### FeCl<sub>3</sub>-Catalyzed Cyclization of $\alpha$ -Sulfonamido-Allenes with

### Aldehydes-The Substituent Effect

Jiajia Cheng, Xinjun Tang, Yihua Yu, and Shengming Ma\*

### **Supporting Information**

#### Index

| 1. | Typical Procedure and Analytical Data for Compounds 3a-3j                                           | S2  |
|----|-----------------------------------------------------------------------------------------------------|-----|
| 2. | Analytical Data for Compounds 4a-4h                                                                 | S11 |
| 3. | Typical Procedure and Analytical Data for Compounds 6a-6c                                           | S18 |
| 4. | <sup>1</sup> H NMR, <sup>13</sup> C NMR, and <sup>19</sup> F NMR Spectra for Compounds <b>3a-6c</b> | S22 |
| 5. | X-ray data for Compounds <b>3j</b> and <b>4a</b>                                                    | S68 |





Typical Procedure. To a Schlenk tube were added FeCl<sub>3</sub> (14.9 mg, 0.092 mmol)/CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL), N-(buta-2,3-dienyl)-4-tolylsulfonamide 1a (45.7 mg, 0.20 mmol)/CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL), 1-naphthaldehyde 2a (37.1 mg, 0.24 mmol)/CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL), and TMSCl (33.2 mg, 0.31 mmol)/CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) sequentially. Then the mixture was stirred at 30 °C for 21 h. After the reaction was complete as monitored by TLC (petroleum ether : ethyl acetate = 5 : 1), the resulting mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (5 mL) and diethyl ether (10 mL). Then anhydrous MgSO<sub>4</sub> was added and the resulting mixture was then filtered through a short column of silica gel to remove the inorganic salts (eluent:  $6 \times (5 \text{ mL of } CH_2Cl_2 + 10 \text{ mL Et}_2O)$ ). After evaporation, the mixture was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 30/1/1) to afford 58.1 mg (71 %) of **3a**: white solid; m.p. 121-123 °C (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.60 (d, J = 8.4 Hz, 1 H, Ar-H), 7.86-7.70 (m, 4 H, Ar-H), 7.61 (t, J = 7.7 Hz, 1 H, Ar-H), 7.51 (t, J = 7.4 Hz, 1 H, Ar-H), 7.38-7.32 (m, 2 H), 7.24 (d, J = 8.1 Hz, 2 H, Ar-H), 6.14 (d, J =7.2 Hz, 1 H, CH), 5.73-5.71 (m, 1 H, CH=), 4.04 (dd, J = 18.6, 4.2 Hz, 1 H, one proton of CH<sub>2</sub>), 3.22 (d, J = 18.6 Hz, 1 H, one proton of CH<sub>2</sub>), 2.92-2.78 (m, 1 H, one proton of CH<sub>2</sub>), 2.68-2.57 (m, 1 H, one proton of CH<sub>2</sub>), 2.41 (s, 3 H, CH<sub>3</sub> of Ts);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.9, 136.6, 134.0, 133.1, 131.4, 129.8, 129.6, 129.4, 128.7, 127.6, 126.8, 126.0, 124.6, 124.2, 124.1, 121.0, 51.0, 41.5, 34.1, 21.5; MS (EI) m/z (%) 399 (M<sup>+</sup>(<sup>37</sup>Cl), 2.80), 397 (M<sup>+</sup>(<sup>35</sup>Cl), 8.49), 91(100); IR (neat) 1662, 1597, 1511, 1494, 1440, 1339, 1245, 1156, 1091, 1053, 1034, 1019 cm<sup>-1</sup>; Anal Calcd for C<sub>22</sub>H<sub>20</sub>NO<sub>2</sub>SCl: C, 66.40; H, 5.07; N, 3.52. Found: C, 66.35; H, 5.38; N, 3.43. The structure of this compound was further conformed by the NOESY, HSQC and H-H COSY experiments.

The following compounds were prepared according to this procedure.

(2) 4-Chloro-2-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine 3b (cjj-6-41)



The reaction of FeCl<sub>3</sub> (14.3 mg, 0.088 mmol), *N*-(buta-2,3-dienyl)-4-tolylsulfonamide **1a** (45.1 mg, 0.20 mmol), benzaldehyde **2b** (25.6 mg, 0.24 mmol), and TMSCl (35.9 mg, 0.33 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) afforded 54.8 mg (78 %) of **3b** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 30/1/1): white solid; m.p. 117-119 °C (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, *J* = 8.1 Hz, 2 H, Ar-H), 7.34-7.24 (m, 7 H, Ar-H), 5.72-5.67 (m, 1 H, CH=), 5.34 (t, *J* = 3.9 Hz, 1 H, ArCHNTs), 4.19 (dd, *J* = 18.5, 4.7 Hz, 1 H, one proton of CH<sub>2</sub>), 3.42-3.30 (m, 1 H, one proton of CH<sub>2</sub>), 2.66-2.57 (m, 2 H, CH<sub>2</sub>), 2.43 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.6, 137.8, 137.3, 129.7, 129.0, 128.6, 127.9, 127.1, 127.0, 120.8, 53.8, 41.3, 33.6, 21.5; MS (EI) *m*/*z* (%) 349 (M<sup>+</sup>(<sup>37</sup>Cl), 1.52), 347 (M<sup>+</sup>(<sup>35</sup>Cl), 4.02), 91(100); IR (neat) 1662, 1595, 1493, 1448, 1400, 1344, 1321, 1304, 1252, 1206, 1159, 1118, 1094, 1063, 1044, 1016, 1003 cm<sup>-1</sup>; Anal Calcd for C<sub>18</sub>H<sub>18</sub>NO<sub>2</sub>SCl: C, 62.15; H, 5.22; N, 4.03. Found: C, 62.06; H, 5.28; N, 3.89.

