Total Syntheses of Mitragynine, Paynantheine and Speciogynine via an Enantioselective Thiourea-Catalysed Pictet-Spengler Reaction

Isabel P. Kerschgens, Elise Claveau, Martin J. Wanner, Steen Ingemann, Jan H. van Maarseveen and Henk Hiemstra

Supporting Information

Contents

General remarks 1
Synthetic procedures 2
Binolphosphoric acid catalyst screening 12
NMR-tables 13
References 15
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra 16

General remarks:

All ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (APT) spectra were recorded with a Bruker Avance 400 spectrometer $\left({ }^{1} \mathrm{H} 400 \mathrm{MHz}\right.$, ${ }^{13} \mathrm{C} 100 \mathrm{MHz}$) in CDCl_{3} at room temperature. IR spectra were obtained using a Bruker IFS 28 FTspectrophotometer. Optical rotations were measured with a Perkin-Elmer 241 polarimeter. Analytical thin layer chromatography was performed using Merck TLC plastic roll $500 \times 20 \mathrm{~cm}$ silica gel F_{254}. Flash chromatography was carried out on Biosolve $60 \AA(0.032-0.063 \mathrm{~mm})$ silica gel. Ee's were determined on Chiracel ${ }^{\circledR}$ OD-H (Chiral Technologies Europe, $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$) columns. Melting points were measured with a Leitz-Wetzlar melting point microscope and are uncorrected. Mass spectra and accurate mass measurements were performed using a JEOL JMS-SX/SX 102 A Tandem Mass Spectrometer.

All reactions were carried out in oven-dried glassware with magnetic stirring under nitrogen atmosphere. Tetrahydrofuran (THF) was freshly distilled from sodium and benzophenone. Toluene was stored under $4 \AA$ molecular sieves. Commercial reagents and solvents were purchased from Biosolve, Sigma-Aldrich, Fluka or Acros and used as received. 4-Hydroxyindole was purchased from AK Scientific Inc. Powdered $4 \AA$ molecular sieves (Fluka) were dried at $200^{\circ} \mathrm{C}$ and 0.1 mbar. Aldehyde $\mathbf{8}$ was prepared according to reference 1 . Bromide 6 was prepared following the method of ref. 2. Thioureum 16 was prepared according to Soós et al (ref. 3).

4-Methoxyindole

$\mathrm{K}_{2} \mathrm{CO}_{3}(90.0 \mathrm{~g}, 0.65 \mathrm{~mol})$ and $\mathrm{MeI}(28.1 \mathrm{~g}, 0.20 \mathrm{~mol})$ were added to a solution of 4-methoxy- 1 H -indole $(26.6 \mathrm{~g}$, $200 \mathrm{~mol})$ in acetone $(400 \mathrm{~mL})$. After stirring the suspension under reflux for 18 h additional MeI ($21.0 \mathrm{~g}, 0.15$ mol) was added and refluxing was continued for 24 h . The mixture was filtered over celite, sufficient silica gel was added to the filtrate to absorb the compounds and the solvent was evaporated. Filtration over a glass filter packed with silica, eluting with EtOAc:PE, 1:2 (1.2 L) gave the product as a yellow solidifying oil, containing small amounts of the N -methylated product. Yield 89% ($27.1 \mathrm{~g}, 0.184 \mathrm{~mol}$). Mp $64-67{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 8.16$ (s, $1 \mathrm{H}) ; 7.37(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 7.11(\mathrm{~m}, 2 \mathrm{H}) ; 6.93(\mathrm{t}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}) ; 6.77(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ; 4.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR $\delta 153.2,137.1,122.6,122.6,118.4,104.4,99.5,99.4,55.2$. IR $3408,1615 \mathrm{~cm}^{-1}$. HRMS (FAB): m/z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ON}$: 148.0718; found: 148.0770 .

4-Methoxy-indole-3-carboxaldehyde

Triphenylphosphine ($40.1 \mathrm{~g}, 153 \mathrm{mmol}$) was dissolved in dry THF (640 ml) N-chlorosuccinimide and (20.41 g , 153 mmol) was added in portions. The suspension was stirred vigorously for 30 min at room temperature. Next DMF ($23.5 \mathrm{~mL}, 306 \mathrm{mmol}$) was added to the reaction and the mixture was stirred under reflux for $1 \mathrm{~h} .4-$ Methoxyindole ($7.5 \mathrm{~g}, 51 \mathrm{mmol}$) was added and the mixture was stirred under reflux for 1 h . The reaction mixture was cooled down to room temperature and the THF was evaporated. 640 mL Water (700 ml) was added to the mixture and it was stirred under reflux for 1 h . The mixture was cooled down and basified with 10% NaOH . The aqueous phase was extracted with EtOAc (4 x 200 mL) and the organic layers were combined and evaporated in the presence of silica. Chromatography over a short column with EtOAc:PE, 1:1 and 1:2 gave the product as an orange solid ($7.24 \mathrm{~g}, 41.3 \mathrm{mmol}, 81 \%$). Mp $151-154{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 10.53(\mathrm{~s}, 1 \mathrm{H}) ; 8.79(\mathrm{~s}, 1 \mathrm{H})$; $7.95(\mathrm{~d}, 1 \mathrm{H}, J=3.1 \mathrm{~Hz}) ; 7.24(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 7.10(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 6.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}) ; 4.03(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 187.6,153.7,137.6,128.4,123.1,118.3,115.6,105.3,101.6,54.8$. IR $3246,1648 \mathrm{~cm}^{-1}$. HRMS (FAB): m / z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}$: 176.0667; found: 176.0712.

