Supporting Information

Neutral tetrathia[22]annulene[2.1.2.1] based field-effect transistors. improved *on/off* ratio defies ring puckering[†]

Kamaljit Singh,* Tarunpreet Singh Virk, Jing Zhang, Wei Xu and Daoben Zhu*

Table of Contents

General Information	S2
Experimental Section	S 3
Copies of ¹ H, ¹³ C NMR, IR and Mass Spectra	S 6
Theoretical Calculations	S34
UV-Visible Spectra	S51
Cyclic Voltamogram	S52
TGA graphs	S53
X-Rays	S54
Experimental details for OFET Device fabrication	S57
Cif files of 11a	S59

General Information

¹H (400 MHz), ¹³C (100 MHz) NMR spectra were recorded on a BRUKER AVANCE II 400 NMR Spectrometer and JEOL-FT NMR-AL Spectrometer at 300MHz. Tetramethylsilane (TMS) served as the internal standard (0 ppm for ¹H and 77.0 ppm for ¹³C) and CDCl₃ was used as solvent. The following abbreviations were used to express the multiplicities: s =singlet; d = doublet; t = triplet; q = quartet; m = multiplet; br = broad. Data are reported as follows: chemical shifts in ppm (δ), integration, coupling constant J (Hz) and assignment. Mass spectra were recorded on Bruker Daltonics esquire3000 00037 mass spectrometer. Elemental analyses were performed with a Thermoelectron FLASH EA1112 CHNS analyzer and were within $\pm 0.4\%$ of the theoretical values. IR spectrum was recorded on VARIAN 660-IR Fourier-Transform Spectrophotometer in range 400-4000 cm⁻¹ using KBr as medium. UV-Vis spectra were recorded on a SHIMADZU 1601 PC spectrophotometer, with a quartz cuvette (path length, 1 cm) and studies were performed in AR grade DCM. TGA were performed on a TA instrument with a DTG-60 detector with a temp. rise of 10 C/minute under nitrogen atmosphere. Electrochemical studies were carried out on CHI 660C Electrochemical Workstation with a conventional three-electrode configuration consisting of platinum working electrode (2 mm diameter), counter electrode and Ag/AgCl as reference electrode. The experiments were carried out on 10⁻⁴ M solutions of samples in DCM containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) as supporting electrolyte at room temperature. Deoxygenation of the solutions was achieved by bubbling nitrogen for 30 min and the working electrode was cleaned after each run. The cyclic voltammograms were recorded with a scan rate of 100 mVs⁻¹. All reactions were monitored by thin-layer chromatography carried out on Merck pre-coated TLC plates (silica gel 60 F₂₅₄, 0.25 mm), visualization by using UV (254 nm). Melting points were determined in open capillaries and are uncorrected. Reactions that required anhydrous conditions were carried out under the blanket of deoxygenated (BASF catalyst) anhydrous nitrogen gas in oven/flame dried glassware. The products were purified by flash column chromatography on silica gel 60-120 mesh. All reagents and chemicals were purchased from Sigma-Aldrich. DMF, Diethyl ether, TiCl₄, Pyridine and DCM were purchased locally, dried and distilled prior to use. n-Buli was prepared and stored under a blanket of dry nitrogen gas. THF and toluene were distilled from sodium/benzophenone (benzophenone ketyl). Anhydrous DCM was stored over fused CaCl₂ and distilled before use. Zinc dust was activated prior to use using standard (2M

HCl and subsequent water washing) methods. DDQ and hydrazine hydrate were purchased from Sigma-Aldrich, and were used as received. All theoretical studies were performed with a GAUSSIAN 09 software package.

Experimental Section

General procedure for the synthesis of *meso*-substituted dithienyl methane dialdehydes (9a,b):

To a solution of *meso-p*-florophenyl dithienyl methane 1g (3.65 mmol) in dry diethyl ether (33ml) was added dropwise, n-Buli (8.2 mmol) at r.t.. to the deep red solution so obtained was added dropwise, anhydrous DMF (8 mmol) in diethyl ether. After 1 hour stiring, the mixture was washed successively with water, dil. HCl, water and sodium bicarbonate. The organic phase was then dried and vaccum evaporated. The residue was chromatographed on silica to give (1) as a deep red oil (750 mg) 62.3%.

The characteristic data for 8a, 8b, 9a and 9b is presented below.

m-Chlorophenyl-di(thien-2yl)methane, 8a

(Yield = 16%), ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.27 (1H, m), 7.15-7.22 (5H, m), 6.90-6.93 (2H, m), 6.79-6.80 (2H, m), 5.81 (1H, s); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 146.5, 145.5, 134.3, 129.7, 128.4, 127.3, 126.6, 126.4, 126.2, 124.9, 46.9; *m/z* 290.5, colourless oil.

p-Florophenyl-di(thien-2yl)methane, 8b

(Yield = 15%), ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.27 (2H, m), 7.19-7.22 (4H, m), 6.93 (2H, t, J= 4.22 hz), 6.79 (2H, d, J= 4 hz), 5.82 (1H, s); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 147, 142.2, 133, 129.7, 128.7, 126.7, 126.2, 124.9, 46.8; *m/z* 274.2, colourless oil.

m-Chlorophenyl-di(5-formylthien-2yl)methane, 9a

(Yield = 64%), ¹H NMR (400 MHz, CDCl₃) 9.86 (2H, s), 7.65 (2H, d, J=3.6 Hz), 7.30-7.32 (2H, m), 7.26 (1H, s), 7.16-7.18 (1H, m), 6.98 (2H, dd, J=2.8 Hz), 5.87 (1H, s); ¹³C NMR (100 MHz, CDCl₃) 182.7, 155.5, 143.5, 142.8, 136.3, 135, 130.4, 128.5, 128.4, 127.9, 126.4, 48.1; *m/z* 347 (M, 100%).

p-Florophenyl-di(5-formylthien-2yl)methane, 9b

(Yield = 62.3%), ¹H NMR (400 MHz, CDCl₃) 9.83 (2H, s), 7.63-7.65 (2H, m), 7.23-7.27 (2H, m), 7.01-7.06 (2H, m), 6.95-6.96 (2H, m), 5.89 (1H, s); ¹³C NMR (100 MHz, CDCl₃) 182.7, 156.2, 143.2, 136.2, 129.9, 129.8, 127.7, 116.1, 115.8, 47.7; m/z 331 (M+, 100%).

General procedure for the synthesis of the *meso*-substituted dihydrotetrathia annulenes 10a and 10b:

To a stirring suspension of zinc dust (38 mmol) in 200 ml of THF maintained under nitrogen atmosphere, a solution of 19.6 ml of 1.0 M TiCl₄ (in CH₂Cl₂) was added over 20 minutes. The reaction mixture was refluxed for 1 hour, and treated with a solution of appropriate dialdehyde (1.78 mmol) and pyridine (35.6 mmol) dissolved in 200 ml of THF. The addition was made using a hypodermic syringe over 40 minutes to the gently refluxing suspension. After refluxing under nitrogen for 18 hours, the reaction was carefully quenched with a solution of aqueous K_2CO_3 (10%, 100 ml). The reaction mixture was filtered, and the filtrate was concentrated under reduced pressure and the residue extracted with 300 ml methylene chloride. The extract was washed with water (2 x 50 ml) and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the residue gressure and the residue was chromatographed (over silica) to isolate the **10a,b** as light green solids (25%),(**10a,b**, m.pt. >280 °C).

Meso-m-chlorophenyldihydrotetrathia[22]annulene[2,1,2,1] 10a, (Yield = 13%), ¹H NMR (400 MHz, CDCl₃) 7.31 (2H, s), 7.20-7.27 (6H, m), 6.82-6.83 (4H, m), 6.65 (1H, dd, J= 4 Hz), 6.61 (3H, dd, J= 2.72 Hz), 6.51 (4H, s), 5.71 (2 H, m); ¹³C NMR (100 MHz, CDCl₃) 148.2, 144.7, 138.7, 134.3, 129.8, 128.6, 128.5, 127.3, 126.7, 125.8, 123.6, 47.8; IR (KBr): 687, 763, 807,889, 953, 1025, 1254, 1427, 1473, 1570, 1590, 2961, 3014, 3060, 3433 cm⁻¹; (M+K) 668.

Meso-p-florophenyldihydrotetrathia[22]annulene[2,1,2,1] 10b, (Yield =15%), ¹H NMR (400 MHz, CDCl₃) 7.26-7.30 (4H, m), 6.99-7.03 (4H, m), 6.80-6.82 (4H, m), 6.63 (2H, dd, J=4 Hz), 6.60 (2H, dd, J= 4 Hz), 6.5 (4H, m), 5.73-5.75 (2H, m); ¹³C NMR (100 MHz, CDCl₃) 148.9, 138.6, 130, 128.6, 125.6, 123.6, 123.4, 115.5, 115.2, 47.4; IR (KBr):724, 793, 810, 860, 1025, 1158, 1222, 1389, 1506, 1600, 1621, 1892, 2970, 3020, 3065, 3401 cm⁻¹; (M + K) 635.

