Supporting Information

A Stable Sulfone Based Electrolyte for High Performance Rechargeable Li-O₂ Batteries

Dan Xu,^a Zhong-li Wang,^a Ji-jing Xu,^a Lei-lei Zhang,^{a,b} Li-min Wang,^a and Xin-bo

Zhang^{a*}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China. Fax: 086 431 85262235; Tel: 086 431 85262235; E-mail: xbzhang@ciac.jl.cn.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

Experiment section

Reagents. Tetramethylene sulfone (TMS), dimethyl sulfoxide (DMSO), propylene carbonate (PC), tetraethylene glycol dimethyl ether (TEGDME), dimethoxy ethane (DMF), and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) were purchased from Aladdin. All electrolytes were prepared in argon-filled glove box.

Li-O₂ batteries. Slurry with 90 wt% commercial KB carbon (Ketjen Black EC600JD) and 10 wt% polyvinylidenefluoride (PVDF) in N-methyl-2-pyrrolidinone was brushed onto Ni foam (110 PPI, 420 g m⁻²) and dried as O₂ electrode. The as-prepared carbon electrode with loading of 1 mg_{carbon}/cm² was used as cathode, glass fiber membrane (Whatman) as separator and lithium metal as anode to assemble Li-O₂ batteries. All procedures were carried out in argon-filled glove box with oxygen and water contents below 1 ppm. All batteries were assembled with Swagelok and gas tightness except for the stainless steel mesh window exposed to the porous cathode to O₂ atmosphere.

Characterization. Li-O₂ batteries run under 1 atm O₂ pressure at 25 $^{\circ}$ C and electrochemical performances were recorded on Land Battery Testing System within a voltage range of 2.2-4.5 V at constant current density. Other electrochemical measurements were investigated using VMP3 Biologic electrochemical workstation. Electrochemical window of electrolytes was examined from 0 to 6 V at scan rate of 0.5 mV/s under Ar atmosphere. The cyclic voltammetry (CV) was carried out in both an airtight three-electrode cell (50 mV/s) and a two-electrode Li-O₂ cell (0.1 mV/s) containing 1 M lithium electrolyte saturated with O₂. The morphologies of O₂

electrode were observed using a Hitachi S-4800 filed emission scanning electron microscope (SEM). Powder X-ray diffraction (XRD) was performed on Bruker D8 Focus Powder X-ray diffractometer using Cu $K\alpha$ ($\lambda = 0.15405$ nm) radiation.

	DMSO	TMS
Formula	S=0	
Boiling point (B.P.)	189 °C	285 °C
Meltingpoint (M.P.)	18 °C	28 °C
Vapor pressure (20 °C)	0.42 mm Hg	0.01 mm Hg
Oxidation potential	4.8 V	5.6 V

Table **S1.** Comparison of physical/chemical properties of DMSO and TMS.

Fig. S1 Optical images of as-prepared O_2 electrodes.

Fig. S2 Cycle performance of Li-O₂ battery with TMS based electrolyte using

KB carbon cathode.

Fig. S3 Cycle performance of Li-O₂ battery with TMS based electrolyte using

advanced graphene oxide derived cathode.

Fig. S4 XRD profiles and SEM images of discharged products in O₂ electrode in TMS (a, b) and DMSO (c, d) based electrolyte.

Fig. S4 compares the XRD profiles and SEM images of discharged product of Li-O₂ battery with DMSO or TMS based electrolyte. Interestingly, when carbon is employed as the cathode material, the dominance of Li₂O₂ can be clearly found in the discharged product of Li-O₂ battery with TMS based electrolyte (Fig. S4a), but not with DMSO based electrolyte (Fig. S4c). In addition, the morphology of Li₂O₂ in TMS and DMSO and found to be quite different. Only pure Li₂O₂ spheres is found in the discharged electrode with TMS (Fig. S4b). But with DMSO, Li₂O₂ is shown to be broken and accompanied with LiOH and LiOH.H₂O nanosheets (Fig. S4d).

Fig. S5 Proposed mechanism of reactions in Li-O₂ battery with (a) DMSO and (b) TMS based electrolyte.

In a Li-air battery, many side reactions could happen in cathode due to the very active O_2^- and/or Li_2O_2 induced degradation and/or decomposition of solvent and binder (PVDF) into organic lithium salts and H₂O, wherein solvent could play an important role on the extent of such side reaction. For our experiment, the underlying mechanism might be summarized in Fig. S5. For DMSO, due to its strong solvation with Li^+ , the reaction of O_2^- with Li^+ could be hindered and thus the O_2^- could has more chance to decompose electrode components, such as solvent and PVDF. On the other hand, sulphur (S) atom in DMSO is at moderato oxidation state (+4) and could be further oxidized by peroxide oxidant (here Li_2O_2). In additions, DMSO extremely trends to capture the water (even in trace amount) due to their high dipolarity comparing to other solvents, which leads to a further degradation of Li_2O_2 . On the contrary, TMS holds weaker solvation to Li^+ and thus would not impede the reaction

of Li^+ with O_2^- , which could decrease the probability of the side reactions between $O_2^$ and electrode components. On the other hand, S atom in TMS is already at its highest oxidation state and is hardly to be oxidized further by peroxide oxidant. In addition, TMS possesses more hydrophobic alkyl (-(CH₂)₄-) groups than DMSO in its structure, which could decrease the hydrophicility and less Li_2O_2 will be degraded by H₂O. Taken together, TMS can thus support more robust Li_2O_2 than DMSO.

References

- (S1) R. Black, S. H. Oh and L. F. Nazar, J. Am. Chem. Soc., 2012, 134, 2902.
- (S2) V. S. Bryantsev and F. Faglioni, J. Phys. Chem. A, 2012, 116, 7128.
- (S3) C. O. Laoire, S. Mukerjee and K. M. Abraham, J. Phys. Chem. C., 2010, 114, 9178.
- (S4) X. P. Xuan, J. J. Wang and Y. J. Mo, Spectrochimica Acta Part A, 2001, 57, 1555.
- (S5) B. D. McCloskey, A. Speidel and A. C. Luntz, J. Phys. Chem. Lett., 2012, 3, 997.