4-Methoxy-3-(2-nitrovinyl)-indole

$\mathrm{NH}_{4} \mathrm{OAc}(3.52 \mathrm{~g}, 45.6 \mathrm{mmol})$ and aldehyde $(4.0 \mathrm{~g}, 22.8 \mathrm{mmol})$ were dissolved in nitromethane $(135 \mathrm{~mL})$ and the suspension was heated under reflux for 1 h . The mixture was cooled to room temperature and the solvent evaporated. The remaining solid was dissolved in a small amount of methanol and precipitated slowly with water. The solid was filtered over celite and dried under vacuum. The product ($4.80 \mathrm{~g}, 22.0 \mathrm{mmol}, 96 \%$) was obtained as a red solid. Mp: 185-188 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 8.67(\mathrm{bs}, 1 \mathrm{H}) ; 8.52(\mathrm{~d}, 1 \mathrm{H}, J=13.4 \mathrm{~Hz}) ; 7.98(\mathrm{~d}, 1 \mathrm{H}, J=$ $13.4 \mathrm{~Hz}) ; 7.61(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}) ; 7.25(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 7.07(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 6.71(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz})$; 4.04 (s, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 152.9,138.4,134.5,131.9,130.5,123.5,114.4,107.9,105.1,101.3,54.3 . \operatorname{IR}: 3285$, 2940, 1687, $1612 \mathrm{~cm}^{-1}$. HRMS (FAB): m/z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}_{2}$: 219.0725, found: 219.0773.

4-Methoxytryptamine ${ }^{4}$

4
$\mathrm{LiAlH}_{4}(8.0 \mathrm{~g}, 210 \mathrm{mmol})$ was added to 80 mL of dry THF and cooled to $0^{\circ} \mathrm{C}$. 4-Methoxy-3-(2nitrovinyl)indole ($3.94 \mathrm{~g}, 18.1 \mathrm{mmol}$) was dissolved in 200 mL dry THF and added to the mixture with a dropping funnel. After 3 h of reflux the flask was placed in an ice bath and first water ($1.3 \mathrm{~g} / \mathrm{g} \mathrm{LiAlH} 4$); then 15% aqueous $\mathrm{NaOH}(1.3 \mathrm{~g} / \mathrm{g} \mathrm{LiAlH} 44)$ and finally again water $(3.25 \mathrm{~g} / \mathrm{g} \mathrm{LiAlH} 4)$ were carefully added with a dropping funnel. The mixture was stirred vigorously for 15 min and filtered. The solids were washed with $\mathrm{Et}_{2} \mathrm{O}$ (5 x) and the combined organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The product 4 was obtained as a solid ($3.42 \mathrm{~g}, 18.0 \mathrm{mmol}, 99 \%$). Mp $105-110^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 8.06(\mathrm{bs}, 1 \mathrm{H}) ; 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 6.99(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.7 \mathrm{~Hz}) ; 6.91(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}) ; 6.51(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}) ; 3.94(\mathrm{~s}, 3 \mathrm{H}) ; 3.03(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 154.4,138.1$, $122.1,121.2,116.9,112.9,104.5,98.7,54.7,42.8,30.6 \mathrm{ppm}$. IR: $3400,2932,1585 \mathrm{~cm}^{-1}$.

\mathbf{N}_{b}-(4-nitrobenzenesulfonyl)-4-methoxytryptamine (5)

4
 $\xrightarrow[\substack{\mathrm{Et}_{3} \mathrm{~N} \\ \mathrm{CH}_{2} \mathrm{Cl}_{2}}]{\text { p-NsCl }}$

5

4-Nitrobenzenesulfonyl chloride $(4.43 \mathrm{~g}, 20.0 \mathrm{mmol})$ was added in 3 portions to a solution of 4methoxytryptamine $4(3.42 \mathrm{~g}, 18.0 \mathrm{mmol})$ and triethylamine ($3.06 \mathrm{ml}, 22 \mathrm{mmol}$) in anhydrous DCM (65 ml).

The reaction temperature was kept between 20 and $30^{\circ} \mathrm{C}$ by cooling in a water bath. After stirring during 2 h and extractive workup ($\mathrm{DCM} / \mathrm{aq} . \mathrm{NaHCO}_{3}$) the mixture was purified by chromatography (EtOAc:PE, 1:2 and 2:1) to give 5 as an orange, slowly crystallising glass ($5.93 \mathrm{~g}, 15.8 \mathrm{mmol}, 87.4 \%$). Mp: 136-140 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta$ $7.89(\mathrm{~m}, 2 \mathrm{H}) ; 7.54(\mathrm{~m}, 2 \mathrm{H}) ; 7.08(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 6.88(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 6.76(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}) ; 6.46(\mathrm{~d}$, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ; 3.92(\mathrm{~s}, 3 \mathrm{H}) ; 3.40(\mathrm{~m}, 2 \mathrm{H}) ; 3.00(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 153.2,148.2,145.3,137.6,126.7$, 122.6, $121.3,121.5,116.1,110.6,104.5,98.2,54.4,44.1,26.1$. IR: $3406,1528 \mathrm{~cm}^{-1}$. HRMS (FAB): m/z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}_{3} \mathrm{~S}: 376.0922$; found: 376.0971.
(E)-tert-butyl 4-(2-(4-methoxy-1H-indol-3-yl)ethylamino)but-2-enyl carbonate (7)