General procedure for the synthesis of the *meso*-substituted tetrathia[22]annulenes 11a and 11b:

To a solution of **10a** (0.2 mmol) in 5 ml toluene, was added under nitrogen with stirring, a solution of DDQ (0.5 mmol) in 5 ml toluene. Shortly after mixing the two solutions, purple precipitates formed and the reaction mixture was stirred for additional 3 h. The purple precipitates were filtered and added to 3 ml of hydrazine hydrate (98%). After boiling for 10 minutes, the solid was filtered, washed with water, and dried. The resulting product was dissolved in methylene chloride and chromatographed on silica (DCM). Evaporation of the purple solution gave **11a** (50%) as shining metallic purple solid (**11a,b**, m.pt. >280 °C).

Meso-m-clorophenyltetrathia[22]annulene[2,1,2,1] 11a, (Yield = 50%), ¹H NMR (400 MHz, CDCl₃) 11.09 (4H, s), 10.41 (4H, d, J= 4 Hz), 9.98 (4H, d, J= 4.4 Hz), 8.47 (2H, s), 8.33-8.35 (2H, m), 7.91-7.97 (4H, m); IR (KBr): 776, 810, 1069, 1168, 1359, 1464, 1588, 1632, 2923, 3398 cm⁻¹; Anal. Calcd. (%) for $C_{34}H_{20}S_4Cl_2$: C, 65.07; H, 3.19; S, 20.41; Found: C, 65.09; H, 3.19; S, 20.40; *m/z* 627.9 (100%).

Meso-p-florophenyltetrathia[22]annulene[2,1,2,1] 11b, (Yield = 45%), ¹H NMR (400 MHz, CDCl₃) 11.10 (4H, s), 10.41 (4H, d, J= 4.8 Hz), 9.98 (4H, d, J= 4.8 Hz), 8.41-8.44 (4H, m), 7.67-7.72 (4H, m); IR (KBr): 809, 1154, 1217, 1504, 3055 cm⁻¹; Anal. Calcd. (%) for $C_{34}H_{20}S_4F_2$: C, 68.68; H, 3.36; S, 21.54 ; Found: C, 68.66; H, 3.35; S, 21.53; *m/z* 594 (100%).

Copies of ¹H, ¹³C NMR, IR and Mass Spectra:

Figure S1: ¹H NMR spectrum of **8a**.

Figure S2: ¹³C NMR spectrum of 8a.

Figure S3: Mass spectrum of 8a.

Figure **S4**: ¹H NMR spectrum of **8b**.

Figure **S5**: ¹³C NMR spectrum of **8b**.

Figure S6: Mass spectrum of 8b.

Figure **S7**: ¹H NMR spectrum of **9a**.

Figure **S8**: ¹³C NMR spectrum of **9a.**

Figure **S9**: Mass spectrum spectrum of **9a**.

Figure **S10**: IR Spectrum of **9a**.

Figure **S11**: ¹H NMR spectrum of **9b**.

Figure **S12**: ¹³C NMR spectrum of **9b**.

Figure S13: Mass spectrum of 9b.

Figure S14: IR Spectrum of 9b.

Figure **S15**: ¹H NMR Spectrum of **10a**.

Figure **S16**: ¹³C NMR spectrum of **10a**.

Figure S17: Mass spectrum of 10a.

Figure S18: IR Spectrum of 10a.

Figure **S19**: ¹H NMR Spectrum of **10b**.

Figure S20: ¹³C NMR Spectrum of 10b.

Figure S21: Mass spectrum of 10b.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Figure S22: IR Spectrum of 10b.

Figure **S23**: ¹H NMR Spectrum of **11a**.

Figure S24: Mass spectrum of 11a.

Figure S25: IR Spectrum of 11a.

Figure S26: 1H NMR Spectrum of 11b.

Figure S27: Mass spectrum of 11b.

Figure S28: IR Spectrum of 11b.

Theoretical Calculations

Computational methods

All the calculations were performed at the density functional theory (DFT) level with the B3LYP functional, the gradient correction of the exchange functional by Becke and the correlation functional by Lee, Yang and Parr. The 6-311G(d) split valence plus polarization basis set was used in Gaussian 09 program.^{[1],[2]} The results were analyzed and visualized on Gauss View 5.0.9.

^{[&}lt;sup>1</sup>] Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, W. H. G. E.; Robb, M. A.;Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M; Toyota, K.; Fukuda,R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta,Jr., J. E.; Ogliaro, F.;Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi,R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;

Zakrzewski,V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J.V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.

^{[&}lt;sup>2</sup>] Details including the references for the DFT method and basis set can be found online at the homepage of Gaussian, Inc.; http://www.gaussian.com/

Figure S29: Energy minimized structure of **11a** by DFT method at B3LYP/6-311G(d) level using the Gaussion09 program (Top and side views shown above).

Figure S30: The ghost (Bq) atoms (in purple) were placed (0.5 Å interval) in the centre of the molecule. The -ve NICS values clearly indicate the aromaticity of **11a**. NICS is maximum at 0 Å and decreases as the distance of the ghost atom is increased in 0.5 Å intervals.

Figure S31: As shown above is the behaviour of the four thiophene rings of **11a**. The NICS are negative and maximum at their centres and decreases as we move farther. Further the NICS at the centre is far higher than the normal thiophene showing their increased aromatic character when they are part of the annulene ring. Phenyl rings are showing the normal behavior like benzene but with decreased NICS values.

Figure S32: Energy minimized structure of **11b** by DFT method at B3LYP/6-311G(d) level using the Gaussion09 program (Top and side views shown above).

Figure S33: The ghost (Bq) atoms were placed (0.5 Å interval) in the centre of the molecule (in purple). The -ve NICS values clearly indicate the aromaticity of **11b**. NICS is maximum at 0 Å and decreases as the distance of the ghost atom is increased in 0.5 Å intervals.

Figure S34: As shown above is the behaviour of the four thiophene rings of **11b**. The NICS are negative and maximum at their centres and decreases as we move farther. Further the NICS at the centre is far higher than the normal thiophene showing their increased aromatic character when they are part of the annulene ring. Phenyl rings are showing the normal behavior like benzene but with decreased NICS values.

Figure S35: Energy minimized structure of antiaromatic dication **12b**. Upper (top view), lower (side view).

Figure S36: Placement of the ghost atoms (at 0.5 Å intervals) at the centre of all the individual rings as well as the main ring of **12b** (anti aromatic). The +ve NICS values (NICS 1 = 10.65) indicates the antiaromatic behaviour of the dication **12b**. The resulting NICS vs. r (distance from centre in Å) graph is also shown for the main centre of the **12b**. The graphs for the four thiophene rings are also shown (Figure S37).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2012

Figure S37: For **12b** As shown at the top, at the centre of a set of two thiophene rings aromaticity (-ve NICS) is lost at about 1 Å distance and antiaromatic ring current is then observed due to the impact of the main annulene ring. The other set of thiophenes maintain their aromaticity as they points outwards to the annulene core as shown in Fig. S36. They also show a dip at 1 Å which is not shown by a free thiophene ring. The *p*-florophenyl rings shows the normal aromaticity.

163 (LUMO+1), -0.08132 a.u.

162 (LUMO), -0.10188 a.u.

161 (HOMO), -0.18024 a.u.

160 (HOMO-1), -0.19319 a.u.

Figure S38: HOMO-LUMO and their neighbouring energy levels for **11a** are shown along with their energies (left) in a.u. HOMO - LUMO levels are showing high degree of delocalisation on the 22 Π annulene ring periphery. The energy of HOMO = -0.18024 a.u. and that of LUMO = -0.10188 a.u.

Figure S39: HOMO-LUMO and their neighbouring energy levels for **11b** are shown along with their energies (left) in a.u. HOMO - LUMO levels are showing high degree of delocalisation on the 22 Π annulene ring periphery. The energy of HOMO = -0.17860 a.u. and that of LUMO = -0.10007 a.u..

Cartesian coordinates

Table S1: Cartesian coordinates of 11a

SCF Done: E (RB3LYP) = -3821.16360453 a.u..