(3) 4-Chloro-2-(2-chlorophenyl)-1-tosyl-1,2,3,6-tetrahydropyridine 3c (cjj-6-42)



The reaction of FeCl<sub>3</sub> (14.5 mg, 0.089 mmol), *N*-(buta-2,3-dienyl)-4-tolylsulfonamide **1a** (45.2 mg, 0.20 mmol), 2-chlorobenzaldehyde **2c** (35.1 mg, 0.25 mmol), and TMSCl (33.2 mg, 0.31 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) afforded 62.1 mg (80 %) of **3c** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 30/1/1): oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (d, *J* = 8.1 Hz, 2 H, Ar-H), 7.36 (dd, *J* = 7.8, 0.9 Hz, 1 H, Ar-H), 7.24-7.01 (m, 5 H, Ar-H), 5.87-5.83 (m, 1 H, CH=), 5.79 (d, *J* = 6.9 Hz, 1 H, ArCHNTs), 4.23-4.11 (m, 1 H, one proton of CH<sub>2</sub>), 3.65-3.55 (m, 1 H, one proton of CH<sub>2</sub>), 3.05-2.85 (m, 1 H, one proton of CH<sub>2</sub>), 2.52-2.41 (m, 1 H, one proton of CH<sub>2</sub>), 2.39 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.6, 136.8, 136.2, 133.7, 130.2, 129.5, 129.2, 129.1, 127.5, 127.4, 126.8, 120.6, 51.6, 42.4, 35.6, 21.5; MS (EI) *m/z* (%) 383 (M<sup>+</sup>(<sup>35</sup>Cl<sup>37</sup>Cl), 1.30), 381 (M<sup>+</sup>(<sup>35</sup>Cl<sup>35</sup>Cl), 2.47), 91(100); IR (neat) 3066, 2923, 2855, 1666, 1597, 1494, 1474, 1443, 1346, 1305, 1289, 1163, 1092, 1075, 1040, 1018 cm<sup>-1</sup>; HRMS (EI) calcd for  $C_{18}H_{17}NO_2S^{35}Cl^{35}Cl$  (M<sup>+</sup>): 381.0357. Found: 381.0360.

(4) 4-Chloro-2-(4-nitrophenyl)-1-tosyl-1,2,3,6-tetrahydropyridine 3d (cjj-6-34)



The reaction of FeCl<sub>3</sub> (14.3 mg, 0.088 mmol), *N*-(buta-2,3-dienyl)-4-tolylsulfonamide **1a** (45.2 mg, 0.20 mmol), 4-nitrobenzaldehyde **2d** (36.4 mg, 0.24 mmol), and TMSCl (35.1 mg, 0.32 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) afforded 62.7 mg (79 %) of **3d** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 20/1/1): oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (d, *J* = 8.7 Hz, 2 H, Ar-H), 7.71 (d, *J* = 8.1 Hz, 2 H, Ar-H), 7.51 (d, *J* = 8.7 Hz, 2 H, Ar-H), 7.32 (d, *J* = 8.4 Hz, 2 H, Ar-H), 5.76-5.70 (m, 1 H, CH=), 5.42 (d, *J* = 4.8 Hz, 1 H, ArCHNTs), 4.29-4.17 (m, 1 H, one proton of CH<sub>2</sub>), 3.43-3.31 (m, 1 H, one proton of CH<sub>2</sub>), 2.78-2.56 (m, 2 H, CH<sub>2</sub>), 2.45 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  147.5, 145.2, 144.1, 136.8, 130.0, 128.3, 128.2, 126.9, 123.9, 120.8, 53.3, 41.4, 33.4, 21.5; MS (EI) *m*/*z* (%) 394 (M<sup>+</sup>(<sup>37</sup>Cl), 0.63), 392 (M<sup>+</sup>(<sup>35</sup>Cl), 1.56), 91(100); IR (neat) 1664, 1596, 1515, 1491, 1444, 1348, 1294, 1248, 1207, 1179, 1155, 1097, 1068, 1045, 1017 cm<sup>-1</sup>; HRMS (EI) calcd for C<sub>18</sub>H<sub>17</sub>N<sub>2</sub>O<sub>4</sub>S<sup>35</sup>Cl (M<sup>+</sup>): 392.0598. Found: 392.0593.



Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2012



The reaction of FeCl<sub>3</sub> (14.2 mg, 0.088 mmol), *N*-(buta-2,3-dienyl)-4-tolylsulfonamide **1a** (45.3 mg, 0.20 mmol), 2-bromobenzaldehyde **2e** (45.1 mg, 0.24 mmol), and TMSCl (35.0 mg, 0.32 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) afforded 72.2 mg (83 %) of **3e** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 30/1/1): oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.58-7.52 (m, 1 H, Ar-H), 7.18 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.14-7.05 (m, 3 H, Ar-H), 5.90-5.83 (m, 1 H, CH=), 5.74 (d, *J* = 6.3 Hz, 1 H, ArCHNTs), 4.24-4.15 (m, 1 H, one proton of CH<sub>2</sub>), 3.77-3.64 (m, 1 H, one proton of CH<sub>2</sub>), 3.05-2.90 (m, 1 H, one proton of CH<sub>2</sub>), 2.50 (d, *J* = 17.7 Hz, 1 H, one proton of CH<sub>2</sub>), 2.38 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.5, 138.6, 136.0, 133.5, 129.4, 129.3, 128.8, 127.6, 127.4, 127.3, 123.8, 120.4, 54.1, 42.8, 36.0, 21.4; MS (EI) *m*/*z* (%) 429 (M<sup>+</sup>(<sup>37</sup>Cl<sup>81</sup>Br), 0.70), 427 (M<sup>+</sup>(<sup>35</sup>Cl<sup>81</sup>Br + <sup>37</sup>Cl<sup>79</sup>Br), 2.13), 425 (M<sup>+</sup>(<sup>35</sup>Cl<sup>79</sup>Br), 1.60), 91(100); IR (neat) 3065, 2923, 1675, 1596, 1494, 1469, 1440, 1344, 1305, 1291, 1277, 1261, 1163, 1121, 1055, 1026 cm<sup>-1</sup>; HRMS (EI) calcd for C<sub>18</sub>H<sub>17</sub>NO<sub>2</sub>S<sup>35</sup>Cl<sup>79</sup>Br (M<sup>+</sup>): 424.9852. Found: 424.9855.