5

$\mathrm{K}_{2} \mathrm{CO}_{3}$ (excess), DMSO
then PhSH

7

Finely powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(4.10 \mathrm{~g}, 29.7 \mathrm{mmol})$ and bromoalkene $6(2.73 \mathrm{~g}, 10.9 \mathrm{mmol})$ were added to a solution of N_{b}-(4-nitrobenzenesulfonyl)-4-methoxytryptamine 5 ($3.71 \mathrm{~g}, 9.9 \mathrm{mmol}$) in DMSO (33 mL). After stirring for 4 h at room temperature thiophenol ($3.0 \mathrm{~mL}, 29.7 \mathrm{mmol}$) was added and stirring was continued during 2 h . The reaction was quenched with water and the aqueous phase was extracted with EtOAc. Some aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added to facilitate the separation. The organic layers were combined and washed with water. After drying and removal of the solvent the mixture was purified by column chromatography (EtOAc:PE, 1:1; EtOAc; EtOAc:MeOH, 90:10; EtOAc:MeOH:NEt ${ }_{3}, 85: 10: 5$). Product 7 was obtained as a slightly coloured syrup (3.35 $\mathrm{g}, 9.3 \mathrm{mmol}, 94 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 8.64(\mathrm{bs}, 1 \mathrm{H}) ; 7.09(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 6.95(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 6.87(\mathrm{~s}, 1 \mathrm{H})$; $6.49(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}) ; 5.73(\mathrm{~m}, 1 \mathrm{H}) ; 5.87(\mathrm{~m}, 1 \mathrm{H}) ; 4.51(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}) ; 3.92(\mathrm{~s}, 3 \mathrm{H}) ; 3.30(\mathrm{~d}, 2 \mathrm{H}, J=5.9$ $\mathrm{Hz}) ; 3.10(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}) ; 2.97(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}) ; 1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 154.6,153.2,138.1,133.5$, $125.3,122.5,121.1,117.1,113.6,104.5,99.1,81.9,66.9,54.9,50.5,50.1,27.6,26.9$. IR: 3400, 2932, $1740 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (FAB): m/z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{2}$: 361.2083; found: 361.2078.

Organocatalyzed Pictet-Spengler reaction

Catalyst $16(0.330 \mathrm{~g}, 0.55 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and benzoic acid $(0.067 \mathrm{~g}, 0.55 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ were added to a solution of tryptamine $7(1.0 \mathrm{~g}, 2.77 \mathrm{mmol})$ in toluene $(50 \mathrm{~mL})$ under argon. Next aldehyde $\mathbf{8}^{1}(0.83 \mathrm{~g}, 3.30$ mmol) was added and the solution was stirred for 24 h at room temperature. The solvent was evaporated and the resulting oil purified by column chromatography using EtOAc:DCM:PE, 1:4:4. Product 9 was obtained as a colorless glass ($1.47 \mathrm{~g}, 2.5 \mathrm{mmol}, 90 \%$). ee: $89 \%\left(\right.$ Chiralcel $^{\circledR}$ OD-H, eluent: n-heptane:iso-propanol $=90: 10$, flow: $0.6 \mathrm{~mL} / \mathrm{min}$); 17.8 min (major) 23.7 (minor). Optical rotation: $|\alpha|{ }_{\bar{j}}{ }^{2 n}=-19.6^{\circ}\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta 7.79(\mathrm{bs}, 1 \mathrm{H}) ; 7.04(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 6.94(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 6.49(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}) ; 5.91(\mathrm{~m}, 1 \mathrm{H}) ; 5.76$ (m, 1H); $4.58(\mathrm{~d}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}) ; 3.91(\mathrm{~s}, 3 \mathrm{H}) ; 3.78(\mathrm{~s}, 3 \mathrm{H}) ; 3.67(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}) ; 3.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, J$ $=14.1 \mathrm{~Hz}) ; 3.17(\mathrm{~m}, 2 \mathrm{H}) ; 3.00(\mathrm{~m}, 1 \mathrm{H}) ; 2.82(\mathrm{~m}, 2 \mathrm{H}) ; 2.58(\mathrm{~m}, 4 \mathrm{H}) ; 2.09(\mathrm{~m}, 2 \mathrm{H}) ; 1.97(\mathrm{~m}, 2 \mathrm{H}) ; 1.52(\mathrm{~s}, 9 \mathrm{H}) ;$ $1.21(\mathrm{dt}, 6 \mathrm{H}, J=7.5 \mathrm{~Hz}, J=13.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta=171.3,154.3,153.3,137.1,133.6,132.3,126.4,122.0$, $117.2,108.5,104.2,99.6,82.1,67.0,65.0,56.4,55.2,54.6,53.0,46.0,32.0,29.1,27.8,24.0,23.4,20.6,13.6$, 13.3. IR: 3393, 2931, $1723 \mathrm{~cm}^{-1}$. HRMS (FAB): m / z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$: 593.2720; found: 593.2722 .