Center Number	Atomic Number	Atom Type	ic Coord X	inates (Angs Y	stroms) Z
1	16	0	1.531384	1.550566	-0.136219
2	6	0	0.616009	4.241159	0.058379
3	6	0	1.655553	3.304537	-0.070987
4	6	0	3.019430	3.663395	-0.166820
5	1	0	3.331399	4.701394	-0.145682
6	6	0	3.894801	2.605820	-0.278562
7	1	0	4.967675	2.721984	-0.352155
8	6	0	3.278349	1.330467	-0.282769
9	6	0	3.922479	0.082407	-0.377136
10	6	0	5.417280	0.114888	-0.530463
11	6	0	6.001194	0.338373	-1.781666
12	1	0	5.364074	0.488042	-2.646428
13	6	0	7.387040	0.365558	-1.917886
14	1	0	7.832552	0.537041	-2.892251
15	6	0	8.211885	0.171465	-0.812425
16	1	0	1.009752	5.255799	0.060949
17	16	0	1.593335	-1.485276	-0.161228
18	6	0	0.770346	-4.212211	-0.189886
19	6	0	1.775879	-3.232787	-0.254923
20	6	0	3.146930	-3.534363	-0.419886
21	1	0	3.492342	-4.558717	-0.500783
22	6	0	3.982748	-2.440916	-0.474073
23	1	0	5.054065	-2.512847	-0.604389
24	6	0	3.325642	-1.192153	-0.349837
25	6	0	6.241901	-0.079660	0.582697
26	1	0	5.806569	-0.250874	1.559851
27	6	0	7.623798	-0.049276	0.428309
28	1	0	1.198289	-5.209666	-0.270588
29	16	0	-1.531384	-1.550563	0.136208
30	6	0	-0.616009	-4.241156	-0.058386
31	6	0	-1.655553	-3.304534	0.070984
32	6	0	-3.019429	-3.663392	0.166826
33	1	0	-3.331398	-4.701391	0.145693
34	6	0	-3.894799	-2.605816	0.278569
35	1	0	-4.967673	-2.721981	0.352170
36	6	0	-3.278348	-1.330464	0.282768
37	6	0	-3.922478	-0.082405	0.377133
38	6	0	-5.417278	-0.114886	0.530466
39	6	0	-6.001185	-0.338356	1.781675
40	1	0	-5.364062	-0.488017	2.646436
41	6	0	-7.387030	-0.365540	1.917902

42	1	0	-7.832538	-0.537012	2.892271
43	6	0	-8.211881	-0.171459	0.812443
44	1	0	-1.009752	-5.255797	-0.060953
45	16	0	-1.593334	1.485278	0.161222
46	6	0	-0.770347	4.212213	0.189875
47	6	0	-1.775879	3.232789	0.254911
48	6	0	-3.146931	3.534365	0.419869
49	1	0	-3.492344	4.558719	0.500760
50	6	0	-3.982748	2.440918	0.474058
51	1	0	-5.054066	2.512849	0.604371
52	6	0	-3.325642	1.192155	0.349828
53	6	0	-6.241904	0.079649	-0.582691
54	1	0	-5.806577	0.250852	-1.559850
55	6	0	-7.623801	0.049267	-0.428296
56	1	0	-1.198290	5.209668	0.270573
57	1	0	9.290710	0.190275	-0.908948
58	1	0	-9.290705	-0.190267	0.908971
59	17	0	8.650456	-0.294641	1.837998
60	17	0	-8.650465	0.294616	-1.837983

Table S2: Cartesian coordinates of 11b

SCF Done: E(RB3LYP) = -3100.44898875 a.u.

Center	Atomic	Atom	nic Coord	inates (Angs	stroms)
Numbe	Number	Туре	X	Y	Ź
1	16	0	1.517613	0.000059	1.569273
2	6	0	4.229223	0.000182	0.696513
3	6	0	3.270420	0.000137	1.723818
4	6	0	3.601244	0.000139	3.098206
5	1	0	4.633765	0.000177	3.428694
6	6	0	2.524907	0.000086	3.957796
7	1	0	2.618636	0.000076	5.035369
8	6	0	1.261141	0.000042	3.317893
9	6	0	0.000000	0.000000	3.942829
10	6	0	0.000000	0.000000	5.445866
11	6	0	0.000000	-1.203883	6.159156
12	1	0	-0.000012	-2.143791	5.617619
13	6	0	0.000002	-1.212480	7.552237
14	1	0	-0.000004	-2.138853	8.115171

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86 273 13 18 06 94 '96 69 93 56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273 513 518 506 594 596 69 56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 13 18 206 594 56 56
19 6 0 -3.270420 -0.000137 1.7238 20 6 0 -3.601244 -0.000139 3.0982 21 1 0 -4.633765 -0.000177 3.4286	 18 206 594 796 69 693 56
20 6 0 -3.601244 -0.000139 3.0982 21 1 0 -4.633765 -0.000177 3.4286	206 594 796 69 56
21 1 0 -4.633765 -0.000177 3.4286	94 96 69 93
	96 69 93
22 6 0 -2.524907 -0.000086 3.9577	69 93 56
23 1 0 -2.618636 -0.000076 5.0353	93 56
24 6 0 -1.261141 -0.000042 3.3178	56
25 6 0 0.000000 1.203883 6.1591	50
26 1 0 0.000012 2.143791 5.6176	19
27 6 0 -0.000002 1.212481 7.5522	37
28 1 0 0.000004 2.138854 8.1151	70
29 1 0 -5.236320 -0.000225 1.1092	86
30 16 0 -1.517613 -0.000060 -1.569	273
31 6 0 -4.229223 -0.000182 -0.6965	513
32 6 0 -3.270420 -0.000137 -1.7238	318
33 6 0 -3.601244 -0.000139 -3.0982	206
34 1 0 -4.633765 -0.000177 -3.4286	594
35 6 0 -2.524907 -0.000086 -3.957	/96
36 1 0 -2.618636 -0.000076 -5.0353	69
37 6 0 -1.261141 -0.000042 -3.3178	393
38 6 0 0.000000 0.000000 -3.9428	29
39 6 0 0.000000 0.000000 -5.4458	66
40 6 0 0.000000 1.203883 -6.1591	56
41 1 0 0.000012 2.143791 -5.6176	19
42 6 0 -0.000002 1.212481 -7.5522	37
43 1 0 0.000004 2.138854 -8.1151	70
44 6 0 0.000000 0.000000 -8.2249	63
45 1 0 -5.236320 -0.000225 -1.1092	286
46 16 0 1.517613 0.000059 -1.5692	273
47 6 0 4.229223 0.000182 -0.6965	13
48 6 0 3.270420 0.000137 -1.7238	18
49 6 0 3.601244 0.000139 -3.0982	06
50 1 0 4.633765 0.000177 -3.4286	94
51 6 0 2.524907 0.000086 -3.9577	96
52 1 0 2.618636 0.000076 -5.0353	69
53 6 0 1.261141 0.000042 -3.3178	93
54 6 0 0.000000 -1.203883 -6.1591	56
55 1 0 -0.000012 -2.143791 -5.6176	519
56 6 0 0.000002 -1.212480 -7.5522	37
57 1 0 -0.000004 -2.138853 -8.115	.71
58 1 0 5.236320 0.000224 -1.1092	86
59 9 0 0.000000 0.000000 9.5765	24
60 9 0 0.000000 0.000000 -9.5765	24

 Table S3: Cartesian coordinates of 12b

SCF Don	ie:	E(RB3LYP) = -3099.91380272 a.u.							
Center	Atomic	Atom	ic Coor	Coordinates (Angstroms)					
Number	Number	r Type	e X	Y	Ζ				
1	16	0	-1.633314	-1.552067	0.436315				
2	6	0	-0.679356	-4.224876	0.095413				
3	6	0	-1.715469	-3.224541	-0.023758				
4	6	0	-2.981453	-3.533913	-0.527206				
5	1	0	-3.238239	-4.526589	-0.874831				
6	6	0	-3.847072	-2.448196	-0.576672				
7	1	0	-4.841726	-2.495129	-0.997932				
8	6	0	-3.294427	-1.257893	-0.083724				
9	6	0	-3.959290	0.000000	-0.000004				
10	6	0	-5.421555	0.000000	0.000000				
11	6	0	-6.144183	0.925401	-0.790573				
12	1	0	-5.611147	1.612479	-1.436648				
13	6	0	-7.526729	0.915908	-0.806892				
14	1	0	-8.093450	1.592083	-1.435653				
15	6	0	-8.200984	0.000000	0.000009				
16	1	0	-1.108067	-5.223936	0.098060				
17	16	0	-1.633316	1.552066	-0.436338				
18	6	0	-0.679357	4.224876	-0.095447				
19	6	0	-1.715469	3.224540	0.023734				
20	6	0	-2.981449	3.533913	0.527189				
21	1	0	-3.238234	4.526589	0.874815				
22	6	0	-3.847068	2.448196	0.576663				
23	1	0	-4.841719	2.495129	0.997930				
24	6	0	-3.294426	1.257892	0.083712				
25	6	0	-6.144178	-0.925401	0.790580				
26	1	0	-5.611138	-1.612479	1.436650				
27	6	0	-7.526724	-0.915908	0.806906				
28	1	0	-8.093441	-1.592084	1.435670				

29	1	0	-1.108068	5.223936	-0.098106
30	16	0	1.633317	1.552066	-0.436334
31	6	0	0.679356	4.224876	-0.095446
32	6	0	1.715468	3.224540	0.023738
33	6	0	2.981447	3.533914	0.527196
34	1	0	3.238230	4.526590	0.874822
35	6	0	3.847066	2.448197	0.576672
36	1	0	4.841716	2.495131	0.997941
37	6	0	3.294425	1.257893	0.083720
38	6	0	3.959290	0.000001	0.000006
39	6	0	5.421555	0.000001	0.000014
40	6	0	6.144176	-0.925401	0.790594
41	1	0	5.611134	-1.612478	1.436664
42	6	0	7.526722	-0.915908	0.806924
43	1	0	8.093437	-1.592084	1.435690
44	6	0	8.200984	0.000000	0.000029
45	1	0	1.108067	5.223936	-0.098103
46	16	0	1.633314	-1.552067	0.436320
47	6	0	0.679357	-4.224876	0.095414
48	6	0	1.715470	-3.224540	-0.023754
49	6	0	2.981455	-3.533912	-0.527200
50	1	0	3.238242	-4.526588	-0.874825
51	6	0	3.847074	-2.448195	-0.576664
52	1	0	4.841728	-2.495128	-0.997922
53	6	0	3.294427	-1.257892	-0.083716
54	6	0	6.144185	0.925402	-0.790559
55	1	0	5.611151	1.612480	-1.436634
56	6	0	7.526731	0.915908	-0.806874
57	1	0	8.093454	1.592083	-1.435633
58	1	0	1.108068	-5.223936	0.098062
59	9	0	-9.527029	0.000000	0.000013
60	9	0	9.527029	0.000000	0.000036

Figure S40: UV-Vis. spectra of 10b (DCM), 11b (DCM) and 12b (H_2SO_4). (Inset shows the partial auto-oxidation of the 10b into 11b)

Figure S40a: UV-Vis. spectra of thin film of 11a.

