH} = 14.7 Hz, ³J_{HH} = 10.8 Hz, 1H, ^BCH₂^b), 0.99 (d, ³J_{HH} = 6.9 Hz, CH₃).

¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆/CD₂Cl₂): δ = 122.7 (br, *i*-C₆F₅^B), 104.2 (dt, ¹J_{PC} = 85.4 Hz, ²J_{FC} = 20.5 Hz, *i*-C₆F₅^P), 100.4 (dt, ¹J_{PC} = 83.9 Hz, ²J_{FC} = 17.5 Hz, *i*-C₆F₅^P), 36.3 (d, ¹J_{PC} = 65.0 Hz, ^PCH), 28.1 (br, ^BCH₂), 15.1 (CH₃); [C₆F₅ not listed].

¹H,¹H GCOSY (600 MHz, 299 K, C₆D₆/CD₂Cl₂): $\delta = 3.17 / 2.14$, 1.62, 0.99 (^PCH / ^BCH₂^a, ^BCH₂^b, CH₃), 2.14 / 3.17, 1.62 (^BCH₂^a / ^PCH, ^BCH₂^b), 1.62 / 3.17, 2.14 (^BCH₂^b / ^PCH, ^BCH₂^a), 0.99 / 3.17 (CH₃ / ^PCH).

¹H, ¹³C GHSQC (600 MHz / 151 MHz, 299 K, C₆D₆/CD₂Cl₂): δ = 3.17 / 36.3 (^PCH), 2.14, 1.62 / 28.1 (^BCH₂), 0.99 / 15.1 (CH₃).

¹H,¹³C GHMBC (600 MHz / 151 MHz, 299 K, C₆D₆/CD₂Cl₂): δ = 3.81 / 36.3, 28.1 (NH / ^PCH, ^BCH₂), 2.14, 1.62 / 36.3, 15.1 (^BCH₂ / ^PCH, CH₃), 0.99 / 36.3, 28.1 (CH₃ / ^PCH, ^BCH₂).

¹¹B{¹H} NMR (192 MHz, 299 K, C₆D₆/CD₂Cl₂): δ = -4.8 (v_{1/2} ≈ 150 Hz).

¹⁹F NMR (564 MHz, 299 K, C₆D₆/CD₂Cl₂): δ = -131.1 (m, 2F, *o*-P^A), -132.4 (m, 2F, *o*-P^B), -135.0 (m, 2F, *o*-B^A), -136.3 (m, 2F, *o*-B^B), -138.9 (m, 1F, *p*-P^B), -139.7 (m, 1F, *p*-P^A), -155.8 (m, 2F, *m*-P^A), -156.0 (m, 2F, *m*-P^B), -159.53 (t, ³J_{FF} = 20.5 Hz, 1F, *p*-B^B), -159.54 (t, ³J_{FF} = 20.5 Hz, 1F, *p*-B^A), -163.9 (m, 2F, *m*-B^B), -164.3 (m, 2F, *m*-B^A); [δΔ¹⁹F_{p,m}: 4.4 (B^B), 4.8 (B^A), 16.1 (P^A), 17.1 (P^B)].

¹⁹F,¹⁹F GCOSY (564 MHz, 299 K, C₆D₆/CD₂Cl₂): $\delta = -131.1 / -139.7, -155.8 (o-P^A / p-P^A, m-P^A), -132.4 / -138.9, -156.0 (o-P^B / p-P^B, m-P^B), -135.0 / -164.3 (o-B^A / m-B^A), -136.3 / -163.9 (o-B^B / m-B^B), -138.9 / -132.4, -156.0 (p-P^B / o-P^B, m-P^B), -139.7 / -131.1, -155.8 (p-P^A / o-P^A, m-P^A), -155.8 / -131.1, -139.7 (m-P^A / o-P^A, p-P^A), -156.0 / -132.4, -138.9 (m-P^B / o-P^B, p-P^B), -159.53 / -163.9 (p-B^B / m-B^B), -159.54 / -164.3 (p-B^A / m-B^A), -163.9 / -136.3, -159.53 (m-B^B / o-B^B, p-B^B), -159.54 (m-B^A / o-B^A, p-B^A).$ ³¹P NMR (243 MHz, 299 K, C₆D₆/CD₂Cl₂): $\delta = 36.6$ (v_{1/2} ≈ 80 Hz).