Boc-protection of 9

Di-tert-butyl dicarbonate $(0.37 \mathrm{~g}, 1.70 \mathrm{mmol})$ and DMAP $(0.035 \mathrm{~g}, 0.28 \mathrm{mmol})$ were added to a solution of tetrahydro- β-carboline $(0.673 \mathrm{~g}, 1.13 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$. The mixture was heated to $40^{\circ} \mathrm{C}$ and stirred for 1 h . Conversion was checked on TLC. The solvent was evaporated and product 17 was isolated via column chromatography using EtOAc:DCM:PE = 1:4:4 as a colorless glass ($0.779 \mathrm{~g}, 1.12 \mathrm{mmol}, 99 \%$) ee: 89% (Chiralcel ${ }^{\circledR}$ OD-H, eluent: n-heptane:iso-propanol $=95: 5$, flow: $0.5 \mathrm{~mL} / \mathrm{min}$); 9.90 (minor); 19.52 (major). Optical rotation: $|\alpha| \bar{\Sigma}^{\sim}{ }^{\eta}=-21.7^{\circ}\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.72(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 7.15(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$; $6.65(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 5.90(\mathrm{~m}, 1 \mathrm{H}) ; 5.73(\mathrm{~m}, 1 \mathrm{H}) ; 4.58(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}) ; 4.15(\mathrm{dd}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}, J=10.6$ $\mathrm{Hz}) ; 3.89(\mathrm{~s}, 3 \mathrm{H}) ; 3.76(\mathrm{~s}, 3 \mathrm{H}) ; 3.32(\mathrm{dd}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, J=13.7 \mathrm{~Hz}) ; 3.22(\mathrm{dd}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{~J}=13.9 \mathrm{~Hz})$; $3.14(\mathrm{~m}, 1 \mathrm{H}) ; 2.94(\mathrm{~m}, 2 \mathrm{H}) ; 2.80(\mathrm{dd}, 1 \mathrm{H}, J=4.7 \mathrm{~Hz}, J=16.4 \mathrm{~Hz}) ; 2.69(\mathrm{~m}, 4 \mathrm{H}) ; 2.42(\mathrm{~m}, 1 \mathrm{H}) ; 2.08(\mathrm{~m}, 1 \mathrm{H})$; $1.94(\mathrm{~m}, 1 \mathrm{H}) ; 1.80(\mathrm{~m}, 1 \mathrm{H}) ; 1.68(\mathrm{~s}, 9 \mathrm{H}) ; 1.51(\mathrm{~s}, 9 \mathrm{H}) ; 1.24(\mathrm{t}, 6 \mathrm{H}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta=171.2,153.9$, $153.3,150.2,137.6,134.5,134.4,125.8,124.1,118.8,114.0,108.8,103.3,83.5,81.9,67.0,65.3,57.3,55.2$, $54.8,52.7,41.4,33.2,30.0,28.1,27.7,23.8,23.7,19.1,13.4,13.3$. IR: 2974, 2933, $1726 \mathrm{~cm}^{-1}$. HRMS (FAB): m / z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{35} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$: 693.3244; found: 693.3248 .