Figure S40b: UV-Vis. spectra of thin film of 11b.

Figure S41: Cyclic voltammogram (CV) for **11b** (DCM, electrolyte TBAPF₆; working electrode: Pt; ref. electrode: Ag/AgCl; Scan rate 100 mV s⁻¹.

Figure S42: TGA Analysis of **11a** under N_2 with temperature rise of 10°C per minute. Thus**11a** is highly stable as it is having a high thermal decomposition temp. of about >355°C.

Figure S43: TGA Analysis of **11b** under N_2 with temperature rise of 10°C per minute. Thus**11b** is highly stable as it is having a high thermal decomposition temp. of about >355°C.

X-Ray Diffraction Analysis of 11a:

Single crystals of **11a** suitable for an X-Ray crystal structure determination were grown in a dark, quiet and undisturbed place from dry DCM with a toluene layer upon it (2 weeks). **Table S4**: The crystallographic data for **11a**.

Empirical formula	C136 H80 Cl8 S16
Formula weight	2510.56
Temperature	150(2) K
Wavelength	1.54180 A
Crystal system, space group	Orthorhombic, F d d 2
Unit cell dimensions	a = 60.299(6) A alpha = 90 deg. b = 19.5214(15) A beta = 90 deg. c = 9.5973(8) A gamma = 90 deg.
Volume	11297.2(17) A^3
Z, Calculated density	4, 1.476 Mg/m^3
Absorption coefficient	5.018 mm^-1
F(000)	5152
Crystal size	0.23 x 0.18 x 0.14 mm
Theta range for data collection	2.93 to 72.40 deg.
Limiting indices	-72<=h<=73, -22<=k<=23, -9<=l<=11
Reflections collected / unique	19859 / 4940 [R(int) = 0.0462]
Completeness to theta $= 72.40$	99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.5401 and 0.3915
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4940 / 1 / 361
Goodness-of-fit on F ²	1.072
Final R indices [I>2sigma(I)]	R1 = 0.0503, wR2 = 0.1381

Absolute structure parameter

Largest diff. peak and hole

0.397 and -0.321 e.A^-3

0.00(2)

 Table S5:
 Torsion angles [deg] for 11a.

C(4) - S(1) - C(1) - C(34)
C(4) - S(1) - C(1) - C(2)
C(34) - C(1) - C(2) - C(3)
S(1)-C(1)-C(2)-C(3)
C(1) - C(2) - C(3) - C(4)
C(2) - C(3) - C(4) - C(5)
C(2)-C(3)-C(4)-S(1)
C(1)-S(1)-C(4)-C(5)
C(1)-S(1)-C(4)-C(3)
C(3) - C(4) - C(5) - C(12)
S(1)-C(4)-C(5)-C(12)
C(3) - C(4) - C(5) - C(6)
S(1) - C(4) - C(5) - C(6)
C(4) - C(5) - C(6) - C(7)
C(12) - C(5) - C(6) - C(7)
C(4) - C(5) - C(6) - C(11)
C(12) - C(5) - C(6) - C(11)
C(11) - C(6) - C(7) - C(8)
C(5) - C(6) - C(7) - C(8)
C(6) - C(7) - C(8) - C(9)
C(6) - C(7) - C(8) - CI(2)
C(7) - C(8) - C(9) - C(10)
CI(2) - C(8) - C(9) - C(10)
C(8) - C(9) - C(10) - C(11)

-176.7(4)-0.2(3)176.9(4)0.1(5)0.0(6) 179.3(4) -0.1(5)-179.3(3)0.1(3)-173.0(4)6.3(6) 7.0(6) -173.8(3)69.9(5) -110.1(5)-110.1(5)69.9(5)0.0(7) 180.0(4) 0.6(7)-178.5(4)-0.5(8)178.6(4)-0.1(9)

_	1 1	- 7 7	0 0 9 8		7 6 4 1	(((9 8 5 4)))	
_	1	7	1 2 7		9 7 2	(((6 6 3)))	
_	1 1	- 7 7	1 8 8		3 1 0	(((3 3 4)))	
_	1	- 7	1 0 9		3 7 5	(((5 6 4))))	
_	1	- 7	0 9 0		39	(5 4 2))	
	1	7	0 9 0	•	9 3 3	(())	3 5 8)))	
_	1	- 7	0 3 3	•	1 0 0	(((1 5 8 2))))
_	1 1	7 7 -	- 2 3 3		1 3 2 4	(((4 4 5))))	
_	1	7	0 3 2	•	6 1 5	(6 4 5)))	
	1	7	2 1 2	•	2 9 8	(5 4 2)))	
	1	7	500	• •	4 5	(((4 6))))	
_	1 -	77	0 4 8	• •	5 4 5	((0 3 6)))	
	1 1 -	0 0 7	5 0 4	• • •	9 8 7	(((5 5 6)))	
	1	- 7	1 8	•	2 2	(7 4))	
_	1	7	0 9	•	9	(8 4)) ,	
_	1	7	1 9 0	•	8 2 6	(((8 4 8)))	
_	1	-7	1 2 7	•	4 3 0	(((8 8 5)))	
-	1	7	7 2	•	7 8	(4 7)	
_	1 1	7 7	0 5 8		7 6 0	(((6 3 4)))	
	1	7	0 8	•	7 4	(4))	
	1	- - 7	0 0 7	•	2 4 0	(((5 7 4)))	

С	(9)	_	С	(1	0)	_	C	(1	1)	_	C	(6)		
C	(7 5)	_	C C	(6 6)	_	C C	(1 1	1 1)	_	C C	(1 1	0 0)		
C	(4)	_	C	(5)	_	C	(1	2)	_	C	(1	3)		
C	(6)	-	C	(5)	-	C	(1	2)	-	C	(1	3)		
C	(4 6)	_	C C	(55)	_	C C	(1 1	2)	_	S	(3 3)			
C	(1	, 5)	-	ŝ	(3)	_	Ċ	(1	, 2)	-	Ċ	(1	3)	
C	(1	5)	-	S	(3)	-	C	(1	2)	-	C	(5 1)	、	
C S	(5 3)	_	C	(1 1	2)	_	C	(1 1	3 3)	_	C	(1 1	4 4))	
С	(1	2)	_	Ċ	(1	3)	_	Ċ	(1	4)	_	Ċ	(1	5)
C	(1	3 2)	-	C	(1	4)	-	C	(1	5)	-	C	(1	6)
C	(1 1	2 2)	_	S	(1 3	4)) _	- C	((1	1 5)) _	- C	с ((1	5 6))	
С	(1	2)	-	S	(3)	_	C	(1	5)	_	С	(1	4)	
C	(1 २	4 \)	- C	C ((1	15	5 \)	- C	C ((1	1	6))	- C	C 1	(1	1 7	7 \)
C	(1	, 5)	-	C	(1	, 6)	-	C	(1	, 7)	-	C	(1	8)
C	(1	6)	-	C	(1	7)	-	C	(1	8)	-	C	(1	9)
C	(⊥ 2	6 1)	_	C S	(⊥ 2)) _	- C	((1	⊥ 8	8)) _	- C	S ((1	2 9))	
C	(2	1)	_	S	(2)	_	C	(1	8)	_	C	(1	7)	
C	(1 2	7)	- C	C 1	(1	8 ۱)	- 0	C	(1	9 \)	- C	C	(2	2	0)
C	(2) 8)	-	C	1 (0 1) 9)	-	(C	1 (9 2) 0)	-	(C	2 (2	, 1)
C	(1	9)	-	C	(2	0)	-	C	(2	1)	-	C	(2	2)
C	(1 1	9 8)	_	C S	(22	0) _	- C	C ((2	2	1)) _	- C	S ((2	2)	
C	(1	8)	-	S	(2)	_	C	(2	1)	_	C	(2	0)	
C	(2 2	0 \)	- C	C 1	(?	2 1	1)	- C	C 1	(2	2	2 \)	- C	C 1	(2	2 a	9 \)
C	(2	, 0)	-	C	(2	, 1)	-	C	(2	, 2)	-	C	(2	, 3)
S	(2)	-	С	(2	1)	-	С	(2	2)	-	С	(2	3)	、
C	(2 2	1 9)	_	C C	(2 2	2 2)	_	C	(2 2	3 3)	_	C	(2 2	4 4))
С	(2	1)	_	С	(2	2)	_	С	(2	3)	_	С	(2	8)
C	(2 2	9 8)	_	C C	(2	2 २)	-	C	(2	3 4)	_	C C	(2 2	8 5)
C	(2	2)	_	C	(2	3)	_	C	(2	4)	_	C	(2	5)
C	(2	3)	-	C	(2	4)	-	C	(2	5)	-	C	(2	6)
C	(2 2	3 4)	_	C	(2 2	4 5)	_	C	(2 2	5 6))	_	C	1 ((2	1 7))
С	ì	(1)	_	С	(2	5)	_	С	(2	6)	_	С	(2	7)
C	(2 2	5 6)	_	C C	(2	6 7)	-	C	(2	7 2)	_	C C	(2 2	8 ג)
C	(2	4)	_	C	(2	, 3)	_	C	(2	8)	_	C	(2	7)
C	(2	2)	-	C	(2	3)	-	C	(2	8)	-	C	(2	7)
C	(2 2	⊥ 3)	_	C C	(2	2)	_	C	(2	9 9)	_	C C	(3 3	0))
C	(2	1)	_	C	(2	2)	_	C	(2	9)	_	S	(4)	ŕ
C	(2 2 2	3 2)	_	C q	(2 ⊿	2 ١)	- C	C 1	(2	2 a	9 ١)	- C	S ((2	4 2)	
C	(3	2)	_	S	(4)	_	C	(2	9)	_	C	(2 3	0)	
C	(2	2)	-	Ċ	(2	9)	-	C	(3	0)	-	Ċ	(3	1)
S C	((4 2) 9)	C _	(C	2	У 3) 0	-	-	(C	3 (U 3) 1)	-	(C	3 (⊥ 3) 2)
C	(3	0)	_	Ć	(3	1)	_	C	(3	2)	_	C	(3	3)