#### (6) 4-Chloro-2-heptyl-1-tosyl-1,2,3,6-tetrahydropyridine 3f (cjj-6-49)



The reaction of FeCl<sub>3</sub> (14.6 mg, 0.090 mmol), *N*-(buta-2,3-dienyl)-4-tolylsulfonamide **1a** (45.2 mg, 0.20 mmol), octanal **2f** (31.3 mg, 0.24 mmol), and TMSCl (33.7 mg, 0.31 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) afforded 62.1 mg (83 %) of **3f** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 30/1/1): oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.27 (d, *J* = 8.1 Hz, 2 H, Ar-H), 5.72-5.68 (m, 1 H, CH=), 4.30-4.17 (m, 1 H, one proton of CH<sub>2</sub>), 4.09 (q, *J* = 6.9 Hz, 1 H, CH), 3.67-3.54 (m, 1 H, one proton of CH<sub>2</sub>), 2.50-2.35 (m, 4 H, CH<sub>3</sub> of Ts + one proton of CH<sub>2</sub>), 1.97 (d, *J* = 17.4 Hz, 1 H, one proton of CH<sub>2</sub>), 1.58-1.05 (m, 12 H, C<sub>6</sub>H<sub>12</sub>), 0.88 (t, *J* = 6.8 Hz, 3 H, CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.4, 137.5, 129.6, 129.1, 126.9, 119.4, 51.6, 40.8, 35.6, 31.7, 31.1, 29.11, 29.06, 26.1, 22.6, 21.4, 14.0; MS (EI) *m/z* (%) 369 (M<sup>+</sup>(<sup>35</sup>Cl), 0.15), 272 (M<sup>+</sup>-C<sub>7</sub>H<sub>15</sub>(<sup>37</sup>Cl), 17.62), 270 (M<sup>+</sup>-C<sub>7</sub>H<sub>15</sub>(<sup>35</sup>Cl), 45.31), 91(100); IR (neat) 3065, 2927, 2856, 1735, 1686, 1596, 1494, 1459, 1378, 1351, 1306, 1162, 1120, 1092, 1067, 1018 cm<sup>-1</sup>; Anal Calcd for C<sub>19</sub>H<sub>28</sub>NO<sub>2</sub>SCl: C, 61.69; H, 7.63; N, 3.79. Found: C, 61.41; H, 7.41; N, 3.78.





The reaction of FeCl<sub>3</sub> (14.4 mg, 0.089 mmol), *N*-(buta-2,3-dienyl)-4-tolylsulfonamide **1a** (45.7 mg, 0.20 mmol), hydrocinnamaldehyde **2g** (32.8 mg, 0.24 mmol), and TMSCl (30.9 mg, 0.28 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) afforded 66.1 mg (86 %) of **3g** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 30/1/1): oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.32-7.24 (m, 4 H, Ar-H), 7.24-7.10 (m, 3 H, Ar-H), 5.73-5.68 (m, 1 H, CH=), 4.28 (dt, *J* = 18.6, 3.6 Hz, 1 H, one proton of CH<sub>2</sub>), 4.17 (q, *J* = 7.1 Hz, 1 H, CH), 3.72-3.59 (m, 1 H, one proton of CH<sub>2</sub>), 2.64 (t, *J* = 8.0 Hz, 2 H, CH<sub>2</sub>), 2.48-2.34 (m, 4 H, CH<sub>3</sub> of Ts + one proton of CH<sub>2</sub>), 1.99 (d, *J* = 17.4 Hz, 1 H, one proton of CH<sub>2</sub>), 1.88-1.62 (m, 2 H, CH<sub>2</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.5, 141.0, 137.2, 129.7, 128.9, 128.4, 128.3, 126.8, 126.0, 119.4, 51.3, 40.8, 35.5, 33.1, 32.3, 21.4; MS (EI) *m*/*z* (%) 375 (M<sup>+</sup>(<sup>35</sup>Cl), 0.28), 272 (M<sup>+</sup>(<sup>37</sup>Cl)-C<sub>8</sub>H<sub>9</sub>, 7.71), 270 (M<sup>+</sup>(<sup>35</sup>Cl)-C<sub>8</sub>H<sub>9</sub>, 22.78), 91(100); IR (neat) 1665, 1597, 1495, 1454, 1380, 1332, 1305, 1290, 1245, 1156, 1097, 1048, 1017 cm<sup>-1</sup>; Anal Calcd for C<sub>20</sub>H<sub>22</sub>NO<sub>2</sub>SCl: C, 63.90; H, 5.90; N, 3.73. Found: C, 63.83; H, 5.96; N, 3.81.





The reaction of FeCl<sub>3</sub> (14.6 mg, 0.090 mmol), *N*-(buta-2,3-dienyl)-4-tolylsulfonamide **1a** (44.7 mg, 0.20 mmol), cyclohexylcarboxaldehyde **2h** (33.7 mg, 0.30 mmol), and TMSCI (32.6 mg, 0.30 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) afforded 59.5 mg (84 %) of **3h** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 30/1/1): oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.27 (d, *J* = 8.4 Hz, 2 H, Ar-H), 5.69-5.66 (m, 1 H, CH=), 4.27-4.17 (m, 1 H, one proton of CH<sub>2</sub>), 3.80-3.70 (m, 1 H, CH), 3.68-3.56 (m, 1 H, one proton of CH<sub>2</sub>), 2.42 (s, 3 H, CH<sub>3</sub> of Ts), 2.27-2.05 (m, 2 H, CH<sub>2</sub>), 1.87-1.60 (m, 5 H, 5 protons in *c*-hexyl group), 1.50-1.35 (m, 1 H, one proton in *c*-hexyl group), 1.35-0.83 (m, 5 H, 5 protons in *c*-hexyl group); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.3, 137.8, 129.6, 128.9, 126.7, 119.6, 56.7, 41.4, 37.1, 32.0, 30.7, 29.9, 26.1, 25.9, 25.8, 21.5; MS (EI) *m*/z (%) 272 (M<sup>+</sup>(<sup>37</sup>Cl)-C<sub>6</sub>H<sub>11</sub>, 37.23), 270 (M<sup>+</sup>(<sup>35</sup>Cl)-C<sub>6</sub>H<sub>11</sub>, 100); IR (neat) 2962, 2853, 1669, 1597, 1495, 1449, 1412, 1349, 1259, 1163, 1013 cm<sup>-1</sup>; Anal Calcd for C<sub>18</sub>H<sub>24</sub>NO<sub>2</sub>SCl: C, 61.09; H, 6.84; N, 3.98.