Deprotection of thioacetal 17

To a solution of thioacetal $17(0.562 \mathrm{~g}, 0.811 \mathrm{mmol})$ in anhydrous DCM (9 mL) was added silver trifluoromethanesulfonate $(0.334 \mathrm{~g}, 1.3 \mathrm{mmol})$ in two portions, one at the beginning of the reaction and the second after 60 min of stirring. After 20 h of stirring at room temperature the precipitated AgSEt was removed by filtration over celite and the solvent was evaporated. The pyrrolidinium salt (as a mixture of diastereomers) was obtained as a foam in quantitative yield. The salt was hydrolyzed in the next step. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (major diastereomer) $\delta 7.57(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}) ; 7.25(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}) ; 6.68(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 6.20(\mathrm{~m}, 1 \mathrm{H}) ; 5.94$ $(\mathrm{dt}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}, J=15.5 \mathrm{~Hz}) ; 5.35(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}) ; 4.58(\mathrm{~d}, 2 \mathrm{H}, J=5.2 \mathrm{~Hz}) ; 4.26(\mathrm{dd}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}, J=$ $12.4 \mathrm{~Hz}) ; 4.05(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 4.00(\mathrm{~s}, 3 \mathrm{H}) ; 3.89(\mathrm{~s}, 3 \mathrm{H}) ; 3.82(\mathrm{~m}, 1 \mathrm{H}) ; 3.72(\mathrm{dd}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz} ; \mathrm{J}=18.8$ $\mathrm{Hz}) ; 3.12(\mathrm{~m}, 5 \mathrm{H}) ; 2.84(\mathrm{~m}, 1 \mathrm{H}) ; 2.4(\mathrm{~m}, 1 \mathrm{H}) ; 1.68(\mathrm{~s}, 9 \mathrm{H}) ; 1.48(\mathrm{~s}, 9 \mathrm{H}) ; 1.30(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) . \mathrm{IR}: 1733 \mathrm{~cm}^{-1}$. This pyrrrolidinium salt $(0.633 \mathrm{~g}, 0.81 \mathrm{mmol})$ was dissolved in DMSO $(10 \mathrm{~mL})$ and $2.4 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added. A stream of nitrogen gas was directed through the solution and it was stirred for 45 min at $75^{\circ} \mathrm{C}$ (bath temperature). The reaction mixture was diluted with water (100 mL) and aqueous NaHCO_{3} solution (5 ml) and the aqueous phase was extracted 3 times with EtOAc. The organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were evaporated. Flash chromatography (EtOAc:PE, 1:5/ 1:4.5/ 1:4) gave α-ketoester $18\left(0.347 \mathrm{~g}, 0.59 \mathrm{mmol}, 73 \%\right.$ from 17). Optical rotation: $|\mathrm{x}| \bar{\Sigma}^{Z n}=-41.9^{\circ}\left(\mathrm{c}=0.95, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta=7.73(\mathrm{~d}$, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 7.18(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 6.66(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 5.80(\mathrm{~m}, 1 \mathrm{H}) ; 5.68(\mathrm{~m}, 1 \mathrm{H}) ; 4.53(\mathrm{~m}, 2 \mathrm{H}) ;$ $4.04(\mathrm{~m}, 1 \mathrm{H}) ; 3.92(\mathrm{~s}, 3 \mathrm{H}) ; 3.89(\mathrm{~s}, 3 \mathrm{H}) ; 3.20(\mathrm{dd}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, J=13.4 \mathrm{~Hz}) ; 3.07(\mathrm{~m}, 2 \mathrm{H}) ; 2.81(\mathrm{~m}, 3 \mathrm{H})$; $2.58(\mathrm{~m}, 2 \mathrm{H}) ; 2.29(\mathrm{~m}, 2 \mathrm{H}) ; 1.69(\mathrm{~s}, 9 \mathrm{H}) ; 1.51(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 188.9,161.6,153.8,153.0,149.9$ 137.0, $132.6,131.5,127.0,124.4,118.4,113.9,108.7,103.2,83.6,66.5,58.1,55.1,54.2,52.3,38.8,36.3,32.5,28.0$, 27.5, 18.8. IR: 2977, $1726,1576 \mathrm{~cm}^{-1}$. HRMS (FAB): m/z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{9}$: 587.2969; found: 587.2972.

Tsuji-Trost cyclization of 18

Bis(diphenyphosphino)ethane ($0.017 \mathrm{~g}, 0.042 \mathrm{mmol}$) was added to a solution of allylpalladium(II) chloride dimer ($0.007 \mathrm{~g}, 0.02 \mathrm{mmol}$) in anhydrous THF (2 mL) under argon. The solution was stirred for 15 min before it was added to a solution of α-keto-ester $18(0.233 \mathrm{~g}, 0.396 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.258 \mathrm{~g}$, 0.793 mmol) and DiPEA ($0.135 \mathrm{~mL}, 0.793 \mathrm{mmol}$). The reaction mixture was stirred for 20 h at room temperature before it was quenched with dilute aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents were removed. Purification by column chromatography using EtOAc:PE, 3:1/2:1 gave two C15-C20 isomers in a ratio of cis:trans $=4: 1$ in a combined yield of 78%.
cis-isomer 19: $0.114 \mathrm{~g}(0.245 \mathrm{mmol}, 62 \%)$. Optical rotation $(e e: 89 \%):|\alpha| \overline{\bar{j}}=-145.8^{\circ}\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-$ NMR $\delta 7.63(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 7.15(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 6.63(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 6.10(\mathrm{td}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}, J=$ $17.2 \mathrm{~Hz}) ; 4.99(\mathrm{~m}, 2 \mathrm{H}) ; 3.87(\mathrm{~s}, 3 \mathrm{H}) ; 3.86(\mathrm{~s}, 3 \mathrm{H}) ; 3.56(\mathrm{dt}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}, J=12.4 \mathrm{~Hz}) ; 3.03(\mathrm{~m}, 5 \mathrm{H}) ; 2.88(\mathrm{~m}$, $2 \mathrm{H}) ; 2.67(\mathrm{~m}, 1 \mathrm{H}) ; 2.25(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}) ; 1.77(\mathrm{ddd}, 1 \mathrm{H}, J=12.7 \mathrm{~Hz}, J=12.8 \mathrm{~Hz}, J=12.7 \mathrm{~Hz}) ; 1.63(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 194.7,161.4,154.0,150.5,138.2,137.6,134.3,124.5,118.7,117.2,116.6,108.5,103.5,83.7$, $60.9,59.8,55.3,52.7,50.9,49.5,40.8,28.2,27.0,25.1$. IR: 2978, 2942, 2800, 1724, $1606 \mathrm{~cm}^{-1}$. HRMS (FAB): m / z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}$: 469.2239; found: 469.2340 .
trans-isomer 20: $0.029 \mathrm{~g}(0.063 \mathrm{mmol}, 16 \%)$. Optical rotation $(e e: 89 \%)$: $\left.|\alpha| \bar{\Sigma}{ }^{\circ}=-38.9^{\circ}\left(\mathrm{c}=0.86, \mathrm{CHCl}_{3}\right)\right)_{-}^{1} \mathrm{H}-$ NMR $\delta 7.69(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}) ; 7.15(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 6.63(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 5.60(\mathrm{~m}, 1 \mathrm{H}) ; 5.06(\mathrm{~m}, 2 \mathrm{H}) ;$ $4.30(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}) ; 3.87(\mathrm{~s}, 3 \mathrm{H}) ; 3.84(\mathrm{~s}, 3 \mathrm{H}) ; 3.49(\mathrm{~m}, 1 \mathrm{H}) ; 3.12(\mathrm{~m}, 3 \mathrm{H}) ; 2.87(\mathrm{~m}, 5 \mathrm{H}) ; 2.27$ (ddd, 1H, J $=2.5 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, J=12.8 \mathrm{~Hz}) ; 1.68(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 194.7,161.5,153.9,150.1,137.8,137.5,133.7$, $124.3,118.5,116.9,115.8,108.6,103.4,83.8,83.5,60.2,59.5,57.0,55.2,52.7,49.3,46.3,37.6,28.6,28.0$, 24.5. IR: 2977, 2940, 2837, 1726, $1606 \mathrm{~cm}^{-1}$. HRMS (FAB): m/z calcd for (M+H) ${ }^{+} \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$: 469.2294, found: 469.2340 .

