Supporting Information

A Concise Synthesis of 3-Aroylflavones via Lewis Base 9-Azajulolidine-Catalyzed Tandem Acyl Transfer-Cyclization:

Masahito Yoshida, Koya Saito, Yuta Fujino and Takayuki Doi

Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan,

Table of Contents

1.	General techniques	S2
2.	Experimental procedures	S 3-13
3.	X-ray crystallographic analysis of 1h	S14
4.	¹ H and ¹³ C NMR spectra of acylated alkynoylphenol 2a-p	S15-46
	¹ H and ¹³ C NMR spectra of 3-aroylflavone 1a–p	S47-78
	¹ H and ¹³ C NMR spectra of flavone 5a	S79-80
	¹ H and ¹³ C NMR spectra of 3-deuterated flavone 6	S81-82
	¹ H and ¹³ C NMR spectra of S1j	S83-84
	¹ H and ¹³ C NMR spectra of S1m	S85-86
5.	HPLC traces of the cross-over experiments	S87
6.	References	S88

General Techniques

All commercially available reagents were used as received. Dry THF and DCM (Kanto Chemical Co.) were obtained by passing commercially available pre-dried, oxygen-free formulations. MeOH was distilled from iodide and magnesium turnings. DMF was purchased from Wako (for peptide synthesis, grade: 99.5%).

All reactions in solution-phase were monitored by thin-layer chromatography carried out on Merck silica gel plates (0.2 mm, 60F-254) with UV light, and visualized with anisaldehyde, 10% ethanolic phosphomolybdic acid. Silica gel 60N (Kanto Chemical Co. 100~210 μ m) was used for column chromatography, and Merck silica gel plate (2.0 mm, 60F-254) was used for preparative thin layer chromatography.

¹H NMR spectra (400 MHz) and ¹³C NMR spectra (100 MHz) were recorded on JEOL JNM-AL400 spectrometers in the indicated solvent. Chemical shifts (δ) are reported in units parts per million (ppm) relative to the signal for internal tetramethylsilane (0 ppm for ¹H) for solutions in CDCl₃. NMR spectral data are reported as follows: chloroform (7.26 ppm for ¹H) or chloroform-*d* (77.0 ppm for ¹³C), methanol-*d*₄ (3.30 ppm for ¹H) when internal standard is not indicated. Multiplicities are reported by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (double doublet), dt (double triplet), ddd (double double doublet), brs (broad singlet), brd (broad doublet), *J* (coupling constants in Hertz).

Mass spectra and high-resolution mass spectra were measured on JEOL JMS-DX303 and MS-AX500 instruments. IR spectra were recorded on a Shimadzu FTIR-8400. Only the strongest and/or structurally important absorption are reported as the IR data afforded in cm⁻¹.

X-ray crystallographic analysis was performed on a Rigaku Saturn724 diffractometer using multi-layer mirror monochromated Mo-Kα radiation.

Experimental Section

General Procedure: Synthesis of Benzoate Derivatives from *o*-Alkynoylphenols

To a solution of *o*-alkynoylphenol (1.0 mmol, 1.00 equiv) and triethylamine (1.50 equiv) in dry CH_2Cl_2 (3 mL/mmol) was added acyl chloride (1.20 equiv) at 0 °C under argon. After being stirred at room temperature for 2 h, the reaction mixture was quenched with saturated aqueous NH_4Cl at 0 °C. The organic layer was separated and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed twice with saturated aqueous NH_4Cl at 0 °C. The filtrate was concentrated in vacuo, and then the resulting residue was purified by column chromatography (eluted with Hex/EA=20/1-8/1) on silica gel to afford the benzoate derivatives.

2-(3-Phenylprop-2-ynoyl)phenyl benzoate (2a)

Yield: 98% (320 mg, 0.98 mmol), Reaction time: 0.5 h Rf 0.56 (Hex/EA=2/1), colorless crystal, mp 78–79 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, 1H, *J* = 7.6, 1.8 Hz), 8.22 (d, 2H, *J* = 7.2 Hz), 7.67 (ddd, 1H, *J* = 8.4, 7.2, 1.8 Hz), 7.58 (t, 1H, *J* = 7.2 Hz), 7.46–7.38 (m, 6H), 7.31–7.28 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 165.2, 150.3, 134.6, 133.5, 132.8, 132.6, 130.6, 130.4, 129.9, 129.3, 128.5, 128.4, 126.2, 124.1, 119.9, 92.7, 88.0; FT-IR(Neat) 2197, 1740, 1642, 1602 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₄O₃ 326.0943, found 326.0925.

2-(3-Phenylprop-2-ynoyl)phenyl 4-methoxybenzoate (2b)

Yield: 99% (353 mg, 0.99 mmol), Reaction time: 2 h Rf 0.45 (Hex/EA=2/1), colorless crystal, mp 100–101 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, 1H, *J* = 7.8, 1.9 Hz), 8.16 (d, 2H, *J* = 9.0 Hz), 7.66 (ddd, 1H, *J* = 8.8, 8.4, 1.9 Hz), 7.45–7.38 (m, 4H), 7.29 (m, 3H), 6.90 (d, 2H, *J* = 9.0 Hz), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 164.8, 163.9, 150.4, 134.5, 132.8, 132.6, 132.4, 130.5, 130.1, 128.4, 126.0, 124.2, 121.6, 120.0, 113.7, 92.7, 88.1, 55.5; FT-IR(Neat) 2196, 1734, 1645, 1604, 1255, 1166 cm⁻¹; HRMS[EI] calcd for C₂₃H₁₆O₄ 356.1049, found 356.1012.