(9) 2-(tert-Butyl)-4-chloro-1-tosyl-1,2,3,6-tetrahydropyridine 3i (cjj-6-48)



The reaction of FeCl<sub>3</sub> (14.5 mg, 0.089 mmol), *N*-(buta-2,3-dienyl)-4-tolylsulfonamide **1a** (45.3 mg, 0.20 mmol), pivaldehyde **2i** (34.1 mg, 0.40 mmol), and TMSCl (31.0 mg, 0.29 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) afforded 38.7 mg (58 %) of **3i** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 30/1/1): white solid; m.p. 132-134 °C (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.27 (d, J = 7.8 Hz, 2 H, Ar-H), 5.65-5.60 (m, 1 H, CH=), 4.30-4.25 (m, 1 H, one proton of CH<sub>2</sub>), 3.91-3.75 (m, 3 H, one proton of CH<sub>2</sub>+CH), 2.42 (s, 3 H, CH<sub>3</sub> of Ts), 2.17-2.08 (m, 2 H, CH<sub>2</sub>), 0.99 (s, 9 H, C<sub>3</sub>H<sub>9</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.3, 137.3, 129.8, 129.7, 126.7, 119.2, 58.8, 43.1, 36.3, 30.5, 27.7, 21.5; MS (EI) m/z (%) 314 (M<sup>+</sup>(<sup>37</sup>Cl)-CH<sub>3</sub>, 0.50), 312 (M<sup>+</sup>(<sup>35</sup>Cl)-CH<sub>3</sub>, 1.22), 270 (100); IR (neat) 2963, 1682, 1595, 1493, 1470, 1399, 1384, 1370, 1358, 1326, 1290, 1259, 1223, 1205, 1185, 1153, 1097, 1075, 1056, 1009 cm<sup>-1</sup>; Anal Calcd for C<sub>16</sub>H<sub>22</sub>NO<sub>2</sub>SCI: C, 58.61; H, 6.76; N, 4.27. Found: C, 58.64; H, 6.72; N, 4.05.

(10) 4-Chloro-1-tosyl-1,2,3,6-tetrahydropyridine 3j (cjj-10-172, cjj-10-186)



The reaction of FeCl<sub>3</sub> (14.1 mg, 0.087 mmol), *N*-(buta-2,3-dienyl)-4-tolylsulfonamide **1a** (44.7 mg, 0.20 mmol), paraformaldehyde **2j** (12.9 mg, 0.43 mmol), and TMSCl (33.2 mg, 0.31 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) afforded 40.3 mg (74 %) of **3j** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 8/1/1): white solid; m.p. 145-146 °C (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 (d, *J* = 8.7 Hz, 2 H, Ar-H), 7.33 (d, *J* = 8.1 Hz, 2 H, Ar-H), 5.76-5.71 (m, 1 H, CH=), 3.68-3.60 (m, 2 H, CH<sub>2</sub>), 3.27 (t, *J* = 5.9 Hz, 2 H, CH<sub>2</sub>), 2.50-2.38 (m, 5 H, CH<sub>3</sub> of Ts + CH<sub>2</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.9, 133.1, 129.9, 129.7, 127.5, 119.8, 45.2, 43.2, 32.5, 21.5; MS (EI) *m*/*z* (%) 273 (M<sup>+</sup>(<sup>37</sup>Cl), 0.57), 271 (M<sup>+</sup>(<sup>35</sup>Cl), 1.35), 91(100); IR (neat) 3064, 2923, 2857, 1666, 1597, 1494, 1462, 1429, 1400, 1340, 1306, 1239, 1165, 1100, 1052, 1018 cm<sup>-1</sup>. Anal Calcd for C<sub>12</sub>H<sub>14</sub>NO<sub>2</sub>SCl: C, 53.03; H, 5.19; N, 5.15. Found: C, 53.25; H, 5.24; N, 4.82.



The reaction of FeCl<sub>3</sub> (0.3651 g, 2.25 mmol), *N*-(buta-2,3-dienyl)-4-tolylsulfonamide **1a** (1.1158 g, 5.00 mmol), paraformaldehyde **2j** (0.3012 g, 10.0 mmol), and TMSCl (0.8148 g, 7.50 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (50 mL) was stirred at 30 °C for 11 h. After the reaction was complete as monitored by TLC (eluent: petroleum ether : ethyl acetate = 5 : 1), the mixture was evaporated and then purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 50/1/1) to afford 0.9501 g (70 %) of **3j** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 50/1/1). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.33 (d, *J* = 7.8 Hz, 2 H, Ar-H), 5.76-5.71 (m, 1 H, CH=), 3.66-3.61 (m, 2 H, CH<sub>2</sub>), 3.27 (t, *J* = 5.7 Hz, 2 H, CH<sub>2</sub>), 2.50-2.40 (m, 5 H, CH<sub>3</sub> of Ts + CH<sub>2</sub>).

#### Synthesis of 2,5-dihydro-1H-pyrrole derivatives

(1) 3-(Chloromethyl)-2-(4-chlorophenyl)-4-phenyl-1-tosyl-2,5-dihydro-1*H*pyrrole 4a (cjj-9-139)



The reaction of FeCl<sub>3</sub> (19.4 mg, 0.12 mmol), 4-chlorobenzaldehyde **2c** (56.2 mg, 0.40 mmol), *N*-(2-phenylbuta-2,3-dienyl)-4-tolylsulfonamide **1b** (179.7 mg, 0.60 mmol), and TMSCl (65.4 mg, 0.60 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) afforded 122.8 mg (67 %) of **4a** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 30/1/1): white solid; m.p. 137-139 °C (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, *J* = 8.1 Hz, 2 H, Ar-H), 7.45-7.33 (m, 3 H, Ar-H), 7.31-7.18 (m, 8 H, Ar-H), 5.80-5.75 (m, 1 H, ArCHNTs), 4.74-4.57 (m, 2 H, CH<sub>2</sub>), 4.15 (d, *J* = 11.7 Hz, 1 H, one proton of CH<sub>2</sub>), 3.50 (d, *J* = 12.0 Hz, 1 H, one proton of CH<sub>2</sub>), 2.40 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.6, 137.9, 136.4, 135.0, 134.1, 132.1, 131.9, 129.6, 129.1, 129.0, 128.9, 128.8, 127.6, 127.2, 70.7, 57.7, 37.8, 21.5; MS (EI) *m/z* (%) 461 (M<sup>+</sup>(<sup>37</sup>Cl<sup>37</sup>Cl), 2.04), 459 (M<sup>+</sup>(<sup>35</sup>Cl<sup>37</sup>Cl), 8.82), 457 (M<sup>+</sup>(<sup>35</sup>Cl<sup>35</sup>Cl), 11.57), 91(100); IR (neat) 3061, 2923, 2862, 1597, 1491, 1446, 1411, 1347, 1305, 1275, 1261, 1218, 1164, 1093, 1015 cm<sup>-1</sup>; Anal Calcd for C<sub>24</sub>H<sub>21</sub>NO<sub>2</sub>SCl<sub>2</sub>: C, 62.88; H, 4.62; N, 3.06. Found: C, 62.83; H, 4.77; N, 2.81.