Wittig reaction with cis-isomer 19

(Methoxymethyl)triphenylphosphonium chloride $(0.89 \mathrm{~g}, 2.59 \mathrm{mmol})$ was converted to the corresponding ylid with potassium tert-butoxide $(0.280 \mathrm{~g}, 2.5 \mathrm{mmol})$ by stirring during 5 min in $\mathrm{THF}(10 \mathrm{ml})$ at rt . The resulting red solution was cooled to $-78{ }^{\circ} \mathrm{C}$, causing a colour change to yellow, and was added quickly to a solution of $\alpha-$ ketoester $19(0.405 \mathrm{~g}, 0.864 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The cooling bath was removed, and the yellow solution was stirred for 2 h at rT . Saturated NH 4 Cl solution (10 ml); water (2 ml) and ethyl acetate (10 ml) were added and the resulting 2-layer system was stirred for 24 h . Extractive work-up and chromatography (EtOAc:PE, 1:3, 1:2) gave Z-alkene 21 as a slightly coloured solid ($0.419 \mathrm{~g}, 0.84 \mathrm{mmol}, 98 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.73$ $(\mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 7.18(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 6.66(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 6.08(\mathrm{~s}, 1 \mathrm{H}) ; 6.05(\mathrm{~m}, 1 \mathrm{H}) ; 5.07(\mathrm{dd}, 1 \mathrm{H}, J$ $=2.1 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}) ; 4.95(\mathrm{dd}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, J=17.3 \mathrm{~Hz}) ; 3.89(\mathrm{~s}, 3 \mathrm{H}) ; 3.78(\mathrm{~s}, 3 \mathrm{H}) ; 3.75(\mathrm{~s}, 3 \mathrm{H}) ; 3.02(\mathrm{~m}$, $4 \mathrm{H}) ; 2.88(\mathrm{~m}, 2 \mathrm{H}) ; 2.65(\mathrm{~m}, 2 \mathrm{H}) ; 2.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.0 \mathrm{~Hz}) ; 1.64(\mathrm{~s}, 9 \mathrm{H}) ; 1.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 166.8$, $156.9,153.9,150.4,138.4,138.2,134.4,124.5,118.6,117.0,116.6,110.4,108.2,103.5,83.7,61.9,61.6,60.8$, $55.3,51.2,50.8,42.6,39.2,31.8,28.1,25.2$. IR: $2944,2838,2798,2751,1727,1692,1645 \mathrm{~cm}^{-1}$. HRMS (FAB): m / z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{2}$: 497.2652; found: 497.2649 .

Crystallization to 98% ee:

Product 21 was dissolved in a minimal amount of ethyl acetate and diluted with petroleum ether. After standing for 24 h at room temperature the crystals were removed by filtration. Crystals: $4 \% e e,(0.0485 \mathrm{~g}) \mathrm{Mp}: 151-155$ ${ }^{\circ}$ C. Filtrate: $98 \% e e$, (glass, $0.371 \mathrm{~g}, 0.748 \mathrm{mmol}, 86 \%$ yield from 19). Optical rotation: $|\alpha| \bar{\Sigma}^{\circ \prime}=-180^{\circ}(\mathrm{c}=0.97$, CHCl_{3}). HPLC (Chiralcel ${ }^{\circledR}$ OD-H, eluent: n-heptane:iso-propanol $=90: 10$, flow: $0.6 \mathrm{~mL} / \mathrm{min}$) 12.73 (minor); 15.22 min (major).