2-(3-Phenylprop-2-ynoyl)phenyl 4-chlorobenzoate (2c)

Yield: 76% (274 mg, 0.76 mmol), Reaction time: 0.5 h Rf 0.63 (Hex/EA=2/1), colorless needle, mp 109–110 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, 1H, *J* = 7.6, 1.8 Hz), 8.14 (d, 2H, *J* = 8.8 Hz), 7.67 (ddd, 1H, *J* = 7.2, 7.2, 1.8 Hz), 7.48–7.39 (m, 6H), 7.34–7.27 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 164.4, 150.1, 140.1, 134.7, 132.8, 131.8, 130.7, 129.7, 128.81, 128.79, 128.5, 127.8, 126.4, 124.1, 119.8, 92.9, 87.8; FT-IR(Neat) 2196, 1741, 1642, 1259, 1198, 750 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃ClO₃ 360.0553, found 360.0573.

2-(3-Phenylprop-2-ynoyl)phenyl 4-bromobenzoate (2d)

Yield: 88% (357 mg, 0.88 mmol), Reaction time: 3 h

Rf 0.63 (Hex/EA=2/1), white needle, mp 101–102 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, 1H, *J* = 8.0, 2.0 Hz), 8.06 (d, 2H, *J* = 8.8 Hz), 7.68 (ddd, 1H, *J* = 8.0, 8.0, 2.0 Hz), 7.58 (d, 2H, *J* = 8.8 Hz), 7.49–7.41 (m, 4H), 7.35–7.27 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) 175.7, 164.5, 150.1, 134.7, 132.8, 132.7, 131.9, 131.8, 130.7, 129.7, 128.8, 128.5, 128.3, 126.4, 124.1, 119.8, 92.9, 87.9; FT-IR(Neat) 2197, 1741, 1643, 1261, 1070, 1009 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃BrO₃ 404.0048, found 404.0026.

2-(3-Phenylprop-2-ynoyl)phenyl 4-cyanobenzoate (2e)

Yield: 67% (235 mg, 0.67 mmol), Reaction time: 1 h

Rf 0.51 (Hex/EA=2/1), white needle, mp 106–107 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.33 (dd, 1H, *J* = 8.2, 1.8 Hz), 8.30 (d, 2H, *J* = 8.8 Hz), 7.74 (d, 2H, *J* = 8.8 Hz), 7.69 (ddd, 1H, *J* = 8.8, 8.0, 1.8 Hz), 7.51–7.43 (m, 4H), 7.35 (m, 2H), 7.29 (dd, 1H, *J* = 8.0, 1.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 163.7, 149.8, 134.8, 133.3, 133.2, 132.8, 132.2, 130.9, 130.8, 129.3, 128.6, 126.6, 123.9, 119.7, 117.8, 116.8, 93.0, 87.7; FT-IR(Neat) 2197, 1746, 1641, 1262 cm⁻¹; HRMS[EI] calcd for C₂₃H₁₃NO₃ 351.0895, found 351.0893.

2-(3-Phenylprop-2-ynoyl)phenyl 3-methoxybenzoate (2f)

Yield: 99% (353 mg, 0.99 mmol), Reaction time: 3 h

Rf 0.54 (Hex/EA=2/1), white needle, mp 83–84 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, 1H, *J* = 7.6, 1.6 Hz), 7.83 (ddd, 1H, *J* = 8.0, 0.8, 0.8 Hz), 7.71 (dd, 1H, *J* = 2.8, 0.8 Hz), 7.66 (ddd, 1H, *J* = 8.0, 8.0, 1.6 Hz), 7.46–7.37 (m, 4H), 7.34 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.29 (m, 3H), 7.11 (ddd, 1H, *J* = 8.0, 2.8, 0.8 Hz), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 165.0, 159.6, 150.3, 134.6, 132.8, 132.5, 130.5, 129.9, 129.5, 128.4, 126.2, 124.1, 122.9, 120.3, 119.9, 114.6, 92.7, 88.0, 55.4; FT-IR(Neat) 2197, 1740, 1643, 1603, 1489, 1310, 1278, 1205, 1010, 744 cm⁻¹; HRMS[EI] calcd for C₂₃H₁₆O₄ 356.1049, found 356.1035.

2-(3-Phenylprop-2-ynoyl)phenyl 3-chlorobenzoate (2g)

Yield: 83% (299 mg, 0.83 mmol), Reaction time: 2 h Rf 0.60 (Hex/EA=2/1), white solid, mp 104–106 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (dd, 1H, *J* = 8.0, 1.6 Hz), 8.19 (dd, 1H, *J* = 2.0, 2.0 Hz), 8.09 (ddd, 1H, *J* = 8.0, 2.0, 1.2 Hz), 7.68 (ddd, 1H, *J* = 8.6, 7.6, 1.6 Hz), 7.54 (ddd, 1H, *J* = 8.4, 2.0, 1.2 Hz), 7.49–7.27 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 164.1, 150.0, 134.7, 134.6, 133.5, 132.9, 132.8, 131.0, 130.7, 130.4, 129.8, 129.6, 128.52, 128.50, 126.4, 124.0, 119.8, 92.9, 87.8; FT-IR(Neat) 2197, 1744, 1642, 1248, 1198 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃ClO₃ 360.0553, found 360.0547.