C(30)-C(31)-C(32)-S(4)0.9(6)C(29)-S(4)-C(32)-C(33)-176.7(4)C(29)-S(4)-C(32)-C(31)-0.9(4)-179.4(5) C(31)-C(32)-C(33)-C(34)S(4)-C(32)-C(33)-C(34)-4.2(8)C(32) - C(33) - C(34) - C(1)-7.9(10)C(2) - C(1) - C(34) - C(33)-177.8(5)S(1)-C(1)-C(34)-C(33)-1.7(8)

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 900288). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/data_request/cif.

Device Fabrication:

Experimental:

OFET devices were fabricated in the top-contact device configuration. The substrate was heavily doped, n-type Si gate electrode with a 500 nm thick SiO₂ layer as the gate dielectric. The gate dielectric was treated with octadecyltrichlorosilane (OTS) by vapor deposition method. Subsequently, organic semiconductors were deposited on the substrate by thermal evaporation under a pressure of 8×10^{-4} Pa at a deposition rate gradually increased from 0.1 Å s⁻¹ to 0.4 Å s⁻¹ at the first 20 nm and then maintained 0.5 Å s⁻¹ until the thickness of the film was 50 nm. The deposition rate and film thickness were monitored by a quartz crystal microbalance (ULVAC CRTM-6000). Finally, 20 nm thick gold source and drain electrode were deposited through a shadow mask. The channel length (*L*) and width (*W*) were 0.11 mm and 5.30 mm, respectively. The FET characteristics were measured at room temperature in air using Keithley 4200 SCS. Atomic force microscopy (AFM) measurements were carried out with a Nanoscope IIIa instrument (Digital Instruments) operating in tapping mode. UV-Vis spectra were recorded on a JASCO V-570 spectrometer.

Figure S44: Typical transfer (a) and output (b) characteristics of FET devices based on **11a**, with OTS-treated SiO₂/Si substrate ($T_s = 100$ °C). Typical transfer (c) and output (d) characteristics of FET devices based on **11b**, with OTS-treated SiO₂/Si substrate ($T_s = 100$ °C).

CIF Files for **11a**:

data_gnu005 SHELXL-97 _audit_creation_method _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C136 H80 Cl8 S16' _chemical_formula_weight 2510.56 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Cl' 0.3639 0.7018 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.3331 0.5567 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting 'Orthorhombic' 'F d d 2' _symmetry_space_group_name_H-M loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' x+1/4, -y+1/4, z+1/4''-x+1/4, y+1/4, z+1/4' 'x, y+1/2, z+1/2' '-x, -y+1/2, z+1/2' 'x+1/4, -y+3/4, z+3/4' '-x+1/4, y+3/4, z+3/4' 'x+1/2, y, z+1/2' '-x+1/2, -y, z+1/2' 'x+3/4, -y+1/4, z+3/4''-x+3/4, y+1/4, z+3/4' x+1/2, y+1/2, z''-x+1/2, -y+1/2, z''x+3/4, -y+3/4, z+1/4' '-x+3/4, y+3/4, z+1/4' _cell_length_a 60.299(6)_cell_length_b 19.5214(15) _cell_length_c 9.5973(8) _cell_angle_alpha 90.00 cell angle beta 90.00

_cell_angle_gamma 90.00 _cell_volume 11297.2(17)_cell_formula_units_Z 4 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used 8176 _cell_measurement_theta min 2.9328 _cell_measurement_theta_max 72.2146 _exptl_crystal_description BLOCK _exptl_crystal_colour BLACK _exptl_crystal_size_max 0.23 _exptl_crystal_size_mid 0.18 _exptl_crystal_size_min 0.14 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.476 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 5152 _exptl_absorpt_coefficient_mu 5.018 _exptl_absorpt_correction_T_min 0.3915 0.5401 _exptl_absorpt_correction_T_max _exptl_absorpt_correction_type multi-scan _exptl_absorpt_process_details ; (CrysAlis RED; Oxford Diffraction, 2009) ; _diffrn_ambient_temperature 150(2)1.54180 _diffrn_radiation_wavelength _diffrn_radiation_type CuK\a _diffrn_radiation_source 'Micro-Focus (Cu) X-ray Source' diffrn radiation monochromator graphite _diffrn_measurement_device_type 'OXFORD DIFFRACTION SUPER NOVA' '\w/q-scan' _diffrn_measurement_method _diffrn_detector_area_resol_mean 15.9948 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 19859 _diffrn_reflns_av_R_equivalents 0.0462 _diffrn_reflns_av_sigmaI/netI 0.0312 _diffrn_reflns_limit_h_min -72 _diffrn_reflns_limit_h_max 73 _diffrn_reflns_limit_k_min -22 _diffrn_reflns_limit_k_max 23 _diffrn_reflns_limit_l_min _9 _diffrn_reflns_limit_l_max 11 _diffrn_reflns_theta_min 2.93 _diffrn_reflns_theta_max 72.40 _reflns_number_total 4940 _reflns_number_gt 4655 reflns threshold expression >2sigma(I) _computing_data_collection 'CrysAlis CCD, Oxford Diffraction Ltd.,' _computing_cell_refinement 'CrysAlis RED, Oxford Diffraction Ltd., '