³¹P{¹H} NMR (243 MHz, 299 K, C₆D₆/CD₂Cl₂): δ = 36.6 (v_{1/2} ≈ 20 Hz).

Exact mass calcd. for $C_{27}H_7BF_{20}NP + BF_4$: 854.01336 g/mol; found: 854.01652 g/mol; $C_{27}H_7BF_{20}NP + Cl$: 801.97886 g/mol; found: 801.98292 g/mol.

IR (KBr): \tilde{v} = 1646 (m), 1515 (m), 1483 (s), 1459 (s), 1386 (m), 1306 (m), 1279 (w), 1234 (w), 1197 (m), 1085 (s), 983 (s), 955 (s), 916 (m), 818 (w), 785 (w), 745 (w), 730 (w), 689 (w), 649 (w), 593 (w), 565 (w), 536 (m).

Melting Point: 204 °C.

14

³¹P{¹H} NMR (243 MHz, 299 K, C₆D₆/CD₂Cl₂); box: ¹¹B{¹H} NMR (192 MHz, 299 K, C₆D₆/CD₂Cl₂).

¹⁹F,¹⁹F GCOSY (564 MHz, 299 K, C₆D₆/CD₂Cl₂).

X-ray crystal structure analysis of 6a: formula $C_{27}H_7BF_{20}NP * \frac{1}{2}C_6H_6$, M = 806.17, colourless crystal, 0.20 x 0.13 x 0.03 mm, a = 10.1955(5), b = 11.4489(5), c = 14.1284(5) Å, a = 66.764(2), b = 78.902(3), $\gamma = 89.099(3)^\circ$, V = 1483.74(11) Å³, $\rho_{calc} = 1.804$ gcm⁻³, $\mu = 2.259$ mm⁻¹, empirical absorption correction (0.660 $\leq T \leq 0.935$), Z = 2, triclinic, space group $P\overline{1}$ (No.

2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and ϕ scans, 16479 reflections collected (±*h*, ±*k*, ±*l*), [(sin θ)/ λ] = 0.60 Å⁻¹, 4959 independent ($R_{int} = 0.067$) and 3735 observed reflections [*I*>2 σ (*I*)], 498 refined parameters, R = 0.058, $wR^2 = 0.164$, max. (min.) residual electron density 0.49 (-0.45) e.Å⁻³, hydrogen atom at N1 was refined freely, others hydrogen atoms were calculated and refined as riding atoms.

Residue from cooling finger after thermolysis of **5a**, compound **7**:

¹H NMR (400 MHz, 294 K, C₆D₆): δ = 7.97 (s, 1H, 1-H), 7.16 (s, 1H, 3-H), 6.75 (s, 1H, 5-H), 2.26 (s, 3H, 4-CH₃), 2.14 (s, 3H, 6-CH₃), [NH not detected].

¹³C{¹H} NMR (101 MHz, 294 K, C₆D₆): δ = 139.5 (C7), 134.4 (d, ¹J_{CH} = 187.5 Hz, C1)^a, 130.4 (C4), 128.9 (d, ¹J_{CH} = 154.4 Hz, C5)^a, 123.9 (C2), 119.5 (C6), 117.6 (d, ¹J_{CH} = 159.9 Hz, C3)^a, 21.3 (4-CH₃), 16.7 (6-CH₃), [^a from proton coupled ¹H, ¹³C GHSQC NMR experiment].

¹³C{DEPT90} NMR (101 MHz, 294 K, C_6D_6) δ = 134.4 (CH, C1), 128.9 (CH, C5), 117.6 (CH, C3).