(2) 2-(4-Bromophenyl)-3-(chloromethyl)-4-phenyl-1-tosyl-2,5-dihydro-1*H*pyrrole 4b (cjj-9-127)



The reaction of FeCl<sub>3</sub> (19.2 mg, 0. 12 mmol), 4-bromobenzaldehyde **2k** (73.3 mg, 0.40 mmol), *N*-(2-phenylbuta-2,3-dienyl)-4-tolylsulfonamide **1b** (179.9 mg, 0.60 mmol), and TMSCl (64.7 mg, 0.60 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) afforded 131.7 mg (66 %) of **4b** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 30/1/1): white solid; m.p. 144-145 °C (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.47-7.34 (m, 5 H, Ar-H), 7.31-7.14 (m, 6 H, Ar-H), 5.80-5.73 (m, 1 H, CH), 4.73-4.57 (m, 2 H, CH<sub>2</sub>), 4.15 (d, *J* = 11.7 Hz, 1 H, one proton of CH<sub>2</sub>), 3.51 (d, *J* = 12.0 Hz, 1 H, one proton of CH<sub>2</sub>), 2.41 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.7, 138.4, 136.5, 135.0, 132.1, 131.9, 131.8, 129.6, 129.3, 129.1, 129.0, 127.7, 127.3, 122.3, 70.8, 57.7, 37.8, 21.5; MS (EI) *m*/*z* (%) 505 (M<sup>+</sup>(<sup>39</sup>Cl<sup>81</sup>Br), 0.49), 503 (M<sup>+</sup>(<sup>35</sup>Cl<sup>81</sup>Br + <sup>37</sup>Cl<sup>79</sup>Br), 1.56), 501 (M<sup>+</sup>(<sup>35</sup>Cl<sup>79</sup>Br), 1.08), 91(100); IR (neat) 1597, 1487, 1446, 1407, 1346, 1305, 1275, 1261, 1217, 1163, 1099, 1070, 1011 cm<sup>-1</sup>; Anal Calcd for C<sub>24</sub>H<sub>21</sub>NO<sub>2</sub>SClBr: C, 57.32; H, 4.21; N, 2.79. Found: C, 57.51; H, 4.26; N, 2.78.

### (3) 3-(Chloromethyl)-2-(4-fluorophenyl)-4-phenyl-1-tosyl-2,5-dihydro-1*H*pyrrole 4c (cjj-9-130)



The reaction of FeCl<sub>3</sub> (21.1 mg, 0. 13 mmol), 4-fluorobenzaldehyde 2l (49.0 mg, 0.39 mmol), N-(2-phenylbuta-2,3-dienyl)-4-tolylsulfonamide 1b (179.7 mg, 0.60 mmol), and TMSCl (65.7 mg, 0.60 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) afforded 129.6 mg (74 %) of 4c (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 40/1/1): white solid; m.p. 134-136 °C (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (d, J = 8.4 Hz, 2 H, Ar-H), 7.44-7.34 (m, 3 H, Ar-H), 7.33-7.18 (m, 6 H, Ar-H), 7.00 (t, J = 8.7 Hz, 2 H, Ar-H), 5.81-5.75 (m, 1 H, CH), 4.72-4.55 (m, 2 H, CH<sub>2</sub>), 4.15 (d, J = 11.7 Hz, 1 H, one proton of CH<sub>2</sub>), 3.51 (d, J = 11.7 Hz, 1 H, one proton of CH<sub>2</sub>), 2.39 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.5 (d, J = 245.8 Hz), 143.4, 136.2, 135.1 (d, J = 3.0 Hz), 135.0, 132.2, 131.9, 129.5, 129.3 (d, J = 8.3 Hz), 128.9, 128.8, 127.5, 127.1, 115.4 (d, J = 21.3 Hz), 70.6, 57.5, 37.7, 21.3; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>) -112.8; MS (EI) m/z (%) 443 (M<sup>+</sup>(<sup>37</sup>Cl), 0.67), 441 (M<sup>+</sup>(<sup>35</sup>Cl), 1.67), 91(100); IR (neat) 3061, 2922, 2864, 1604, 1508, 1446, 1422, 1347, 1305, 1261, 1221, 1184, 1164, 1096, 1064, 1016 cm<sup>-1</sup>; Anal Calcd for C<sub>24</sub>H<sub>21</sub>NO<sub>2</sub>SClF: C, 65.22; H, 4.79; N, 3.17. Found: C, 64.96; H, 4.93; N, 2.90.

# (4) 3-(Chloromethyl)-4-phenyl-2-(4-methylphenyl)-1-tosyl-2,5-dihydro-1*H*pyrrole 4d (cjj-9-145)



The reaction of FeCl<sub>3</sub> (19.5 mg, 0. 12 mmol), 4-methylbenzaldehyde 2m (48.1 mg, 0.40 mmol), N-(2-phenylbuta-2,3-dienyl)-4-tolylsulfonamide 1b (179.5 mg, 0.60 mmol), and TMSCl (66.3 mg, 0.61 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) afforded 142.3 mg (81 %) of 4d (eluent: petroleum ether/ethyl acetate/ $CH_2Cl_2 = 30/1/1$ ): white solid; m.p. 144-146 °C (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (d, J = 8.1 Hz, 2 H, Ar-H), 7.44-7.33 (m, 3 H, Ar-H), 7.31-7.23 (m, 2 H, Ar-H), 7.20 (d, J = 8.1 Hz, 4 H, Ar-H), 7.11 (d, J = 8.1 Hz, 2 H, Ar-H), 5.81-5.75 (m, 1 H, ArCHNTs), 4.72-4.50 (m, 2 H, CH<sub>2</sub>), 4.13 (d, J = 11.4 Hz, 1 H, one proton of CH<sub>2</sub>), 3.53 (d, J =11.7 Hz, 1 H, one proton of CH<sub>2</sub>), 2.39 (s, 3 H, CH<sub>3</sub>), 2.34 (s, 3 H, CH<sub>3</sub>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 143.2, 137.9, 136.2, 135.9, 135.2, 132.7, 132.2, 129.4, 129.3, 128.82, 128.81, 127.6, 127.5, 127.2, 71.2, 57.6, 37.9, 21.4, 21.1; MS (EI) m/z (%) 439  $(M^{+}(^{37}Cl), 1.33), 437 (M^{+}(^{35}Cl), 2.96), 91(100); IR (neat) 3025, 2922, 2862, 1598,$ 1512, 1495, 1446, 1346, 1305, 1274, 1260, 1181, 1163, 1098, 1064, 1018 cm<sup>-1</sup>; Anal Calcd for C<sub>25</sub>H<sub>24</sub>NO<sub>2</sub>SCI: C, 68.56; H, 5.52; N, 3.20. Found: C, 68.86; H, 5.82; N, 3.04.