Wittig reaction with trans-isomer 20

The reaction was performed as described for the synthesis of 21 using ketone $20(0.109 \mathrm{~g}, 0.233 \mathrm{mmol})$ and three equivalents of the phosphonium ylid. Purification through column chromatography gave both the Z-and E isomer of 22 in a ratio of $2.5: 1$ (combined yield $0.090 \mathrm{~g}, 0.181 \mathrm{mmol}, 78 \%$) Z-isomer: ($0.064 \mathrm{~g}, 0.13 \mathrm{mmol}, 57 \%$). Optical rotation: $(e e: 89 \%)|\alpha|_{\bar{\omega}} \bar{\eta}^{n}=+2.8^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta=$ $7.70(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 7.13(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 6.62(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 6.37(\mathrm{~s}, 1 \mathrm{H}) ; 5.54(\mathrm{~m}, 1 \mathrm{H}) ; 5.02(\mathrm{~m}$, $2 \mathrm{H}) ; 4.14(\mathrm{~d}, 1 \mathrm{H}, J=10.20 \mathrm{~Hz}) ; 3.86(\mathrm{~s}, 3 \mathrm{H}) ; 3.75(\mathrm{~s}, 3 \mathrm{H}) ; 3.71(\mathrm{~s}, 3 \mathrm{H}) ; 3.14(\mathrm{~m}, 3 \mathrm{H}) ; 2.97(\mathrm{~m}, 1 \mathrm{H}) ; 2.77(\mathrm{~m}$, $2 \mathrm{H}) ; 2.64(\mathrm{dq}, 1 \mathrm{H}, J=3.8 \mathrm{~Hz}, J=11.4 \mathrm{~Hz}) ; 2.44(\mathrm{td}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}, J=12.0 \mathrm{~Hz}) ; 2.11(\mathrm{ddd}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}, J$ $=3.4 \mathrm{~Hz}, J=12.9 \mathrm{~Hz}) ; 1.73(\mathrm{~m}, 1 \mathrm{H}) ; 1.65(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta=166.8,157.1,154.0,150.2,139.2$, 138.0, $134.6,124.4,118.7,116.1,115.4,110.7,108.6,103.5,83.6,61.9,60.8,60.3,58.6,55.3,51.1,47.0,42.4,42.2$, 34.5, 28.1, 24.6, 14.1._IR: 2937, 1724, 1692, $1639 \mathrm{~cm}^{-1}$. HRMS (FAB): m/z calcd for (M+H) ${ }^{+} \mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{~N}_{2}$: 497.2652; found: 497.2652.
E-isomer: ($0.024 \mathrm{~g}, 0.047 \mathrm{mmol}, 21 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.78(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 7.28(\mathrm{~s}, 1 \mathrm{H}) ; 7.13(\mathrm{t}, 1 \mathrm{H}, J=8.2$ $\mathrm{Hz}) ; 6.62(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 5.53(\mathrm{~m}, 1 \mathrm{H}) ; 4.96(\mathrm{~m}, 2 \mathrm{H}) ; 4.20(\mathrm{~d}, 1 \mathrm{H}, J=10.9 \mathrm{~Hz}) ; 3.87(\mathrm{~s}, 3 \mathrm{H}) ; 3.78(\mathrm{~s}, 3 \mathrm{H})$; $3.65(\mathrm{~s}, 3 \mathrm{H}) ; 3.25(\mathrm{~m}, 1 \mathrm{H}) ; 3.05(\mathrm{~m}, 4 \mathrm{H}) ; 2.80(\mathrm{~m}, 3 \mathrm{H}) ; 2.12(\mathrm{q}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz}) ; 1.84(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz})$; 1.64 (s, 9H). ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 159.4,154.0,150.2,139.9,138.1,134.7,124.4,118.7,115.3,115.1,112.2,108.6$, $103.5,83.6,61.3,60.9,58.1,55.4,51.0,46.3,38.5,30.8,28.0,24.6 \mathrm{ppm} . \operatorname{IR}: 1726,1703,1637 \mathrm{~cm}^{-1}$. HRMS (FAB): m / z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{~N}_{2}$: 497.2652; found: 497.2652.

Crystallization of 22 (E-isomer): 22 (E) was dissolved in a minimal amount of ethyl acetate and diluted with petroleum ether. After standing for 24 h at room temperature the crystals were removed by filtration. Crystals: $73 \% e e, 0.0109 \mathrm{~g}, \mathrm{Mp}: 184-187^{\circ} \mathrm{C}$; filtrate: $98 \% e e, 0.0051 \mathrm{~g}$. The filtrate resulting from the first crystallization was evaporated and the crystallization procedure was repeated, yielding crystals with 99% ee $(0.005 \mathrm{~g}) . \mathrm{Mp}: 183-187^{\circ} \mathrm{C}$. Optical rotation: $|\alpha| \bar{\Sigma}^{\circ n}=+53.7^{\circ}\left(\mathrm{c}=1.08, \mathrm{CHCl}_{3}\right)$. HPLC (Chiralcel ${ }^{\circledR}$ OD-H, eluent: n-heptane:iso-propanol = 95:5, flow: $0.6 \mathrm{~mL} / \mathrm{min}$) 16.4 (minor); 18.7 (major).