¹³C{DEPT135} NMR (101 MHz, 294 K, C₆D₆): δ = 134.4 (CH, C1), 128.9 (CH, C5), 117.6 (CH, C3),
21.3 (CH₃, 4-CH₃), 16.7 (CH₃, 6-CH₃).

¹H,¹H GCOSY (400 MHz, 294 K, C₆D₆): δ = 7.16 / 6.75, 2.26, 2.14 (3-H / 5-H, 4-CH₃, 6-CH₃), 6.75 / 7.16, 2.26, 2.14 (5-H / 3-H, 4-CH₃, 6-CH₃), 2.26 / 7.16 (4-CH₃ / 3-H), 2.14 / 6.75 (6-CH₃ / 5-H).

¹H,¹³C GHSQC (400 MHz / 101 MHz, 294 K, C₆D₆): δ = 7.97 / 134.4 (1-H / C1), 7.16 / 117.6 (3-H / C3), 6.75 / 128.9 (5-H / C5), 2.26 / 21.3 (4-CH₃), 2.14 / 16.7 (6-CH₃).

¹H,¹³C GHMBC (400 MHz / 101 MHz, 294 K, C₆D₆): δ = 7.97 / 139.5, 123.9 (1-H / C7, C2), 7.16 / 139.5, 128.9, 21.3 (3-H / C7, C5, 4-CH₃), 6.75 / 139.5, 117.6, 21.3, 16.7 (5-H / C7, C3, 4-CH₃, 6-CH₃), 2.26 / 130.4, 128.9, 117.6 (4-CH₃ / C4, C5, C3), 2.14 / 139.5, 128.9, 119.5 (6-CH₃ / C7, C5, C6).

Exact mass calcd. for 2 [C₉H₁₀N₂] + Ag⁺: 399.07334 g/mol; found: 399.07269 g/mol.

IR (ATR): $\tilde{v} = 3162$ (s), 3079 (m), 2971 (w), 2939 (s), 2859(m), 1642 (w), 1515 (s), 1476 (s), 1374 (w), 1354 (m), 1318 (m), 1255 (w), 1217 (w), 1149 (w), 1084 (s), 976 (s), 951 (s), 851 (s), 824 (m), 804 (m), 784 (m), 748 (s).

Melting Point: 121 °C.

Preparation of adduct $7 \cdot B(C_6F_5)_3$

$$\begin{array}{c} & & H \\ & & & \\ 5 & & & \\ 4 & & 2 \\ 4 & & 2 \\ \end{array} N \rightarrow B(C_6F_5)_3$$

4,6-Dimethylindazole (7) (20.9 mg, 0.143 mmol) and tris(pentafluorophenyl)borane (73.2 mg, 0.143 mmol) were dissolved in CD_2Cl_2 and investigated by NMR spectroscopy. The NMR solution was layered with *n*-pentane and a white solid precipitated. Removal of the solvent, washing of the residue with *n*-pentane, isolating the solid and drying *in vacuo* gave the product **7**·**B**(**C**₆**F**₅)₃ as white solid (75.0 mg, 0.114 mmol, 80%).

Crystals suitable for crystal structure analysis were obtained by slow diffusion of *n*-pentane into a solution of compound $7 \cdot B(C_6F_5)_3$ in CH₂Cl₂ at -30 °C.

¹H NMR (600 MHz, 299 K, C₆D₆): δ = 9.72 (s, 1H, NH), 7.83 (s, 1H, H-1), 6.72 (s, 1H, H-3), 6.49 (s, 1H, H-5), 1.96 (s, 3H, 4-CH₃), 1.46 (s, 3H, 6-CH₃).

¹H{¹H} NOE (600 MHz, 299 K, C₆D₆): δ = 6.72 / 1.96 (H-3 / 4-CH₃), 6.49 / 1.96, 1.46 (H-5 / 4-CH₃, 6-CH₃), 1.96 / 6.72, 6.49 (4-CH₃ / H-3, H-5), 1.46 / 6.49 (6-CH₃ / H-5).

¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆): δ = 148.5 (dm, ¹J_{FC} ~ 243 Hz, C₆F₅), 140.8 (dm, ¹J_{FC} ~252 Hz, C₆F₅), 139.7 (C-7), 137.7 (dm, ¹J_{FC} ~ 251 Hz, C₆F₅), 136.1 (C-1), 135.0 (C-5), 134.8 (C-4), 121.2 (C-2), 120.0 (C-6), 118.5 (C-3), 117.4 (br, *i*-C₆F₅), 20.9 (4-CH₃), 15.1 (6-CH₃).

¹H, ¹H GCOSY (600 MHz, 299 K, C₆D₆): δ = 9.72 / 7.83, 6.72 (NH / H-1, H-3), 7.83 / 9.72, 1.96 (H-1 / NH, 4-CH₃), 6.72 / 9.72, 6.49, 1.96, 1.46 (H-3 / NH, 5-H, 4-CH₃, 6-CH₃), 6.49 / 6.72, 1.96, 1.46 (H-5 / H-3, 4-CH₃, 6-CH₃), 1.96 / 6.72, 6.49, 1.46 (4-CH₃ / H-3, H-5, 6-CH₃), 1.46 / 6.72, 6.49, 1.96 (6-CH₃ / 3-H, 5-H, 4-CH₃).

¹H, ¹³C GHSQC (600 MHz / 151 MHz, 299 K, C₆D₆): δ = 7.83 / 136.1 (H-1 / C-1), 6.72 / 118.5 (H-3 / C-3), 6.49 / 135.0 (H-5 / C-5), 1.96 / 20.9 (4-CH₃), 1.46 / 15.1 (6-CH₃).

¹H, ¹³C GHMBC (600 MHz / 151 MHz, 299 K, C₆D₆): δ = 9.72 / 139.7, 136.1, 121.2 (NH / C-7, C-1, C-2), 7.83 / 139.7, 121.2 (H-1 / C-7, C-2), 6.72 / 139.7, 135.0 or 134.8, 121.2, 20.9 (H-3 / C-7, C-4 or C-5, C-2, 4-CH₃), 6.49 / 139.7, 118.5, 15.1 (H-5 / C-7, C-3, 6-CH₃), 1.96 / 134.8, 118.5 (4-CH₃ / C-4 C-3), 1.46 / 139.7, 135.0, 120.0 (6-CH₃ / C-7, C-5, C-6).

¹¹B{¹H} NMR (192 MHz, 299 K, C₆D₆): δ = -6.4 ($v_{1/2} \approx 200$ Hz).

¹⁹F NMR (564 MHz, 299 K, C₆D₆): δ = -132.7 (m, 2F, *o*-C₆F₅), -155.0 (t, ³J_{FF} = 20.9 Hz, 1F, *p*-C₆F₅), -162.5 (m, 2F, *m*-C₆F₅); [δΔ¹⁹F_{p,m}: 7.5].

Exact mass calcd. for $C_{27}H_{10}BF_{15}NP - H^+$: 657.06248 g/mol; found: 657.05966 g/mol.

IR (KBr): $\tilde{v} = 3448$ (s), 2961 (w), 2929 (w), 2873 (w), 1647 (m), 1606 (w), 1520 (s), 1469 (s), 1384 (m), 1333 (w), 1288 (m), 1109 (s), 984 (s), 870 (w), 792 (w), 775 (w), 683 (m), 678 (m), 602 (w), 578 (w).