2-(3-Phenylprop-2-ynoyl)phenyl 3-bromobenzoate (2h)

Yield: 96% (389 mg, 0.96 mmol), Reaction time: 1.5 h

Rf 0.60 (Hex/EA=2/1), white needle, mp 94–96 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.34 (dd, 1H, *J* = 1.8, 1.8 Hz), 8.29 (dd, 1H, *J* = 7.8, 1.8 Hz), 8.13 (dd, 1H, *J* = 8.4, 1.8 Hz), 7.68 (m, 2H), 7.49–7.40 (m, 4H), 7.35–7.27 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 163.9, 150.0, 136.4, 134.7, 133.3, 132.9, 132.8, 131.2, 130.7, 130.0, 129.6, 129.0, 128.5, 126.4, 124.0, 122.5, 119.7, 92.9, 87.8; FT-IR(Neat) 2197, 1744, 1642, 1246, 1197 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃BrO₃ 404.0048, found 404.0027.

5-Methoxy-2-(3-phenylprop-2-ynoyl)phenyl benzoate (2i)

Yield: 70% (249 mg, 0.70 mmol), Reaction time: 2 h

Rf 0.50 (Hex/EA=2/1), white needle, mp 98–100 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, 1H, *J* = 8.8 Hz), 8.22 (m, 2H), 7.59 (m, 1H), 7.47–7.37 (m, 5H), 7.30 (dd, 2H, *J* = 7.2, 7.2 Hz), 6.94 (dd, 1H, *J* = 8.8, 2.4 Hz), 6.78 (d, 1H, *J* = 2.4 Hz), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 165.1, 164.8, 152.5, 134.9, 133.5, 132.7, 130.4, 130.3, 129.4, 128.5, 128.4, 122.9, 120.2, 112.0, 109.5, 91.9, 87.9, 55.9; FT-IR(Neat) 2196, 1740, 1636, 1607, 1282, 1262, 1240, 1130, 1117 cm⁻¹; HRMS[EI] calcd for C₂₃H₁₆O₄ 356.1049, found 356.1022.

5-Chloro-2-(3-phenylprop-2-ynoyl)phenyl benzoate (2j)

Yield: 72% (260 mg, 0.72 mmol), Reaction time: 15 min Rf 0.68 (Hex/EA=2/1), colorless needle, mp 110–111 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (m, 3H), 7.58 (dt, 1H, *J* = 7.6, 1.6 Hz), 7.46–7.38 (m, 6H), 7.32–7.25 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 164.8, 150.8, 140.3, 133.8, 133.5, 132.8, 130.7, 130.5, 128.8, 128.5, 128.44, 128.41, 126.5, 124.7, 119.6, 93.2, 87.1; FT-IR(Neat) 2196, 1745, 1645, 1595, 1261, 1203, 1054, 703 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃ClO₃ 360.0553, found 360.0538.

3-Methoxy-2-(3-phenylprop-2-ynoyl)phenyl benzoate (2k)

Yield: 99% (353 mg, 0.99 mmol), Reaction time: 3 h Rf 0.43 (Hex/EA=2/1), white needle, mp 86–88 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, 2H, *J* = 7.6 Hz), 7.54 (dd, 1H, *J* = 8.0, 8.0 Hz), 7.48 (t, 1H, *J* = 8.0 Hz), 7.41–7.36 (m, 5H), 7.27 (m, 2H), 6.93 (m, 2H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 164.6, 158.5, 149.4, 133.6, 132.9, 132.1, 130.5, 130.3, 128.9, 128.4, 128.3, 122.6, 120.0, 115.6, 109.3, 92.0, 89.5, 56.3; FT-IR(Neat) 2195, 1741, 1647, 1604, 1472, 1228, 1092 cm⁻¹; HRMS[EI] calcd for C₂₃H₁₆O₄ 356.1049, found 356.1035.

2-[3-(4-Methoxyphenyl)prop-2-ynoyl]phenyl benzoate (2l)

Yield: 99% (353 mg, 0.99 mmol), Reaction time: 1 h

Rf 0.44 (Hex/EA=2/1), colorless crystal, mp 115–116 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (m, 3H), 7.63 (ddd, 1H, *J* = 8.5, 7.8, 1.8 Hz), 7.56 (m, 1H), 7.43 (m, 3H), 7.36 (d, 2H, *J* = 8.8 Hz), 7.27 (d, 1H, *J* = 8.5 Hz), 6.79 (d, 2H, *J* = 8.8 Hz), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 165.1, 161.5, 150.1, 134.9, 134.3, 133.5, 132.4, 130.3, 130.0, 129.3, 128.4, 126.1, 124.0, 114.1, 111.5, 94.0, 88.0, 55.2; FT-IR(Neat) 2190, 1740, 1638, 1602, 1511, 1257 cm⁻¹; HRMS[EI] calcd for C₂₃H₁₆O₄ 356.1049, found 356.1012.

2-[3-(4-Chlorophenyl)prop-2-ynoyl]phenyl benzoate (2m)

Yield: 96% (346 mg, 0.96 mmol), Reaction time: 1 h

Rf 0.65 (Hex/EA=2/1), colorless crystal, mp 86–88 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.24–8.20 (m, 3H), 7.68 (m, 1H), 7.60 (m, 1H), 7.45 (m, 3H), 7.32–7.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 175.4, 165.0, 150.2, 136.8, 134.7, 133.8, 133.5, 132.3, 130.3, 129.7, 129.1, 128.8, 128.4, 126.2, 124.1, 118.2, 91.2, 88.6; FT-IR(Neat) 2199, 1741, 1642, 1603, 1262, 1207, 1060, 1006, 704 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃ClO₃ 360.0553, found 360.0529.

