Supporting Information Available.

For the production of the TiO₂ nanotubes, Ti foils (supplied by Sigma-Aldrich) were cut and cleaned by sonicating in acetone, isopropanol, and methanol, for 10 min each. The foils 5 were then anodized by applying a constant voltage of 20 V during 2 hours using an EG&G PARSTAT 2273 potentiostat/galvanostat in a 1 M H₃PO₄ + 1 M NaOH + 0.4 wt.% HF electrolyte at room temperature. A platinum foil counter electrode was used with the Ti foils as working 10 electrodes.

For the sulphidation, the obtained TiO₂ nanotubes (~80 μ g) together with a sulphur pellet (~ 30 mg) were introduced into quartz ampoules (1 cm in internal diameter, 5 cm in length) which are sealed under vacuum (less than 1 Pa). The

¹⁵ ampoules were placed at the center of a horizontal tube furnace (Carbolite CTF 12/75/700) and heated at 450 °C (above the 444 °C boiling point of sulphur) for 1 h, with a heating/cooling rate of 200 °C/min.

X-ray diffraction patterns were recorded (with a steptime of ²⁰ 10 s and step size of 0.02°) at room temperature using a Siemens D5000 diffractometer with Cu K α radiation (λ = 1.5406 Å). EDS analyses (See Fig below) and scanning electron microscopy imaging were carried out with a Philips XL-30 FEG SEM.

25

Fig. S1 EDS spectrum of the obtained TiO_xS_y nanotubes.

For the electrochemical measurements, two-electrode ³⁰ Swagelok-type cells were assembled [Li-metal/LiPF₆ (EC:DEC)/TiO_xS_y] in a glove-box filled with purified argon in which moisture and oxygen contents were less than 2 ppm. The galvanostatic experiments were then carried out with the prepared Li-metal/LiPF₆ (EC:DEC)/TiO_xS_y cells using ³⁵ VersaSTAT3 potentiostat/galvanostat. The electrolyte supplied by Merck was embedded in a Whatman glass microfiber which acts as a separator. For the discharge/charge, a constant current density of 70 μ Acm⁻² was applied to the assembled cells in the 1.6 \leq U/V \leq 3.3 voltage range. ⁴⁰ Additionally, cyclic voltammetry was carried out also with the VersaSTAT3 potentiostat/galvanostat in the $0.65 \le U/V \le 3.3$ voltage range at a scan rate of 0.1 mVs^{-1} .

⁴⁵ Fig. S2 Galvanostatic plot of voltage versus discharge capacity for the TiO_xS_v nanotubes. The sample was cycled in the $1.6 \le U/V \le 3.3$ voltage range with a current density of 70 μ Acm⁻².using a two-electrode Swagelok cell [Li-metal/LiPF₆ (EC:DEC)/TiO_xS_v].

In order to verify the presence of sulphur in the electrolyte ⁵⁰ after cycling, a substantial amount of the electrolyte after charge/discharge experiment was collected onto a piece of silicon wafer, dried overnight at 70 °C, and analyzed by EDS.

55 Fig. S3 EDS spectrum of used electrolyte dried on a Si wafer