20

X-ray crystal structure analysis of $7 \cdot B(C_6F_5)_3$: formula C₂₇H₁₀BF₁₅N₂, *M* = 658.18, colourless crystal, 0.28 x 0.25 x 0.10 mm, *a* = 11.8538(4), *b* = 16.1096(5), *c* = 13.2359(3) Å, *b* = 91.891(2) °, *V* = 2526.15(13) Å³, ρ_{calc} = 1.731 gcm⁻³, μ = 1.630 mm⁻¹, empirical absorption correction (0.658 \leq T \leq 0.854), *Z* = 4, monoclinic, space group *P*2₁/*n* (No. 14), λ = 1.54178 Å, *T* = 223(2) K, ω and ϕ scans, 19408 reflections collected (±*h*, ±*k*, ±*l*), [(sin θ)/ λ] = 0.60 Å⁻¹, 4383 independent (*R_{int}* = 0.041) and 3848 observed reflections [*I*>2 σ (*I*)], 412 refined parameters, *R* = 0.039, *wR*² = 0.102, max. (min.) residual electron density 0.20 (-0.21) e.Å⁻³, hydrogen atom at N1 was refined freely, others hydrogen atoms were calculated and refined as riding atoms.

Reaction of FLP 8 with mesityl azide to phosphazide 5b

Dimesitylvinylphosphane (100 mg, 0.337 mmol) and bis(pentafluorophenyl)borane (116.7 mg, 0.337 mmol) were dissolved in *n*-pentane (10 mL) to give a yellow solution. After stirring for five minutes at rt mesitylazide (54.4 mg, 0.337 mmol) was added to the reaction mixture to obtain a colourless solution. After stirring for 1.5 h at rt the solution was concentrated (5 mL) and stored in the freezer. The white/pale yellow precipitate was isolated by filter cannula and the obtained solid was dried *in vacuo* to get the product **5b** as white solid (185 mg, 0.230 mmol, 68%).

¹H NMR (600 MHz, 299 K, C₆D₆): δ = 6.60 (s, 2H, *m*-Mes^N), 6.43 (d, ⁴J_{PH} = 4.3 Hz, 4H, *m*-Mes^P), 2.85 (m, 2H, ^PCH₂), 1.98 (s, 3H, *p*-CH₃^{MesN}), 1.90 (m, 2H, ^BCH₂), 1.88 (br s, 12H, *o*-CH₃^{MesP}), 1.86 (s, 6H, *p*-CH₃^{MesP}), 1.83 (s, 6H, *o*-CH₃^{MesN}).

¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆): δ = 146.6 (*i*-Mes^N), 143.1 (d, ⁴J_{PC} = 2.9 Hz, *p*-Mes^P), 142.0 (br d, ²J_{PC} = 9.1 Hz, *o*-Mes^P), 136.1 (*p*-Mes^N), 131.9 (d, ³J_{PC} = 11.5 Hz, *m*-Mes^P), 130.2 (*o*-Mes^N), 129.9 (*m*-Mes^N), 125.4 (d, ¹J_{PC} = 85.3 Hz, *i*-Mes^P), 30.5 (d, ¹J_{PC} = 66.2 Hz, ^PCH₂), 22.8 (d, ³J_{PC} = 4.9 Hz, *o*-CH₃^{MesP}), 20.71 (d, ⁵J_{PC} = 1.4 Hz, *p*-CH₃^{MesP}), 20.67 (*p*-CH₃^{MesN}), 19.8 (br, ^BCH₂), 17.7 (*o*-CH₃^{MesN}), [C₆F₅ not listed].

¹H, ¹H GCOSY (600 MHz, 299 K, C₆D₆): $\delta = 6.60 / 1.98$, 1.83 (*m*-Mes^N / *p*-CH₃^{MesN}, *o*-CH₃^{MesN}), 6.43 / 1.88, 1.86 (*m*-Mes^P / *o*-CH₃^{MesP}, *p*-CH₃^{MesP}), 2.85 / 1.90 (^PCH₂ / ^BCH₂), 1.98 / 6.60, 1.83 (*p*-CH₃^{MesN} / *m*-Mes^N, *o*-CH₃^{MesN}), 1.90 / 2.85 (^BCH₂ / ^PCH₂), 1.88 / 6.43 (*o*-CH₃^{MesP} / *m*-Mes^P), 1.86 / 6.43 (*p*-CH₃^{MesP} / *m*-Mes^P), 1.83 / 6.60, 1.98 (*o*-CH₃^{MesN} / *m*-Mes^N, *p*-CH₃^{MesN}).