2-(3-Phenylprop-2-ynoyl)phenyl naphthalene-2-carboxylate (2n)

Yield: 86% (323 mg, 0.86 mmol), Reaction time: 2 h

Rf 0.58 (Hex/EA=2/1), colorless needle, mp 103–105 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H) , 8.27 (dd, 1H, *J* = 7.8, 2.0 Hz), 8.19 (dd, 1H, *J* = 8.4, 2.0 Hz), 7.89 (m, 3H), 7.69 (ddd, 1H, *J* = 7.8, 7.8, 2.0 Hz), 7.57 (m, 2H), 7.46 (ddd, 1H, *J* = 7.8, 7.8, 1.6 Hz), 7.35 (m, 3H), 7.29 (m, 1H), 7.17 (dd, 2H, *J* = 7.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 165.4, 150.4, 135.8, 134.6, 132.7, 132.51, 132.45, 132.4, 130.4, 130.1, 129.5, 128.5, 128.31, 128.28, 127.7, 126.7, 126.5, 126.2, 125.6, 124.2, 119.8, 92.8, 88.1; FT-IR(Neat) 2196, 1737, 1642, 1187 cm⁻¹; HRMS[EI] calcd for C₂₆H₁₆O₃ 376.1099, found 376.1084.

2-(3-Phenylprop-2-ynoyl)phenyl furan-2-carboxylate (20)

Yield: 99% (313 mg, 0.99 mmol), Reaction time: 1.5 h Rf 0.46 (Hex/EA=2/1), colorless crystal, mp 97–99 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, 1H, *J* = 8.0, 2.0 Hz), 7.66 (ddd, 1H, *J* = 8.4, 7.6, 2.0 Hz), 7.59 (d, 1H, *J* = 1.6 Hz), 7.51–7.39 (m, 5H), 7.34 (dd, 2H, *J* = 7.6, 7.6 Hz), 7.29 (dd, 1H, *J* = 8.4, 1.2 Hz), 6.51 (dd, 1H, *J* = 3.6, 1.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 175.7, 156.7, 149.3, 147.1, 143.8, 134.6, 132.9, 132.6, 130.6, 129.9, 128.5, 126.4, 124.1, 120.0, 119.8, 112.2, 92.9, 87.9; FT-IR(Neat) 2197, 1745, 1642, 1295 cm⁻¹; HRMS[EI] calcd for C₂₀H₁₂O₄ 316.0736, found 316.0740.

2-(3-Phenylprop-2-ynoyl)phenyl acetate (2p)

Yield: 90% (238 mg, 0.90 mmol), Reaction time: 10 min

Rf 0.53 (Hex/EA=2/1), white solid, mp 63–64 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.27 (dd, 1H, *J* = 7.8, 1.8 Hz), 7.66–7.61 (m, 3H), 7.48 (m, 1H), 7.42 (m, 3H), 7.15 (d, 1H, *J* = 8.4 Hz), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 169.5, 150.0, 134.6, 133.0, 132.9, 130.8, 129.4, 128.6, 126.1, 124.0, 119.9, 92.6, 87.6; FT-IR(Neat) 2197, 1770, 1641, 1187 cm⁻¹; HRMS[EI] calcd for C₁₇H₁₂O₃ 264.0786, found 264.0777.

General Procedure: Synthesis of 3-Aroylflavones by 9-AJ-catalyzed Tandem Acyl Transfer-Cyclization

To a solution of phenyl ester (0.1 mmol) in dry DMF (20 mL/mmol) was added 9-azajulolidine (30 mol%) at room temperature under argon. After being stirred at 30 $^{\circ}$ C, the reaction mixture was diluted with water at room temperature. The organic layer was separated and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with 1 M HCl, saturated aqueous NaHCO₃, brine, dried over MgSO₄ and filtered. The filtrate was concentrated in vacuo, and then the resulting residue was purified by preparative thin layer chromatography (eluted with Toluene/EA=6/1) to afford 3-aroylflavone derivatives.

3-Benzoyl-2-phenyl-4H-chromen-4-one (1a)

Yield: 88% (28.8 mg, 0.088 mmol), Reaction time: 6 h

Rf 0.48 (Toluene/EA=6/1), white solid, mp 121–122 °C [lit. 121–122 °C]¹⁾. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, 1H, *J* = 8.0, 1.6 Hz), 7.92 (dd, 2H, *J* = 8.0, 1.2 Hz), 7.76 (ddd, 1H, *J* = 8.6, 7.2, 1.6 Hz), 7.65 (m, 2H), 7.59 (d, 1H, *J* = 8.6 Hz), 7.53 (m, 1H), 7.47 (m, 1H), 7.43–7.34 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 176.4, 162.4, 156.2, 137.1, 134.3, 133.7, 131.8, 131.4, 129.4, 128.73, 128.70, 128.5, 126.1, 125.6, 123.4, 122.7, 118.1; FT-IR(Neat) 1673, 1636, 1465, 1375 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₄O₃ 326.0943, found 326.0944.

3-[(4-Methoxyphenyl)carbonyl]-2-phenyl-4H-chromen-4-one (1b)

Yield: 63% (22.5 mg, 0.063 mmol), Reaction time: 22 h Rf 0.35 (Toluene/EA=6/1), colorless crystal, mp 172–174 °C [lit. 169–170 °C]²⁾. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, 1H, *J* = 8.0, 1.6 Hz), 7.90 (d, 2H, *J* = 8.8 Hz), 7.75 (ddd, 1H, *J* = 8.4, 6.8, 1.6 Hz), 7.68 (d, 2H, *J* = 7.6 Hz), 7.58 (d, 1H, *J* = 8.4 Hz), 7.48–7.34 (m, 4H), 6.87 (d, 2H, *J* = 8.8 Hz), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 176.5, 164.0, 162.0, 156.1, 134.2, 131.9, 131.8, 131.3, 130.3, 128.7, 128.5, 126.1, 125.5, 123.3, 122.8, 118.1, 114.0, 55.4; FT-IR(Neat) 1667, 1633, 1598, 1465, 1376, 1256 cm⁻¹; HRMS[EI] calcd for C₂₃H₁₆O₄ 356.1049, found 356.1034.