(5) 3-(Chloromethyl)-2-(4-methoxyphenyl)-4-phenyl-1-tosyl-2,5-dihydro-1*H*pyrrole 4e (cjj-9-178)



The reaction of FeCl<sub>3</sub> (19.5 mg, 0.12 mmol), 4-methoxybenzaldehyde **2n** (54.5 mg, 0.40 mmol), *N*-(2-phenylbuta-2,3-dienyl)-4-tolylsulfonamide **1b** (179.3 mg, 0.60 mmol), and TMSCl (65.2 mg, 0.60 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) afforded 122.6 mg (67 %) of **4e** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 20/1/1): oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (d, *J* = 8.1 Hz, 2 H, Ar-H), 7.45-7.33 (m, 3 H, Ar-H), 7.29-7.17 (m, 6 H, Ar-H), 6.83 (d, *J* = 8.7 Hz, 2 H, Ar-H), 5.80-5.70 (m, 1 H, ArCHNTs), 4.69-4.53 (m, 2 H, CH<sub>2</sub>), 4.14 (d, *J* = 11.4 Hz, 1 H, one proton of CH<sub>2</sub>), 3.81 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 143.3, 135.8, 135.3, 132.8, 132.3, 131.3, 129.5, 128.91, 128.90, 127.7, 127.3, 114.0, 71.0, 57.5, 55.3, 38.0, 21.5; MS (EI) *m*/*z* (%) 455 (M<sup>+</sup>(<sup>37</sup>Cl), 2.03), 453 (M<sup>+</sup>(<sup>35</sup>Cl), 4.84), 91(100); IR (neat) 3022, 2922, 2863, 2821, 1596, 1491, 1457, 1447, 1377, 1342, 1309, 1276, 1261, 1245, 1188, 1162, 1100, 1071, 1045 cm<sup>-1</sup>; HRMS (EI) calcd for C<sub>25</sub>H<sub>24</sub>NO<sub>3</sub>S<sup>35</sup>Cl (M<sup>+</sup>) 453.1165. Found 453.1161.

### (6) 3-(Chloromethyl)-2-(3-methoxyphenyl)-4-phenyl-1-tosyl-2,5-dihydro-1*H*pyrrole 4f (txj-1-21)



The reaction of FeCl<sub>3</sub> (19.2 mg, 0.12 mmol), 3-methoxybenzaldehyde **20** (54.5 mg, 0.40 mmol), *N*-(2-phenylbuta-2,3-dienyl)-4-tolylsulfonamide **1b** (175.1 mg, 0.58 mmol), and TMSCl (66.3 mg, 0.61 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) afforded 119.8 mg (66 %) of **4f** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 10/1/1): oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (d, *J* = 8.1 Hz, 2 H, Ar-H), 7.45-7.33 (m, 3 H, Ar-H), 7.30-7.17 (m, 5 H, Ar-H), 6.92 (d, *J* = 7.5 Hz, 1 H, Ar-H), 6.83 (d, *J* = 8.1 Hz, 1 H, Ar-H), 6.78 (s, 1 H, Ar-H), 5.83-5.76 (m, 1 H, ArCHNTs), 4.72-4.57 (m, 2 H, CH<sub>2</sub>), 4.15 (d, *J* = 11.7 Hz, 1 H, one proton of CH<sub>2</sub>), 3.76 (s, 3 H, CH<sub>3</sub> of OMe), 3.54 (d, *J* = 11.7 Hz, 1 H, one proton of CH<sub>2</sub>), 2.39 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.9, 143.5, 140.9, 136.2, 135.3, 132.8, 132.3, 129.9, 129.6, 129.1, 129.0, 127.8, 127.4, 120.1, 113.7, 113.3, 71.5, 57.9, 55.3, 38.0, 21.6; MS (EI) *m*/*z* (%) 455 (M<sup>+</sup>(<sup>37</sup>Cl), 1.84), 453 (M<sup>+</sup>(<sup>35</sup>Cl), 5.38), 91(100); IR (neat) 3057, 3030, 2955, 2924, 2854, 1599, 1489, 1455, 1346, 1279, 1257, 1218, 1164, 1101, 1047 cm<sup>-1</sup>; HRMS (EI) calcd for C<sub>25</sub>H<sub>24</sub>NO<sub>3</sub>S<sup>35</sup>Cl (M<sup>+</sup>): 453.1165. Found: 453.1161.