_computing_data_reduction 'CrysAlis RED, Oxford Diffraction Ltd.,' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1997)' 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_refinement _computing_molecular_graphics 'Ortep3' _computing_publication_material 'Shelx97' _refine_special_details Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0970P)^2^+9.1277P] where $P = (Fo^2 + 2Fc^2) / 3'$ atom sites solution primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment riding _refine_ls_extinction_method none _refine_ls_extinction_coef _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.00(2)_refine_ls_number_reflns 4940 _refine_ls_number_parameters 361 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.0529 _refine_ls_R_factor_gt 0.0503 _refine_ls_wR_factor_ref 0.1411 _refine_ls_wR_factor_gt 0.1381 _refine_ls_goodness_of_fit_ref 1.072 _refine_ls_restrained_S_all 1.072 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv

```
_atom_site_adp_type
 _atom_site_occupancy
 _atom_site_symmetry_multiplicity
 _atom_site_calc_flag
 _atom_site_refinement_flags
 _atom_site_disorder_assembly
 atom site disorder group
S1 S 0.113642(14) 0.37324(5) 0.91723(11) 0.0467(2) Uani 1 1 d . . .
S2 S 0.184951(14) 0.33268(5) 0.90660(11) 0.0474(2) Uani 1 1 d .
S3 S 0.145561(15) 0.31985(5) 0.69777(11) 0.0487(2) Uani 1
                                                          1
                                                            d
S4 S 0.152939(15) 0.39138(6) 1.12089(10) 0.0506(2) Uani 1 1 d
                                                              .
Cll Cl 0.26458(2) 0.34249(9) 1.49820(19) 0.0886(5) Uani 1 1 d . .
Cl2 Cl 0.03607(2) 0.42986(8) 0.35524(18) 0.0848(4) Uani 1 1 d .
C1 C 0.09336(6) 0.3904(2) 1.0407(5) 0.0477(9) Uani 1 1 d . . .
C2 C 0.07237(7) 0.3775(2) 0.9809(5) 0.0557(10) Uani 1 1 d . . .
H2 H 0.0589 0.3838 1.0307 0.067 Uiso 1 1 calc R .
C3 C 0.07289(6) 0.3555(2) 0.8470(5) 0.0550(10) Uani 1 1 d . .
H3 H 0.0599 0.3451 0.7954 0.066 Uiso 1 1 calc R . .
C4 C 0.09426(6) 0.34941(19) 0.7910(5) 0.0455(8) Uani 1 1 d . . .
C5 C 0.09968(6) 0.32730(18) 0.6566(5) 0.0448(8) Uani 1 1 d . . .
C6 C 0.08050(6) 0.3165(2) 0.5599(5) 0.0472(8) Uani 1 1 d . . .
C7 C 0.06835(6) 0.3715(2) 0.5097(5) 0.0505(9) Uani 1 1 d . . .
H7 H 0.0721 0.4169 0.5364 0.061 Uiso 1 1 calc R . .
C8 C 0.05068(6) 0.3599(2) 0.4202(5) 0.0537(9) Uani 1 1 d . . .
C9 C 0.04460(7) 0.2954(3) 0.3802(6) 0.0658(12) Uani 1 1 d . . .
H9 H 0.0324 0.2883 0.3195 0.079 Uiso 1 1 calc R . .
C10 C 0.05682(9) 0.2404(3) 0.4309(6) 0.0706(13) Uani 1 1 d . . .
H10 H 0.0529 0.1951 0.4045 0.085 Uiso 1 1 calc R . .
C11 C 0.07447(8) 0.2503(2) 0.5183(6) 0.0598(11) Uani 1 1 d . . .
H11 H 0.0827 0.2120 0.5509 0.072 Uiso 1 1 calc R . .
C12 C 0.12097(6) 0.31410(18) 0.6021(5) 0.0470(8) Uani 1 1 d . . .
C13 C 0.12608(7) 0.2938(2) 0.4658(5) 0.0548(9) Uani 1 1 d .
H13 H 0.1152 0.2883 0.3954 0.066 Uiso 1 1 calc R .
C14 C 0.14810(7) 0.2825(2) 0.4432(5) 0.0560(9) Uani 1 1 d . . .
H14 H 0.1537 0.2680 0.3554 0.067 Uiso 1 1 calc R .
C15 C 0.16194(7) 0.2936(2) 0.5582(5) 0.0501(9) Uani 1 1 d . . .
C16 C 0.18499(7) 0.2850(2) 0.5536(5) 0.0557(10) Uani 1 1 d . . .
H16 H 0.1898 0.2704 0.4642 0.067 Uiso 1 1 calc R . .
C17 C 0.20254(6) 0.2921(2) 0.6447(5) 0.0552(10) Uani 1 1 d . . .
H17 H 0.2163 0.2811 0.6019 0.066 Uiso 1 1 calc R . .
C18 C 0.20531(6) 0.31158(19) 0.7848(5) 0.0492(9) Uani 1 1 d . . .
C19 C 0.22626(6) 0.3210(2) 0.8462(6) 0.0570(10) Uani 1 1 d . . .
H19 H 0.2397 0.3100 0.7993 0.068 Uiso 1 1 calc R . .
C20 C 0.22593(6) 0.3468(2) 0.9773(5) 0.0566(11) Uani 1 1 d . . .
H20 H 0.2390 0.3558 1.0291 0.068 Uiso 1 1 calc R . .
C21 C 0.20435(6) 0.3593(2) 1.0305(5) 0.0486(9) Uani 1 1 d . . .
C22 C 0.19909(6) 0.3919(2) 1.1558(5) 0.0508(9) Uani 1 1 d . . .
C23 C 0.21852(6) 0.4165(2) 1.2416(5) 0.0523(9) Uani 1 1 d . . .
C24 C 0.23068(7) 0.3722(3) 1.3219(6) 0.0589(10) Uani 1 1 d . .
H24 H 0.2268 0.3250 1.3275 0.071 Uiso 1 1 calc R .
C25 C 0.24914(7) 0.3985(3) 1.3968(5) 0.0609(11) Uani 1 1 d .
C26 C 0.25502(7) 0.4655(3) 1.3886(6) 0.0672(12) Uani 1 1 d . . .
H26 H 0.2677 0.4819 1.4373 0.081 Uiso 1 1 calc R . .
C27 C 0.24256(8) 0.5091(3) 1.3097(6) 0.0700(13) Uani 1 1 d . . .
H27 H 0.2465 0.5561 1.3044 0.084 Uiso 1 1 calc R . .
C28 C 0.22424(7) 0.4857(2) 1.2373(5) 0.0611(11) Uani 1 1 d . . .
H28 H 0.2155 0.5168 1.1844 0.073 Uiso 1 1 calc R . .
C29 C 0.17796(6) 0.4090(2) 1.2067(5) 0.0511(9) Uani 1 1 d . . .
```