¹H, ¹³C GHSQC (600 MHz / 151 MHz, 299 K, C₆D₆): $\delta = 6.60 / 129.9 (m-Mes^{N})$, 6.43 / 131.9 (m-Mes^P), 2.85 / 30.5 (^PCH₂), 1.98 / 20.67 (p-CH₃^{MesN}), 1.90 / 19.8 (^BCH₂), 1.88 / 22.8 (o-CH₃^{MesP}), 1.86 / 20.71 (p-CH₃^{MesP}), 1.83 / 17.7 (o-CH₃^{MesN}).

¹H,¹³C GHMBC (600 MHz / 151 MHz, 299 K, C₆D₆): $\delta = 6.60 / 146.6$, 129.9, 20.67, 17.7 (*m*-Mes^N / *i*-Mes^N, *m*-Mes^N, *p*-CH₃^{MesN}, *o*-CH₃^{MesN}), 6.43 / 142.0, 131.9, 125.4, 22.8, 20.71 (*m*-Mes^P / *o*-Mes^P, *m*-Mes^P, *i*-Mes^P, *o*-CH₃^{MesP}, *p*-CH₃^{MesP}), 1.98 / 136.1, 129.9 (*p*-CH₃^{MesN} / *p*-Mes^N, *m*-Mes^N), 1.90 / 30.5 (^BCH₂ / ^PCH₂), 1.88 / 142.0, 131.9 (*o*-CH₃^{MesP} / *o*-Mes^P, *m*-Mes^P), 1.86 / 143.1, 131.9 (*p*-CH₃^{MesP} / *p*-Mes^P, *m*-Mes^P), 1.83 / 146.6, 130.2 (*o*-CH₃^{MesN} / *i*-Mes^N, *o*-Mes^N).

¹¹B{¹H} NMR (192 MHz, 299 K, C₆D₆): δ = -5.9 (v_{1/2} ≈ 300 Hz).

¹⁹F NMR (564 MHz, 299 K, C₆D₆): δ = -130.9 (br, 2F, *o*-C₆F₅), -160.8 (t, ³J_{FF} = 20.7 Hz, 1F, *p*-C₆F₅), -165.2 (m, 2F, *m*-C₆F₅); [δΔ¹⁹F_{p,m}: 4.4]. ³¹P{¹H} NMR (243 MHz, 299 K, C₆D₆): δ = 54.6 (v_{1/2} ≈ 110 Hz).

Exact mass calcd. for $C_{41}H_{37}BF_{10}N_{3}P + Na^{+}$: 826.25649 g/mol; found: 826.25567 g/mol;

IR (KBr): \tilde{v} = 1643 (w), 1606 (w), 1514 (m), 1450 (s), 1380 (w), 1279 (m), 1085 (s), 974 (s), 893 (w), 853 (m), 814 (w), 772 (w), 731 (w), 707 (w), 676 (w), 623 (m), 577 (w), 554 (w).

Elemental analysis: calcd. for C ₄₁H₃₇BF₁₀N₃P C 61.29, H 4.64, N 5.23; found C 60.68, H 4.48, N 5.03.

Decomposition point: 150 °C.