# (7) 3-(Chloromethyl)-2-(2-fluorophenyl)-4-phenyl-1-tosyl-2,5-dihydro-1*H*pyrrole 4g (cjj-9-169)



The reaction of FeCl<sub>3</sub> (19.5 mg, 0.12 mmol), 2-fluorobenzaldehyde **2p** (49.6 mg, 0.40 mmol), N-(2-phenylbuta-2,3-dienyl)-4-tolylsulfonamide 1b (179.3 mg, 0.60 mmol), and TMSCl (66.3 mg, 0.61 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) afforded 93.5 mg (53 %) of 4g (eluent: petroleum ether/ethyl acetate/ $CH_2Cl_2 = 30/1/1$ ): white solid; m.p. 125-127 °C (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, J = 8.4 Hz, 2 H, Ar-H), 7.44-7.32 (m, 4 H, Ar-H), 7.32-7.17 (m, 5 H, Ar-H), 7.12 (t, J = 7.5 Hz, 1 H, Ar-H), 6.95 (t, J = 9.5 Hz, 1 H, Ar-H), 6.10-6.00 (m, 1 H, ArCHNTs), 4.67-4.55 (m, 2 H, CH<sub>2</sub>), 4.13 (d, J = 11.4 Hz, 1 H, one proton of CH<sub>2</sub>), 3.58 (d, J =11.4 Hz, 1 H, one proton of CH<sub>2</sub>), 2.38 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.8 (d, J = 247.7 Hz), 143.4, 136.9, 134.8, 132.0, 130.9, 130.1 (d, J = 3.4Hz), 130.0 (d, J = 8.3 Hz), 129.5, 128.9, 128.8, 127.5, 127.1, 126.0 (d, J = 11.8 Hz), 124.4 (d, J = 3.4 Hz), 115.7 (d, J = 21.6 Hz), 66.2, 57.6, 37.6, 21.4; <sup>19</sup>F NMR (282) MHz, CDCl<sub>3</sub>) -118.2; MS (EI) m/z (%) 443 (M<sup>+</sup>(<sup>37</sup>Cl), 0.79), 441 (M<sup>+</sup>(<sup>35</sup>Cl), 2.06), 91(100); IR (neat) 3061, 2922, 2863, 1615, 1598, 1491, 1457, 1446, 1349, 1306, 1267, 1220, 1165, 1096, 1033, 1017 cm<sup>-1</sup>; Anal Calcd for C<sub>24</sub>H<sub>21</sub>NO<sub>2</sub>SClF: C, 65.22; H, 4.79; N, 3.17. Found: C, 65.32; H, 4.92; N, 3.00.

### (8) 3-(Chloromethyl)-4-phenyl-2-propyl-1-tosyl-2,5-dihydro-1*H*-pyrrole 4h





The reaction of FeCl<sub>3</sub> (19.4 mg, 0.12 mmol), *n*-C<sub>3</sub>H<sub>7</sub>CHO **2q** (29.0 mg, 0.40 mmol), *N*-(2-phenylbuta-2,3-dienyl)-4-tolylsulfonamide **1b** (180.0 mg, 0.60 mmol), and TMSCl (65.4 mg, 0.6 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4 mL) afforded 72.3 mg (46 %) of **4h** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 30/1/1): oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 (d, *J* = 8.0 Hz, 2 H, Ar-H), 7.39-7.27 (m, 5 H, Ar-H), 7.13-7.08 (m, 2 H, Ar-H), 4.91-4.86 (m, 1 H, CHNTs), 4.42 (s, 2 H, CH<sub>2</sub>NTs), 4.15 (d, *J* = 12.0 Hz, 1 H, one proton of CH<sub>2</sub>), 3.93 (d, *J* = 12.0 Hz, 1 H, one proton of CH<sub>2</sub>), 2.41 (s, 3 H, CH<sub>3</sub> of Ts), 2.06-1.95 (m, 1 H, one proton of CH<sub>2</sub>), 1.76-1.65 (m, 1 H, one proton of CH<sub>2</sub>), 1.60-1.45 (m, 1 H, one proton of CH<sub>2</sub>), 1.42-1.28 (m, 1 H, one proton of CH<sub>2</sub>), 0.96 (t, *J* = 7.4 Hz, 3 H, CH<sub>3</sub>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.6, 136.8, 134.4, 132.4, 131.8, 129.7, 128.8, 128.7, 127.5, 127.4, 68.2, 58.0, 38.1, 35.3, 21.5, 16.9, 14.0; MS (ESI) *m*/*z* (%) 486 (M+Py+NH<sub>4</sub><sup>+</sup>, <sup>35</sup>Cl), 392 (M+H<sup>+</sup>, <sup>37</sup>Cl), 390 (M+H<sup>+</sup>, <sup>35</sup>Cl); IR (neat) 2956, 2866, 1660, 1596, 1495, 1453, 1340, 1267, 1217, 1158, 1095, 1031 cm<sup>-1</sup>; HRMS (ESI) calcd for C<sub>21</sub>H<sub>24</sub><sup>35</sup>ClNO<sub>2</sub>S (M<sup>+</sup>): 389.1216. Found: 389.1226.

#### Synthetic application via coupling of the C-Cl bond



(1) Synthesis of 4-phenyl-1-tosyl-1,2,3,6-tetrahydropyridine 6a (cjj-12-40)

**Typical Procedure.** To a rubber-capped Schlenk vessel was added K<sub>3</sub>PO<sub>4</sub> (152.0 mg, 0.70 mmol). This equipment was dried with flame under vacuum and backfilled with Ar for three times. Then Pd(OAc)<sub>2</sub> (1.4 mg, 0.006 mmol), LB-Phos • HBF<sub>4</sub> (5.6 mg, 0.012 mmol), phenyl boronic acid (48.8 mg, 0.40 mmol), and 0.5 mL of dioxane were added sequentially to the Schlenk vessel. Then 3j (54.5 mg, 0.20 mmol), 0.5 mL of dioxane, and water (11.2 mg, 0.62 mmol) were added sequentially. The resulting mixture was stirred at 110 °C for 12 h. After the reaction was complete as monitored by TLC (petroleum ether : ethyl acetate = 5 : 1), the reaction mixture was evaporated and purified via flash chromatography on silica gel (eluent: petroleum ether/ethyl acetate/ $CH_2Cl_2 = 10/1/1$ ) to afford 53.4 mg (85 %) of **6a**: white solid; m.p. 213-215 <sup>o</sup>C (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, J = 8.4 Hz, 2 H, Ar-H), 7.38-7.20 (m, 7 H, Ar-H), 5.60-5.58 (m, 1 H, CH=), 3.80-3.72 (m, 2 H, CH<sub>2</sub>), 3.31 (t, J = 5.7 Hz, 2 H, CH<sub>2</sub>), 2.66-2.52 (m, 2 H, CH<sub>2</sub>), 2.43 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 143.6, 140.0, 135.3, 133.0, 129.6, 128.4, 127.7, 127.5, 124.9, 118.9, 45.2, 43.0, 27.5, 21.5; MS (EI) *m/z* (%) 313 (M<sup>+</sup>, 7.25), 131 (100); IR (neat) 2960, 2926, 2859, 1595, 1497, 1446, 1342, 1259, 1165, 1103, 1063, 1020 cm<sup>-1</sup>:

Anal Calcd for C<sub>18</sub>H<sub>19</sub>NO<sub>2</sub>S: C, 68.98; H, 6.11; N, 4.47. Found: C, 68.95; H, 6.25; N, 4.41.