C30 C 0.17314(7) 0.4439(3) 1.3311(5) 0.0608(11) Uani 1 1 d . . . H30 H 0.1843 0.4583 1.3944 0.073 Uiso 1 1 calc R . . C31 C 0.15105(8) 0.4553(3) 1.3535(5) 0.0621(11) Uani 1 1 d . . . H31 H 0.1457 0.4781 1.4343 0.075 Uiso 1 1 calc R . . C32 C 0.13680(7) 0.4310(2) 1.2489(5) 0.0504(9) Uani 1 1 d . . . C33 C 0.11373(7) 0.4355(2) 1.2577(5) 0.0535(9) Uani 1 1 d . . . H33 H 0.1090 0.4571 1.3413 0.064 Uiso 1 1 calc R . . C34 C 0.09596(6) 0.4163(2) 1.1746(5) 0.0521(9) Uani 1 1 d . . . H34 H 0.0821 0.4223 1.2206 0.062 Uiso 1 1 calc R . . loop _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 $S1 \ 0.0368(4) \ 0.0591(5) \ 0.0443(5) \ -0.0034(4) \ -0.0015(3) \ 0.0022(3)$ $S2 \ 0.0359(4) \ 0.0573(5) \ 0.0489(5) \ -0.0034(4) \ -0.0029(3) \ 0.0018(3)$ S3 0.0405(4) 0.0598(5) 0.0458(5) -0.0069(4) -0.0033(4) 0.0031(4)S4 0.0396(4) 0.0676(6) 0.0446(5) -0.0063(4) -0.0029(4) 0.0027(4)Cl1 0.0624(7) 0.1088(10) 0.0947(11) 0.0262(9) -0.0300(7) -0.0010(7) Cl2 0.0546(6) 0.0986(9) 0.1013(11) 0.0351(8) -0.0167(6) 0.0079(6) C1 0.0414(18) 0.052(2) 0.049(2) 0.0067(17) 0.0050(16) 0.0029(15) $\texttt{C2} \ \texttt{0.0388(19)} \ \texttt{0.066(2)} \ \texttt{0.062(3)} \ \texttt{0.010(2)} \ \texttt{0.0058(17)} \ \texttt{0.0032(17)}$ C3 0.0379(18) 0.069(2) 0.058(3) 0.007(2) -0.0051(17) -0.0058(17) C4 0.0399(17) 0.0445(18) 0.052(2) 0.0041(16) -0.0057(15) -0.0010(14) $\texttt{C5} \ \texttt{0.0425(17)} \ \texttt{0.0427(16)} \ \texttt{0.049(2)} \ \texttt{0.0029(15)} \ \texttt{-0.0053(16)} \ \texttt{0.0002(13)}$ C6 0.0456(18) 0.0467(19) 0.049(2) 0.0016(16) -0.0070(17) -0.0059(14) $C7 \quad 0.0417(18) \quad 0.052(2) \quad 0.057(2) \quad 0.0077(18) \quad -0.0081(17) \quad -0.0015(15)$ $C8 \quad 0.0412(18) \quad 0.067(2) \quad 0.053(2) \quad 0.012(2) \quad -0.0047(17) \quad -0.0032(16)$ C9 0.051(2) 0.087(3) 0.059(3) 0.003(2) -0.014(2) -0.016(2) $C10 \ 0.078(3) \ 0.063(3) \ 0.071(3) \ -0.006(2) \ -0.016(3) \ -0.021(2)$ $C11 \ 0.064(2) \ 0.045(2) \ 0.071(3) \ 0.002(2) \ -0.009(2) \ -0.0065(17)$ $\texttt{C12} \hspace{0.1in} 0.0457(18) \hspace{0.1in} 0.0442(18) \hspace{0.1in} 0.051(2) \hspace{0.1in} 0.0027(16) \hspace{0.1in} -0.0085(16) \hspace{0.1in} 0.0003(14)$ $\texttt{C13} \hspace{0.1in} 0.059(2) \hspace{0.1in} 0.055(2) \hspace{0.1in} 0.050(2) \hspace{0.1in} -0.0021(18) \hspace{0.1in} -0.0114(19) \hspace{0.1in} 0.0009(17)$ C14 0.066(2) 0.058(2) 0.043(2) -0.0075(19) 0.0000(19) 0.0043(18) $\texttt{C15} \quad \texttt{0.054(2)} \quad \texttt{0.0478(19)} \quad \texttt{0.049(2)} \quad \texttt{-0.0034(17)} \quad \texttt{0.0015(17)} \quad \texttt{0.0048(15)}$ C16 0.055(2) 0.056(2) 0.056(3) -0.0109(19) 0.0095(18) 0.0044(17) $C17 \ 0.0440(18) \ 0.060(2) \ 0.062(3) \ -0.008(2) \ 0.0066(18) \ 0.0063(16)$ C18 0.0429(18) 0.0437(18) 0.061(3) -0.0024(17) 0.0017(17) 0.0049(14) $C19 \ 0.0391(19) \ 0.060(2) \ 0.071(3) \ -0.002(2) \ 0.0065(19) \ 0.0049(15)$ C20 0.0365(18) 0.066(2) 0.067(3) 0.005(2) -0.0071(18) 0.0007(16) $\texttt{C21} \quad \texttt{0.0395(17)} \quad \texttt{0.053(2)} \quad \texttt{0.053(2)} \quad \texttt{0.0034(17)} \quad -\texttt{0.0057(16)} \quad -\texttt{0.0021(15)}$ $\texttt{C22} \hspace{0.1in} 0.0457(19) \hspace{0.1in} 0.056(2) \hspace{0.1in} 0.051(2) \hspace{0.1in} 0.0020(18) \hspace{0.1in} -0.0093(17) \hspace{0.1in} -0.0067(15)$ $\texttt{C23 } 0.0448(19) \ 0.064(2) \ 0.048(2) \ 0.0003(18) \ -0.0052(17) \ -0.0044(17)$ $C24 \ 0.048(2) \ 0.068(3) \ 0.061(3) \ 0.006(2) \ -0.0088(19) \ -0.0056(18)$ $C25 \ 0.0426(18) \ 0.083(3) \ 0.057(3) \ 0.005(2) \ -0.0049(19) \ -0.0047(19)$ $\texttt{C26} \quad \texttt{0.052(2)} \quad \texttt{0.088(3)} \quad \texttt{0.062(3)} \quad \texttt{-0.007(3)} \quad \texttt{-0.008(2)} \quad \texttt{-0.010(2)}$ C27 0.066(3) 0.069(3) 0.075(3) -0.006(3) -0.009(2) -0.015(2) $C28 \ 0.057(2) \ 0.062(2) \ 0.065(3) \ 0.003(2) \ -0.009(2) \ -0.0064(19)$ $C29 \ 0.0440(19) \ 0.059(2) \ 0.051(2) \ 0.0051(19) \ -0.0082(17) \ -0.0049(16)$ $\texttt{C30 } 0.057(2) \ 0.073(3) \ 0.052(3) \ -0.007(2) \ -0.0046(19) \ -0.0119(19)$ $\texttt{C31} \quad \texttt{0.064(2)} \quad \texttt{0.073(3)} \quad \texttt{0.050(3)} \quad \texttt{-0.017(2)} \quad \texttt{0.0034(19)} \quad \texttt{-0.004(2)}$ $C32 \ 0.056(2) \ 0.052(2) \ 0.044(2) \ -0.0017(17) \ 0.0014(17) \ 0.0006(16)$ C33 0.056(2) 0.059(2) 0.045(2) -0.0010(18) 0.0091(18) 0.0060(17)C34 0.0438(18) 0.066(2) 0.047(2) 0.0042(19) 0.0074(16) 0.0099(16)

_geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag S1 C1 1.736(4) . ? S1 C4 1.747(4) . ? S2 C18 1.744(4) . ? S2 C21 1.747(4) . ? S3 C15 1.741(4) . ? S3 C12 1.747(4) . ? S4 C32 1.748(4) . ? S4 C29 1.753(4) . ? Cl1 C25 1.734(5) . ? Cl2 C8 1.741(4) . ? C1 C34 1.389(7) . ? C1 C2 1.412(6) . ? C2 C3 1.356(7) . ? C2 H2 0.9500 . ? C3 C4 1.401(5) . ? C3 H3 0.9500 . ? C4 C5 1.399(6) . ? C5 C12 1.410(5) . ? C5 C6 1.498(5) . ? C6 C7 1.387(6) . ? C6 C11 1.400(6) . ? C7 C8 1.387(6) . ? C7 H7 0.9500 . ? C8 C9 1.368(7) . ? C9 C10 1.390(7) . ? C9 H9 0.9500 . ? C10 C11 1.369(7) . ? C10 H10 0.9500 . ? C11 H11 0.9500 . ? C12 C13 1.401(7) . ? C13 C14 1.363(6) . ? C13 H13 0.9500 . ? C14 C15 1.401(6) . ? C14 H14 0.9500 . ? C15 C16 1.401(5) . ?

C16 C16 C17	C17 H16 C18	1.38 0.95 1.40	30(500)7(6) 7)	?	?		
C17 C18 C19	H17 C19 C20	0.95	500)6(55(6) 7)	?	?		
C19 C20	H19 C21	0.95	500 19(6)	?	?		
C20 C21 C22	H20 C22 C29	0.95	900 97(95(7) 6)	?	?		
C22 C23	C23 C24	1.51	LO(71(5) 6)	•	?		
C23 C24 C24	C28 C25 H24	1.39	95(21(500	6) 6)	• • ?	? ?		
C25 C26	C26 C27	1.35	58(54(, 7) 7)		?		
C26 C27 C27	H26 C28 H27	0.95	500 33(500	6)	?	?		
C28 C29	H28 C30	0.95	500)5(7)	?	?		
C30 C30 C31	H30 C32	1.36 0.95 1.40	500) 500) 500	6) 6)	• ?	?		
C31 C32	H31 C33	0.95	500 96(6) 6)	?	?		
C33 C34	Н33 Н34	0.95	500	•	? ?	•		
loop _ge _ge	o_ eom_a eom_a	angle angle	e_a e_a	ton ton	1_ຣ 1_ຣ 1 ຣ	site site	_label_ _label_ label	_1 _2 3
_a. _a.	eom_a	angle	e	ite	e_s	ymm	etry_1	_
_ge _ge C1 \$	eom_a eom_a S1 C4	angle angle 4 93.	≥_s ≥_p .07	ıte ubl (19	e_s f))	ilag	etry_3 ?	
C18 C15	S2 (S3 (221 9 212 9)3.)3.	2(2 3(2 6(2	2) 2)	 	? ?	
C34 C34	C1 (C1 ($ \begin{array}{cccc} 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 5 \\ 1 \\ 1 \\ \end{array} $	22. 28.	8(4 5(3	.) 	• • • • • •	; ? ?	
C2 (C3 (C3 (C1 S1 C2 C1 C2 H1	1 108 1 114 2 122	3.6 1.9 2.5	(3) (4)	•	· · ?	?	
C1 (C2 (C2 H2 C3 C4	$ \begin{array}{c} 2 & 122 \\ 4 & 114 \\ 7 & 122 \end{array} $	2.5	(4)		?	?	
C2 (C4 (C5 (сзн. Сзн. С4 С.	$ \begin{array}{c} 3 & 122 \\ 3 & 122 \\ 3 & 126 \\ 3 & 126 \\ \end{array} $	2.8 5.5	(4)	• •	?	?	
C5 (C3 (C4 S1 C4 S1	l 124 l 109	4.4 9.1	(3) (3) 7 <i>(1</i>	•	•	د 5 5	
C4 (C5 C6	5 115	5.7	(3)	· ,	•••	• ?	