X-ray crystal structure analysis of 5b: formula $C_{41}H_{37}BF_{10}N_3P * \frac{1}{2}C_5H_{12} * CH_2Cl_2$, M = 924.52, colourless crystal, 0.60 x 0.30 x 0.10 mm, a = 10.3617(1), b = 12.6512(1), c = 19.2962(2) Å, $\alpha = 78.926(1)$, $\theta = 84.773(1)$, $\gamma = 74.640(1)^\circ$, V = 2391.57(4) Å³, $\rho_{calc} = 1.284$ gcm⁻³, $\mu = 2.168$ mm⁻¹, empirical absorption correction ($0.356 \le T \le 0.812$), Z = 2, triclinic, space group $P\overline{1}$ (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and ϕ scans, 23344 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 7889 independent ($R_{int} = 0.071$) and 6945 observed reflections, space group [$l > 2\sigma(l)$], 595 refined parameters, R = 0.071, $wR^2 = 0.208$, max. (min.) residual electron density 0.48 (-0.57) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Preparation of phosphinimine 6b

$$\mathsf{Mes}_2\mathsf{P}_{\mathbf{N}} \overset{\bullet}{\xrightarrow{}} \mathsf{B}(\mathsf{C}_6\mathsf{F}_5)_2$$

Dimesitylvinylphosphane (577.5 mg, 1.95 mmol) and bis(pentafluorophenyl)borane (674.2 mg, 1.95 mmol) were dissolved in *n*-pentane (20 mL) until a clear yellow solution was formed. Mesitylazide (314.2 mg, 1.95 mmol) in *n*-pentane (1 mL) was added to the reaction mixture; the colour changed to orange and a white-yellow solid precipitated. After stirring for one hour at rt the solvent was removed by filter cannula and the solid was dissolved in CH_2Cl_2 (20 mL) to give a clear yellow solution. The reaction mixture was exposed to UV light and the reaction was controlled by NMR measurements. Completion of the reaction was reached after four days. Then the solvent was removed *in vacuo* and the crude (compound **7** was identified but not isolated) was purified by column chromatography (SiO₂ : $CH_2Cl_2:n$ -pentane = 1:4; $R_f = 0.36$). The product **6b** was isolated as white solid (1.114 g, 1.69 mmol, 87%).

Crystals suitable for X-ray structure analysis were obtained by slow diffusion of *n*-pentane into a solution of the product in CH_2Cl_2 at 4 °C.

Initiating the reaction by thermolysis (165 °C, *in vacuo*) of the neat starting material **5b** gave also **6b** as main product (71%) along with two unidentified side products (δ^{31} P: 55.2 (15%); 31.5 (14%)) according to ³¹P NMR measurements.

¹H NMR (600 MHz, 299 K, C₆D₆): δ = 6.36 (d, ⁴J_{PH} = 3.9 Hz, 4H, *m*-Mes), 2.80 (d, ²J_{PH} = 12.1 Hz, 1H, NH), 2.43 (q, ²J_{PH} \approx ³J_{HH} \approx 6.8 Hz, 2H, ^PCH₂), 1.95 (s, 12H, *o*-CH₃^{Mes}), 1.91 (dt, ³J_{PH} = 23.9 Hz, ³J_{HH} = 6.9 Hz, 2H, ^BCH₂), 1.86 (s, 6H, *p*-CH₃^{Mes}).

¹³C{¹H} NMR (151 MHz, 299 K, C₆D₆): δ = 148.3 (dm, ¹J_{FC} ~ 240 Hz, C₆F₅), 142.4 (d, ⁴J_{PC} = 2.7 Hz, *p*-Mes), 140.7 (d, ²J_{PC} = 10.5 Hz, *o*-Mes), 139.3 (dm, ¹J_{FC} ~ 255 Hz, C₆F₅), 137.4 (dm, ¹J_{FC} ~ 250 Hz, C₆F₅), 131.8 (d, ³J_{PC} = 11.1 Hz, *m*-Mes), 126.0 (d, ¹J_{PC} = 87.4 Hz, *i*-Mes), 124.5 (br, *i*-C₆F₅), 32.9 (d, ¹J_{PC} = 65.3 Hz, ^pCH₂), 22.3 (d, ³J_{PC} = 5.3 Hz, *o*-CH₃^{Mes}), 20.7 (d, ⁵J_{PC} = 1.4 Hz, *p*-CH₃^{Mes}), 19.2 (br, ^BCH₂).