3-[(4-Chlorophenyl)carbonyl]-2-phenyl-4H-chromen-4-one (1c)

Yield: 92% (33.2 mg, 0.092 mmol), Reaction time: 5 h Rf 0.60 (Toluene/EA=6/1), colorless crystal, mp 157–159 °C [lit. 151–153 °C]³⁾. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, 1H, *J* = 8.0, 1.4 Hz), 7.85 (d, 2H, *J* = 8.8 Hz), 7.76 (ddd, 1H, *J* = 8.4, 7.0, 1.4 Hz), 7.64–7.58 (m, 3H), 7.49–7.42 (m, 2H), 7.39–7.35 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 176.3, 162.8, 156.1, 140.2, 135.5, 134.4, 131.62, 131.59, 130.7, 129.1, 128.8, 128.5, 126.1, 125.8, 123.3, 122.2, 118.2; FT-IR(Neat) 1678, 1636, 1464, 1376 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃ClO₃ 360.0553, found 360.0552.

3-[(4-Bromophenyl)carbonyl]-2-phenyl-4H-chromen-4-one (1d)

Yield: 96% (38.9 mg, 0.096 mmol), Reaction time: 3 h

Rf 0.60 (Toluene/EA=6/1), white solid, mp 161–163 °C [lit. 159–160 °C]⁴⁾. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (dd, 1H, *J* = 8.0, 1.6 Hz), 7.76 (m, 3H,), 7.61 (m, 3H), 7.54 (d, 2H, *J* = 8.8 Hz), 7.46 (m, 2H), 7.37 (dd, 1H, *J* = 7.6, 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 192.5, 176.3, 162.8, 156.1, 135.8, 134.4, 132.1, 131.6, 131.5, 130.8, 129.0, 128.8, 128.4, 126.0, 125.7, 123.2, 122.1, 118.1; FT-IR(Neat) 1677, 1635, 1618, 1464, 1376, 871, 760 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃BrO₃ 404.0048, found 404.0029.

3-[(4-Cyanophenyl)carbonyl]-2-phenyl-4H-chromen-4-one (1e)

Yield: 97% (34.1 mg, 0.097 mmol), Reaction time: 7 h

Rf 0.53 (Toluene/EA=6/1), colorless crystal, mp 180-181 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (dd, 1H, *J* = 8.0, 1.6 Hz), 7.99 (d, 2H, *J* = 8.8 Hz), 7.79 (ddd, 1H, *J* = 8.8, 7.2, 1.6 Hz), 7.70 (d, 2H, *J* = 8.8 Hz), 7.62–7.58 (m, 3H), 7.52–7.44 (m, 2H), 7.39 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 176.3, 163.6, 156.1, 140.0, 134.7, 132.6, 131.8, 131.4, 129.5, 128.9, 128.5, 126.02, 125.96, 123.2, 121.7, 118.2, 117.9, 116.7; FT-IR(Neat) 1683, 1634, 1618, 1464, 1377 cm⁻¹; HRMS[EI] calcd for C₂₃H₁₃NO₃ 351.0895, found 351.0888.

3-[(3-Methoxyphenyl)carbonyl]-2-phenyl-4H-chromen-4-one (1f)

Yield: 90% (32.0 mg, 0.09 mmol), Reaction time: 4 h

Rf 0.51 (Toluene/EA=6/1), white solid, mp 109–111 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, 1H, *J* = 8.0, 1.6 Hz), 7.75 (ddd, 1H, *J* = 8.4, 8.0, 1.6 Hz), 7.66 (d, 2H, *J* = 7.4 Hz), 7.59 (d, 1H, *J* = 8.4 Hz), 7.51 (dd, 1H, *J* = 2.4, 2.4 Hz), 7.48–7.41 (m, 3H), 7.37 (dd, 2H, *J* = 7.4, 7.4 Hz), 7.28 (dd, 1H, *J* = 7.6, 7.6 Hz), 7.08 (dd, 1H, *J* = 7.6, 2.4 Hz), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 176.4, 162.3, 159.9, 156.1, 138.3, 134.3, 131.7, 131.4, 129.7, 128.7, 128.5, 126.1, 125.6, 123.3, 122.6, 122.55, 120.48, 118.1, 112.9, 55.4; FT-IR (Neat) 1675, 1636, 1620, 1465, 1376, 1267, 760 cm⁻¹; HRMS[EI] calcd for C₂₃H₁₆O₄ 356.1049, found 356.1054.

3-[(3-Chlorophenyl)carbonyl]-2-phenyl-4H-chromen-4-one (1g)

Yield: 96% (34.6 mg, 0.096 mmol), Reaction time: 3 h

Rf 0.60 (Toluene/EA=6/1), white needle, mp 157–158 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, 1H, *J* = 8.2, 1.6 Hz), 7.88 (dd, 1H, *J* = 1.6, 1.6 Hz), 7.77 (m, 2H), 7.61 (m, 3H), 7.51–7.43 (m, 3H), 7.40–7.32 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 176.3, 162.9, 156.1, 138.5, 135.0, 134.5, 133.6, 131.6, 131.5, 130.1, 129.1, 128.8, 128.5, 127.5, 126.0, 125.8, 123.2, 122.0, 118.2; FT-IR(Neat) 1679, 1635, 1618, 1465, 1375, 761 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃ClO₃ 360.0553, found 360.0553.