C12 C5 C6 116.6(4) . . ? C7 C6 C11 118.6(4) . . ? C7 C6 C5 120.9(3) . . ? C11 C6 C5 120.5(4) . . ? C8 C7 C6 119.7(4) . . ? C8 C7 H7 120.2 . . ? С6 С7 Н7 120.2 . . ? C9 C8 C7 122.0(4) . . ? C9 C8 Cl2 119.1(3) . . ? C7 C8 Cl2 118.9(3) . . ? C8 C9 C10 118.1(4) . . ? С8 С9 Н9 120.9 . . ? С10 С9 Н9 120.9 . . ? C11 C10 C9 121.2(4) . . ? C11 C10 H10 119.4 . . ? C9 C10 H10 119.4 . . ? C10 C11 C6 120.5(4) . . ? C10 C11 H11 119.8 . . ? C6 C11 H11 119.8 . . ? C13 C12 C5 126.7(4) . . ? C13 C12 S3 108.8(3) . . ? C5 C12 S3 124.5(3) . . ? C14 C13 C12 114.1(4) . . ? C14 C13 H13 122.9 . . ? C12 C13 H13 122.9 . . ? C13 C14 C15 115.4(4) . . ? C13 C14 H14 122.3 . . ? C15 C14 H14 122.3 . . ? C16 C15 C14 123.2(4) . . ? C16 C15 S3 128.5(4) . . ? C14 C15 S3 108.3(3) . . ? C17 C16 C15 136.8(4) . . ? C17 C16 H16 111.6 . . ? C15 C16 H16 111.6 . . ? C16 C17 C18 136.4(4) . . ? С16 С17 Н17 111.8 . . ? C18 C17 H17 111.8 . . ? C19 C18 C17 122.8(4) . . ? C19 C18 S2 108.7(3) . . ? C17 C18 S2 128.4(3) . . ? C20 C19 C18 115.1(4) . . ? C20 C19 H19 122.4 . . ? C18 C19 H19 122.4 . . ? C19 C20 C21 114.3(4) . . ? С19 С20 Н20 122.8 . . ? C21 C20 H20 122.8 . . ? C22 C21 C20 126.6(4) . . ? C22 C21 S2 124.7(3) . . ? C20 C21 S2 108.5(3) . . ? C21 C22 C29 127.8(4) . . ? C21 C22 C23 116.0(4) . . ? C29 C22 C23 116.0(4) . . ? C24 C23 C28 119.7(4) . . ? C24 C23 C22 121.4(4) . . ? C28 C23 C22 118.9(4) . . ? C23 C24 C25 118.4(4) . . ? C23 C24 H24 120.8 . . ? C25 C24 H24 120.8 . . ?

```
C26 C25 C24 121.5(4) . . ?
C26 C25 Cl1 120.0(4) . .
                         ?
C24 C25 Cl1 118.5(4) . .
                         ?
C25 C26 C27 119.3(4) . . ?
C25 C26 H26 120.4 . . ?
С27 С26 Н26 120.4 . . ?
C26 C27 C28 120.9(5) . . ?
C26 C27 H27 119.6 . . ?
C28 C27 H27 119.6 . . ?
C27 C28 C23 120.2(5) . .
                         ?
С27 С28 Н28 119.9 . . ?
C23 C28 H28 119.9 . . ?
C22 C29 C30 126.7(4) . . ?
C22 C29 S4 124.8(4) . . ?
C30 C29 S4 108.4(3) . . ?
C31 C30 C29 114.5(4) . . ?
C31 C30 H30 122.8 . . ?
С29 С30 Н30 122.8 . . ?
C30 C31 C32 115.4(4) . . ?
C30 C31 H31 122.3 . . ?
C32 C31 H31 122.3 . . ?
C33 C32 C31 123.0(4) . . ?
C33 C32 S4 128.7(3) . . ?
C31 C32 S4 108.1(3) . . ?
C34 C33 C32 135.8(4) . . ?
C34 C33 H33 112.1 . . ?
СЗ2 СЗ3 НЗЗ 112.1 . . ?
C33 C34 C1 135.8(4) . .
                        ?
C33 C34 H34 112.1 . . ?
C1 C34 H34 112.1 . . ?
loop
 _geom_torsion_atom_site_label_1
 _geom_torsion_atom_site_label_2
 _geom_torsion_atom_site_label_3
 _geom_torsion_atom_site_label_4
 _geom_torsion
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
_geom_torsion_site_symmetry_3
 _geom_torsion_site_symmetry_4
 _geom_torsion_publ_flag
C4 S1 C1 C34 -176.7(4) . . . ?
C4 S1 C1 C2 -0.2(3) . . . ?
C34 C1 C2 C3 176.9(4) . . . ?
S1 C1 C2 C3 0.1(5) . . . ?
C1 C2 C3 C4 0.0(6) . . . ?
C2 C3 C4 C5 179.3(4) . . . ?
C2 C3 C4 S1 -0.1(5) . . . ?
C1 S1 C4 C5 -179.3(3) . . . ?
C1 S1 C4 C3 0.1(3) . . . ?
C3 C4 C5 C12 -173.0(4) . . . ?
S1 C4 C5 C12 6.3(6) . . . ?
C3 C4 C5 C6 7.0(6) . . . ?
S1 C4 C5 C6 -173.8(3) . . . ?
C4 C5 C6 C7 69.9(5) . . . ?
C12 C5 C6 C7 -110.1(5) . . . ?
C4 C5 C6 C11 -110.1(5) . . .
                             . ?
```

C12 C5 C6 C11 69.9(5) . . . ? C11 C6 C7 C8 0.0(7) ? C5 C6 C7 C8 180.0(4) . . . ? C6 C7 C8 C9 0.6(7) . . . ? C6 C7 C8 Cl2 -178.5(4) . . . ? C7 C8 C9 C10 -0.5(8) . . . ? Cl2 C8 C9 C10 178.6(4) . . . ? C8 C9 C10 C11 -0.1(9) . . . ? C9 C10 C11 C6 0.7(9) . . . ? C7 C6 C11 C10 -0.6(8) . . . ? C5 C6 C11 C10 179.4(5) ? C4 C5 C12 C13 -178.1(4) . . . ? C6 C5 C12 C13 1.9(6) . . . ? C4 C5 C12 S3 2.7(6) . . . ? C6 C5 C12 S3 -177.2(3) . . . ? C15 S3 C12 C13 -1.3(3) . . . ? C15 S3 C12 C5 178.1(3) . . . ? C5 C12 C13 C14 -178.0(4) ? S3 C12 C13 C14 1.3(5) . . . ? C12 C13 C14 C15 -0.7(6) . . . ? C13 C14 C15 C16 -179.5(4) . . . ? C13 C14 C15 S3 -0.3(5) . . . ? C12 S3 C15 C16 -179.9(4) . . . ? C12 S3 C15 C14 0.9(3) . . . ? C14 C15 C16 C17 179.3(5) ? S3 C15 C16 C17 0.3(8) . . . ? C15 C16 C17 C18 -0.1(10) C16 C17 C18 C19 -173.0(5) . . . ? C16 C17 C18 S2 3.0(8) . . . ? C21 S2 C18 C19 4.1(3) . . . ? C21 S2 C18 C17 -172.3(4) ? C17 C18 C19 C20 173.2(4) ? S2 C18 C19 C20 -3.4(5) . . . ? C18 C19 C20 C21 0.6(6) . . . ? C19 C20 C21 C22 -173.1(4) . . . ? C19 C20 C21 S2 2.5(5) . . . ? C18 S2 C21 C22 171.9(4) . . . ? C18 S2 C21 C20 -3.8(3) . . . ? C20 C21 C22 C29 175.4(4) . . . ? S2 C21 C22 C29 0.5(6) . . . ? C20 C21 C22 C23 0.5(6) . . . ? S2 C21 C22 C23 -174.4(3) . ? . . C21 C22 C23 C24 -78.5(6) . . . ? C29 C22 C23 C24 105.9(5) ? C21 C22 C23 C28 100.8(5) . . . ? C29 C22 C23 C28 -74.7(6) . . . ? C28 C23 C24 C25 -1.2(7) . . . ?C22 C23 C24 C25 178.2(4) . . . ? C23 C24 C25 C26 -0.9(8) . . . ? C23 C24 C25 Cl1 -179.9(4) . . . ? C24 C25 C26 C27 1.8(8) . . . ? Cl1 C25 C26 C27 -179.2(4) ? C25 C26 C27 C28 -0.6(8) . . . ? C26 C27 C28 C23 -1.4(8) . . . ? C24 C23 C28 C27 2.3(8) . . . ? C22 C23 C28 C27 -177.0(5) ? C21 C22 C29 C30 -177.7(4) . . . ? C23 C22 C29 C30 -2.8(7) . . ?

```
C21 C22 C29 S4 0.7(6) . . . ?
C23 C22 C29 S4 175.6(3) . . . ?
C32 S4 C29 C22 -178.0(4) . . . ?
C32 S4 C29 C30 0.7(4) . . . ?
C22 C29 C30 C31 178.4(4) . . . ?
S4 C29 C30 C31 -0.2(5) . . . ?
C29 C30 C31 C32 -0.4(7) . . . ?
C30 C31 C32 C33 177.0(4) . . . ?
C30 C31 C32 S4 0.9(6) . . . ?
C29 S4 C32 C33 -176.7(4) . . . .
                                ?
C29 S4 C32 C31 -0.9(4) . . . ?
C31 C32 C33 C34 -179.4(5) . . . ?
S4 C32 C33 C34 -4.2(8) . . . ?
C32 C33 C34 C1 -7.9(10) . . . ?
C2 C1 C34 C33 -177.8(5) . . . ?
S1 C1 C34 C33 -1.7(8) . . . ?
_diffrn_measured_fraction_theta_max
                                      0.993
_diffrn_reflns_theta_full
                                      72.40
_diffrn_measured_fraction_theta_full
                                      0.993
_refine_diff_density_max
                          0.397
_refine_diff_density_min
                          -0.321
_refine_diff_density_rms
                           0.065
```