¹H,¹H GCOSY (600 MHz, 299 K, C₆D₆): δ = 6.36 / 1.95 (*m*-Mes / *o*-CH₃^{Mes}), 2.43 / 1.91 (^PCH₂ / ^BCH₂), 1.91 / 2.43 (^BCH₂ / ^PCH₂).

¹H, ¹³C GHSQC (600 MHz / 151 MHz, 299 K, C₆D₆): $\delta = 6.36$ / 131.8 (*m*-Mes), 2.43 / 32.9 (^PCH₂), 1.95 / 22.3 (*o*-CH₃^{Mes}), 1.91 / 19.2 (^BCH₂), 1.86 / 20.7 (*p*-CH₃^{Mes}).

¹H,¹³C GHMBC (600 MHz / 151 MHz, 299 K, C_6D_6): $\delta = 6.36 / 131.8$, 126.0, 22.3, 20.7 (*m*-Mes / *m*-Mes, *i*-Mes, *o*-CH₃^{Mes}, *p*-CH₃^{Mes}), 1.95 / 140.7, 131.8, 126.0 (*o*-CH₃^{Mes} / *o*-Mes, *m*-Mes, *i*-Mes), 1.86 / 142.4, 131.8 (*p*-CH₃^{Mes} / *p*-Mes, *m*-Mes).

¹¹B{¹H} NMR (192 MHz, 299 K, C₆D₆): δ = -4.6 (v_{1/2} ~ 140 Hz).

¹⁹F NMR (564 MHz, 299 K, C₆D₆): δ = -134.9 (m, 2F, *o*-C₆F₅), -160.2 (t, ³J_{FF} = 20.8 Hz, 1F, *p*-C₆F₅), -164.3 (m, 2F, *m*-C₆F₅); [δΔ¹⁹F_{p,m}: 4.1].

³¹P NMR (243 MHz, 299 K, C₆D₆): δ = 50.7 (s, v_{1/2} ~ 55Hz).

³¹P{¹H} NMR (243 MHz, 299 K, C₆D₆): δ = 50.7 (v_{1/2} ~ 12 Hz).

Exact mass calcd. for $C_{32}H_{27}BF_{10}NP + Na^{+}$: 680.1712 g/mol; found: 680.1710 g/mol;

2[C₃₂H₂₇BF₁₀NP]+Na⁺:1337.3541 g/mol; found: 1337.3485 g/mol.

IR (KBr): $\tilde{v} = 1641$ (w), 1608 (w), 1510 (m), 1457 (s), 1384 (w), 1273 (w), 1248 (w), 1213 (m), 1086 (s), 1035 (w), 968 (s), 923 (m), 853 (w), 811 (w), 783 (w), 751 (w), 710 (w), 668 (w), 640 (w), 607 (w), 572 (w).

Elemental analysis: calcd. for C ₃₂H₂₇BF₁₀NP C 58.47, H 4.14, N 2.13; found C 58.84, H 4.10, N 2.08.

27

¹⁹F NMR (564 MHz, 299 K, C₆D₆).

X-ray crystal structure analysis of 6b: formula $C_{32}H_{27}BF_{10}NP$, M = 657.33, colourless crystal, 0.15 x 0.15 x 0.12 mm, a = 11.1667(4), b = 14.5051(8), c = 18.7777(10) Å, $\theta = 100.307(2)$ °, V = 2992.4(3) Å³, $\rho_{calc} = 1.459$ gcm⁻³, $\mu = 1.600$ mm⁻¹, empirical absorption correction (0.795 \leq T \leq 0.831), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 29490 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 5195 independent ($R_{int} = 0.058$) and 4279 observed reflections [$l > 2\sigma(l)$], 415 refined parameters, R = 0.050, $wR^2 = 0.141$, max. (min.) residual electron density 0.25 (-0.34) e.Å⁻³, hydrogen atom at N1 was refined freely, but with fixed U-value; others hydrogen atoms were calculated and refined as riding atoms. Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012