3-[(3-Bromophenyl)carbonyl]-2-phenyl-4H-chromen-4-one (1h)

Yield: 98% (39.7 mg, 0.098 mmol), Reaction time: 3 h

Rf 0.58 (Toluene/EA=6/1), white needle, mp 168–170 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, 1H, *J* = 8.2, 1.6 Hz), 8.04 (dd, 1H, *J* = 1.6, 1.6 Hz), 7.82 (dt, 1H, *J* = 8.0, 1.6 Hz), 7.77 (ddd, 1H, *J* = 8.8, 7.2, 1.6 Hz), 7.66–7.59 (m, 4H), 7.50–7.36 (m, 4H), 7.28 (t, 1H, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 176.3, 162.9, 156.1, 138.7, 136.5, 134.5, 132.0, 131.6, 131.5, 130.3, 128.8, 128.5, 128.0, 126.1, 125.8, 123.2, 123.0, 122.0, 118.2; FT-IR(Neat) 1678, 1635, 1618, 1465, 1375, 760 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃BrO₃ 404.0048, found 404.0045.

3-Benzoyl-7-methoxy-2-phenyl-4H-chromen-4-one (1i)

Yield: 57% (20.3 mg, 0.057 mmol), Reaction time: 16 h

Rf 0.41 (Toluene/EA=6/1), colorless needle, mp 174–176 °C [lit. 162–163 °C]¹⁾. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, 1H, *J* = 8.8 Hz), 7.92 (d, 2H, *J* = 7.4 Hz), 7.63 (d, 2H, *J* = 7.4 Hz), 7.52 (m, 1H), 7.41–7.32 (m, 5H), 7.02 (dd, 1H, *J* = 8.8, 2.4 Hz), 6.97 (d, 1H, *J* = 2.4 Hz), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.7, 175.8, 164.6, 162.0, 157.9, 137.1, 133.6, 131.8, 131.3, 129.4, 128.69, 128.68, 128.4, 127.5, 122.5, 117.1, 114.9, 100.3, 55.9; FT-IR(Neat) 1674, 1625, 1447, 1439, 1378, 1357 cm⁻¹; HRMS[EI] calcd for C₂₃H₁₆O₄ 356.1049, found 356.1025.

3-Benzoyl-7-chloro-2-phenyl-4H-chromen-4-one (1j)

Yield: 56% (20.2 mg, 0.056 mmol), Reaction time: 4 h

Rf 0.61 (Toluene/EA=6/1), colorless needle, mp 196–198 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, 1H, *J* = 8.4 Hz), 7.91 (d, 2H, *J* = 7.6 Hz), 7.63 (m, 3H), 7.54 (m, 1H), 7.45–7.34 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 175.7, 162.5, 156.2, 140.4, 136.8, 133.9, 131.7, 131.3, 129.4, 128.82 128.78, 128.5, 127.5, 126.5, 122.8, 121.8, 118.2; FT-IR(Neat) 1676, 1641, 1611, 1426, 1369 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃ClO₃ 360.0553, found 360.0550.

C₂₃H₁₆O₄ 356.1049, found 356.1031.

3-Benzoyl-5- methoxy-2-phenyl-4H-chromen-4-one (1k)

Yield: 70% (24.9 mg, 0.07 mmol), Reaction time: 5 h Rf 0.13 (Toluene/EA=6/1), colorless crystal, mp 235–236 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, 2H, *J* = 7.2 Hz), 7.63 (m, 3H), 7.51 (t, 1H, *J* = 7.2 Hz), 7.42–7.33 (m, 5H), 7.14 (d, 1H, *J* = 8.8 Hz), 6.85 (d, 1H, *J* = 8.0 Hz), 3.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 176.3, 160.2, 160.1, 158.1, 137.3, 134.4, 133.5, 131.4, 131.2, 129.3, 128.7, 128.4, 123.8, 113.9, 110.0, 106.8, 56.4;

3-Benzoyl-2-(4-methoxyphenyl)-4H-chromen-4-one (11)

Yield: 71% (25.3 mg, 0.071 mmol), Reaction time: 14 h

Rf 0.33 (Toluene/EA=6/1), colorless needle, mp 146–147 °C [lit. 143 °C]⁵). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (dd, 1H, *J* = 8.0, 1.2 Hz), 7.94 (d, 2H, *J* = 7.6 Hz), 7.73 (ddd, 1H, *J* = 8.8, 8.0, 1.2 Hz), 7.62 (d, 2H, *J* = 8.8 Hz), 7.57 (d, 1H, *J* = 8.8 Hz), 7.52 (t, 1H, *J* = 7.6 Hz), 7.44–7.38 (m, 3H), 6.84 (d, 2H, *J* = 8.8 Hz), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 176.4, 162.2, 162.0, 156.0, 137.0, 134.1, 133.7, 130.2, 129.3, 128.7, 125.9, 125.4, 123.8, 123.2, 121.5, 118.0, 114.2, 55.3; FT-IR(Neat) 1673, 1633, 1616, 1606, 1374, 760 cm⁻¹; HRMS[EI] calcd for C₂₃H₁₆O₄ 356.1049, found 356.1017.