The following compounds were prepared according to this procedure.

(2) 4-(2-Furanyl)-1-tosyl-1,2,3,6-tetrahydropyridine 6b (cjj-9-135)



The reaction of K<sub>3</sub>PO<sub>4</sub> (152.1 mg, 0.70 mmol), Pd(OAc)<sub>2</sub> (1.4 mg, 0.006 mmol), LB-Phos • HBF<sub>4</sub> (5.5 mg, 0.012 mmol), 2-furanyl boronic acid (44.8 mg, 0.40 mmol), **3j** (53.7 mg, 0.20 mmol), and water (10.7 mg, 0.59 mmol) in dioxane (1 mL) afforded 54.0 mg (90 %) of **6b** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 8/1/1): white solid; m.p. 194-195 °C (CH<sub>2</sub>Cl<sub>2</sub>/petroleum ether); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.33 (d, *J* = 6.9 Hz, 3 H, Ar-H + Furan-H), 6.39-6.32 (m, 1 H, CH), 6.22-6.17 (m, 1 H, CH), 6.14-6.07 (m, 1 H, CH), 3.80-3.74 (m, 2 H, CH<sub>2</sub>), 3.28 (t, *J* = 5.9 Hz, 2 H, CH<sub>2</sub>), 2.55-2.46 (m, 2 H, CH<sub>2</sub>), 2.43 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  153.3, 143.6, 141.8, 133.2, 129.7, 127.7, 125.6, 116.2, 111.0, 105.2, 44.7, 42.4, 25.2, 21.5; MS (EI) *m/z* (%) 303 (M<sup>+</sup>, 8.79), 148 (100); IR (neat) 2974, 2922, 1597, 1489, 1458, 1400, 1339, 1310, 1291, 1276, 1261, 1240, 1162, 1122, 1101, 1063, 1005 cm<sup>-1</sup>; Anal Calcd for C<sub>16</sub>H<sub>17</sub>NO<sub>3</sub>S: C, 63.34; H, 5.65; N, 4.62.

Found: C, 63.10; H, 5.73; N, 4.51.

#### (3) 2,4-Diphenyl-1-tosyl-1,2,3,6-tetrahydropyridine 6c (cjj-8-191)



The reaction of K<sub>3</sub>PO<sub>4</sub> (153.2 mg, 0.71 mmol), Pd(OAc)<sub>2</sub> (1.5 mg, 0.007 mmol), LB-Phos •HBF<sub>4</sub> (5.7 mg, 0.013 mmol), phenyl boronic acid (48.2 mg, 0.39 mmol), **3b** (71.2 mg, 0.20 mmol), and water (11.3 mg, 0.63 mmol) in dioxane (1 mL) afforded 67.8 mg (85 %) of **6c** (eluent: petroleum ether/ethyl acetate/CH<sub>2</sub>Cl<sub>2</sub> = 20/1/1): oil ; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.37-7.15 (m, 12 H, Ar-H), 5.94-5.87 (m, 1 H, CH=), 5.46 (d, *J* = 6.0 Hz, 1 H, ArCHNTs), 4.38-4.27 (m, 1 H, one proton of TsNCH<sub>2</sub>), 3.61-3.48 (m, 1 H, one proton of TsNCH<sub>2</sub>), 2.87-2.60 (m, 2 H, CH<sub>2</sub>), 2.37 (s, 3 H, CH<sub>3</sub> of Ts); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.2, 140.2, 138.9, 137.5, 134.2, 129.5, 128.42, 128.36, 127.54, 127.49, 127.2, 127.0, 124.9, 120.0, 53.1, 41.3, 28.4, 21.4; MS (EI) *m*/z (%) 389 (M<sup>+</sup>, 7.58), 94 (100); IR (neat) 3059, 3030, 2922, 2849, 1684, 1597, 1578, 1495, 1448, 1370, 1342, 1305, 1290, 1262, 1161, 1097, 1070, 1031, 1018 cm<sup>-1</sup>; HRMS (EI) calcd for C<sub>24</sub>H<sub>23</sub>NO<sub>2</sub>S (M<sup>+</sup>) 389.1450. Found 389.1448. <sup>1</sup>H NMR, <sup>13</sup>C NMR, and <sup>19</sup>F NMR Spectra



# Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012



S25



S26







Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012





Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012



S32






















S43









S47

















































Crystal data for **3j**.  $C_{12}H_{14}CINO_2S$ , MW = 271.75, monoclinic, space group P2(1)/c, final R indices [I > 2 (I)], R<sub>1</sub> = 0.0401, wR<sub>2</sub> = 0.1023, R indices (all data) R<sub>1</sub>= 0.0439, wR<sub>2</sub>= 0.1062, a = 7.7348(5) Å, b = 8.2950(5) Å, c = 20.1342(13) Å,  $\alpha = 90^{\circ}$ ,  $\beta = 98.598(1)^{\circ}$ ,  $\gamma = 90^{\circ}$ , V = 1277.3(14) Å<sup>3</sup>, T = 293 K, Z = 4, reflections collected/unique: 7493/2511 ( $R_{int} = 0.0285$ ), number of observations [I > 2(I]] 2253, parameters: 156. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC 880541).



Crystal data for **4a**. C<sub>24</sub>H<sub>21</sub>Cl<sub>2</sub>NO<sub>2</sub>S, MW = 458.38, monoclinic, space group P2(1)/n, final R indices [I > 2 (I)], R<sub>1</sub> = 0.0536, wR<sub>2</sub> = 0.1300, R indices (all data) R<sub>1</sub> = 0.0759, wR<sub>2</sub> = 0.1405, a = 17.918(2) Å, b = 5.8464(8) Å, c = 21.295(3) Å,  $\alpha = 90^{\circ}$ ,  $\beta = 99.577(4)^{\circ}$ ,  $\gamma = 90^{\circ}$ , V = 2199.7(5) Å<sup>3</sup>, T = 296 K, Z = 4, reflections collected/unique: 24225/3857 ( $R_{int} = 0.0603$ ), number of observations [I > 2 (I)] 2849, parameters:271. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC 880542).