FT-IR(Neat) 1675, 1637, 1605, 1476, 1378, 1268, 1091 cm⁻¹; HRMS[EI] calcd for

3-Benzoyl-2-(4-chlorophenyl)-4H-chromen-4-one (1m)

Yield: 94% (33.9 mg, 0.094 mmol), Reaction time: 2.5 h

Rf 0.58 (Toluene/EA=6/1), white solid, mp 133–135 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.23 (dd, 1H, *J* = 8.0, 1.6 Hz), 7.92 (dd, 2H, *J* = 7.6, 1.6 Hz), 7.76 (ddd, 1H, *J* = 8.4, 8.0, 1.6 Hz), 7.60 (d, 2H, *J* = 8.8 Hz), 7.57 (m, 2H), 7.46 (ddd, 1H, *J* = 8.0, 8.0, 0.8 Hz), 7.41 (dd, 2H, *J* = 7.6, 7.6 Hz), 7.33 (d, 2H, *J* = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 176.2, 161.0, 155.9, 137.7, 136.7, 134.4, 133.9, 130.0, 129.7, 129.2, 129.0, 128.7, 125.9, 125.6, 123.1, 122.7, 118.0; FT-IR(Neat) 1673, 1635, 1617, 1465, 1374, 760 cm⁻¹; HRMS[EI] calcd for C₂₂H₁₃ClO₃ 360.0553, found 360.0538.

3-[(Naphthalen-2-yl)carbonyl]-2-phenyl-4H-chromen-4-one (1n)

Yield: 91% (34.2 mg, 0.091 mmol), Reaction time: 8 h

Rf 0.53 (Toluene/EA=6/1), colorless crystal, mp 110–112 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, 1H, *J* = 1.6 Hz), 8.27 (dd, 1H, *J* = 7.8, 1.4 Hz), 8.04 (dd, 1H, *J* = 8.2, 1.6 Hz), 7.85 (m, 3H), 7.78 (ddd, 1H, *J* = 8.4, 7.4, 1.4 Hz), 7.69 (d, 2H, *J* = 7.6 Hz), 7.62 (d, 1H, *J* = 8.4 Hz), 7.59–7.46 (m, 2H), 7.48 (m, 1H), 7.40–7.31 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.4, 176.5, 162.4, 156.2, 136.0, 134.6, 134.3, 132.6, 131.84, 131.78, 131.4, 129.8, 128.73, 128.71, 128.69, 128.5, 127.7, 126.6, 126.1, 125.6, 124.3, 123.4, 122.8, 118.1; FT-IR(Neat) 1670, 1636, 1624, 1376, 758 cm⁻¹; HRMS[EI] calcd for C₂₆H₁₆O₃ 376.1099, found 376.1088.

3-[(Furan-2-yl)carbonyl]-2-phenyl-4H-chromen-4-one (10)

Yield: 60% (19.0 mg, 0.06 mmol), Reaction time: 10 h

Rf 0.35 (Toluene/EA=6/1), white crystal, mp 184–186 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, 1H, *J* = 7.6, 1.6 Hz), 7.75 (ddd, 1H, *J* = 8.4, 7.2, 1.6 Hz), 7.69 (d, 2H, *J* = 7.2 Hz), 7.50–7.38 (m, 5H), 7.11 (d, 1H, *J* = 3.6 Hz), 6.44 (dd, 1H, *J* = 3.6, 1.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 180.3, 176.0, 163.0, 156.0, 153.0, 147.3, 134.3, 131.8, 131.5, 128.8, 128.5, 126.1, 125.7, 123.4, 121.8, 119.8, 118.1, 112.6; FT-IR(Neat) 1660, 1635, 1620, 1464, 1377, 757 cm⁻¹; HRMS[EI] calcd for C₂₀H₁₂O₄ 316.0736, found 316.0714.

3-Acetyl-2-phenyl-4H-chromen-4-one (1p)

Yield: 38% (10.0 mg, 0.038 mmol), Reaction time: 5 h

Rf 0.48 (Toluene/EA=6/1), white solid, mp 145–146 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.26 (dd, 1H, *J* = 8.6, 1.6 Hz), 7.73 (ddd, 1H, *J* = 8.6, 7.0, 1.6 Hz), 7.66 (d, 2H, *J* = 7.2 Hz), 7.58–7.44 (m, 5H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.4, 175.9, 162.4, 155.8, 134.3, 131.9, 131.5, 128.8, 128.6, 126.0, 125.6, 124.9, 123.4, 118.1, 32.3; FT-IR(Neat) 1706, 1635, 1617, 1464, 1376, 1073, 760 cm⁻¹; HRMS[EI] calcd for C₁₇H₁₂O₃ 264.0786, found 264.0710.

2-Phenyl-4H-chromen-4-one (5a)

Yield: 12% (2.7 mg, 0.012 mmol)

Rf 0.29 (Toluene/EA=6/1), white solid, mp 95–97 °C [lit. 96–97 °C]⁶.

¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, 1H, *J* = 7.8, 1.6 Hz), 7.93 (m, 2H), 7.70 (ddd, 1H, *J* = 7.8, 7.8, 1.6 Hz), 7.59–7.50 (m, 4H), 7.43 (dd, 1H, *J* = 7.8, 7.8 Hz), 6.84 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 178.4, 163.4, 156.2, 133.7, 131.7, 131.6, 129.0, 126.2, 125.7, 125.2, 123.9, 118.0, 107.5; FT-IR(Neat) 1645, 1465, 1375, 768 cm⁻¹; HRMS[EI] calcd for C₁₅H₁₀O₂ 222.0681, found 222.0663.

Procedure for 9-AJ-Catalyzed Tandem Reaction in the presence of D₂O

To a solution of phenyl ester **2h** (0.1 mmol) in DMF–D₂O (9:1, 20 mL/mmol) was added 9-azajulolidine (30 mol%) at room temperature under argon. After being stirred at 30 °C for 6 h, the reaction mixture was diluted with water at room temperature. The organic layer was separated and the aqueous layer was extracted twice with ethyl acetate. The combined organic layers were washed with 1 M HCl, saturated aqueous NaHCO₃, brine, dried over MgSO₄ and filtered. The filtrate was concentrated in vacuo, and then the resulting residue was purified by preparative thin layer chromatography (eluted with Toluene/EA=6/1) to afford 3-aroylflavone **1h** (47%) and deuterated flavone **6**.

2-Phenyl(3-²H)-4H-chromen-4-one (6)

Yield: 37% (8.2 mg, 0.037 mmol),

Rf 0.29 (Toluene/EA=6/1), white solid, mp 91–93 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.24 (dd, 1H, *J* = 7.8, 1.6 Hz), 7.94 (m, 2H), 7.71 (ddd, 1H, *J* = 7.8, 7.8, 1.6 Hz), 7.59–7.51 (m, 4H), 7.43 (dd, 1H, *J* = 7.8, 7.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 178.3, 163.3, 156.2, 133.7, 131.7, 131.5, 129.0, 126.2, 125.6, 125.2, 124.0, 118.0, 107.5, 107.3, 107.0; FT-IR(Neat) 1641, 1615, 1561, 1464, 1364, 758 cm⁻¹; HRMS[EI] calcd for C₁₅H₁₀O₂ 223.0743, found 223.0728.

General Procedure: Synthesis of o-Alkynoylphenols S1

Alkynoylphenols **S1** were prepared by the procedure we previously reported⁷.

3-(4-Chlorophenyl)-1-(2-hydroxyphenyl)prop-2-yn-1-one (S1j)

Yield: 76% (393 mg, 1.53 mmol), use of substrate: 2.0 mmol

Rf 0.71 (Hex/EA=2/1), yellow needle, mp 120-121 °C.

¹H NMR (400 MHz, CDCl₃) δ 11.7 (s, 1H), 8.04 (dd, 1H, *J* = 8.4, 1.4 Hz), 7.57 (d, 2H, *J* = 8.6 Hz), 7.50 (ddd, 1H, *J* = 8.2, 8.0, 1.4 Hz), 7.37 (d, 2H, *J* = 8.6 Hz), 6.96 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 181.7, 162.6, 137.4, 137.1, 134.1, 132.7, 129.1, 120.5, 119.3, 118.0, 117.9, 94.3, 86.2; FT-IR(Neat) 2207, 1628, 1592, 1489, 1344, 1257 cm⁻¹; HRMS[EI] calcd for C₁₅H₉ClO₂ 256.0291, found 256.0289.

1-(4-Chloro-2-hydroxyphenyl)-3-phenylprop-2-yn-1-one (S1m)

Yield: 81% (414 mg, 1.61 mmol), use of substrate: 2.0 mmol Rf 0.70 (Hex/EA=2/1), Yellow needle, mp 115–117 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.8 (s, 1H), 7.90 (d, 1H, *J* = 8.8 Hz), 7.56 (d, 2H, *J* = 7.2 Hz), 7.40 (t, 1H, *J* = 7.2 Hz), 7.32 (dd, 2H, *J* = 7.2, 7.2 Hz), 6.88 (d, 1H, *J* = 2.0 Hz), 6.84 (dd, 1H, *J* = 8.8, 2.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 181.2, 163.1, 143.0, 133.8, 133.1, 131.3, 128.7, 120.1, 119.30, 119.29, 118.1, 96.5, 85.4; FT-IR(Neat) 2205, 1624, 1587, 769 cm⁻¹; HRMS[EI] calcd for C₁₅H₉ClO₂ 256.0291 found 256.0308.

Structure Determination of 3-Aroylflavones by X-ray Crystallographic Analysis

The structure of 3-aroylflavone was confirmed by X-ray crystallographic analysis of **1h**. Single-crystal of **1h** was obtained by recrystallization from diethyl ether. CCDC 897539 (**1h**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

OMe

0

Б

0

OMe

0

=0

S26

 \overline{O}

0

 \overline{O}

Ó

=0

-0

≻o

MeO

0

0

ő

 \overline{O}

=0

 \overline{O}

0

0

HPLC Trace at UV 310 nm

Solvent: Hex/EA = 3/1, 1.0 mL/min (Column: Senshu-Pak Silica-3301-N)

References

- A. K. Ganguly, S. Kaur, P. K. Mahata, D. Biswas, B. N. Pramanikand, T. M. Chan, *Tetrahedron Lett.* 2005, 46, 4119–4121.
- 2) T. K. Mandal, R. Pal, R. Mondal, S. P. Dey, A. K. Mallik, Org. Prep. Proced. Int. 2011, 43, 467–474.
- 3) V. P. Dhande, P. Thakwani, K. G. Marathe, Tetrahedron 1988, 44, 3015-3023.
- 4) C. Nemes, A. Lévai, T. Patonay, G. Tóth, S. Boros, J. Halász, W. Adam, D. Golsch, J. Org. Chem. 1994, 59, 900–905
- 5) W. Baker, F. Glockling, J. Chem. Soc. 1950, 2759–2764.
- 6) A. V. Dubrovskiy, R. C. Larock, Org. Lett. 2010, 12, 3117-3119.
- 7) M. Yoshida, Y. Fujino, K. Saito, T. Doi, Tetrahedron 2011, 67, 9993-9997.