Synthesis of (-)-dehydro-mitragynine 23

Trifluoroacetic anhydride ($4 \mu \mathrm{l}, 0.03 \mathrm{mmol}$) was added to good quality TFA (3 mL) under anhydrous conditions. The acid-solution was added to a solution of Z-enolether $21(0.0336 \mathrm{~g}, 0.068 \mathrm{mmol})$ in 10 mL DCM under argon. The reaction was stirred for 17 h at room temperature before it was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and neutralized with aqueous NaHCO_{3}. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification by column chromatography using EtOAc:PE, 1:2/1:1 gave 23 (0.0164 g , $0.041 \mathrm{mmol}, 61 \%$) as a yellow solid. Mp: $84-87^{\circ} \mathrm{C}$. Optical rotation: $|\mathrm{c}| \bar{亏}^{\eta}=-104^{\circ}\left(\mathrm{c}=0.93, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-$ NMR $\delta 7.70(\mathrm{bs}, 1 \mathrm{H}) ; 7.35(\mathrm{~s}, 1 \mathrm{H}) ; 7.00(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 6.90(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 6.46(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz})$; $6.32(\mathrm{dt}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}, J=17.1 \mathrm{~Hz}) ; 4.91(\mathrm{~m}, 2 \mathrm{H}) ; 3.88(\mathrm{~s}, 3 \mathrm{H}) ; 3.69(\mathrm{~s}, 3 \mathrm{H}) ; 3.68(\mathrm{~s}, 3 \mathrm{H}) ; 3.23(\mathrm{bd}, 1 \mathrm{H}, J=$ $11.2 \mathrm{~Hz}) ; 3.07(\mathrm{~m}, 2 \mathrm{H}) ; 2.94(\mathrm{~m}, 3 \mathrm{H}) ; 2.72(\mathrm{dd}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}, J=11.2 \mathrm{~Hz}) ; 2.55(\mathrm{~m}, 2 \mathrm{H}) ; 2.42(\mathrm{bd}, 1 \mathrm{H}, J=$ 7.6 Hz); $1.86(\mathrm{bd}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta=169.0,160.2,154.4,139.4,137.1,133.3,121.8,117.4,114.2$, $111.0,107.8,104.1,99.6,61.4,61.2,60.9,60.3,55.2,53.5,51.1,44.5,39.0,30.2,23.7$. IR: 3364, 2936, 2838, 2791, 2752, 1698, 1643, $1597 \mathrm{~cm}^{-1}$. HRMS (FAB): m/z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{2}$: 397.2127; found: 397.2122.

Deprotection of 22 to paynantheine (2)

Trifluoroacetic anhydride ($2 \mu \mathrm{l}, 0.015 \mathrm{mmol}$) was added to good quality TFA (1.5 mL) under anhydrous conditions. This acid-solution was added to a solution of E-enolether 22 ($99 \% \mathrm{ee}, 0.023 \mathrm{~g}, 0.048 \mathrm{mmol}$) in 5 mL DCM under argon. The reaction was stirred for 17 h at room temperature before it was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and neutralized with aqueous NaHCO_{3}. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layers combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification by column chromatography using EtOAc:PE, 1:2 and 1:1 gave gave (+)paynantheine 2 as an off-white glass $(0.0181 \mathrm{~g}, 0.046 \mathrm{mmol}, 96 \%)$. Optical rotation: $|\alpha| \bar{\hbar}^{n}=+20.2^{\circ}(\mathrm{c}=0.91$,
$\left.\mathrm{CHCl}_{3}\right)$. Lit.: $\mid \mathrm{c}_{\mathbf{5}}{ }^{{ }^{5}}{ }^{5}=+29.4^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)^{5} .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.73(\mathrm{bs}, 1 \mathrm{H}) ; 7.33(\mathrm{~s}, 1 \mathrm{H}) ; 7.00(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ;$ $6.87(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 6.46(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ; 5.58(\mathrm{~m}, 1 \mathrm{H}) ; 4.98(\mathrm{~m}, 2 \mathrm{H}) ; 3.87(\mathrm{~s}, 3 \mathrm{H}) ; 3.77(\mathrm{~s}, 3 \mathrm{H}) ; 3.69$ (s, 3H); $3.26(\mathrm{bd}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}) ; 3.17(\mathrm{~m}, 1 \mathrm{H}) ; 3.02(\mathrm{~m}, 4 \mathrm{H}) ; 2.75(\mathrm{dt}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}, J=11.7 \mathrm{~Hz}) ; 2.58(\mathrm{dt}$, $1 \mathrm{H}, J=4.2 \mathrm{~Hz}, J=11.2 \mathrm{~Hz}) ; 2.27(\mathrm{t}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}) ; 2.14(\mathrm{ddd}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}, J=12.2 \mathrm{~Hz}, J=12 \mathrm{~Hz})$; 1.95 (bd, $1 \mathrm{H}, J=12.5 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}-\mathrm{NMR} \delta 159.8,154.4,139.4,137.4,133.0,121.8,117.5,115.4,11,5,107.8$, $104.3,99.7,61.5,61.3,60.0,55.3,53.2,51.2,42.8,33.4,23.7$. IR: v 3370, 2940, 2847, 2799, 2751, 1703, 1637, 1596, $1569 \mathrm{~cm}^{-1}$. HRMS (FAB): m/z calcd for $(\mathrm{M}+\mathrm{H})^{+} \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}_{2}$: 397.2127; found: 397.2122.

Hydrogenation of 23 to mitragynine (1)

(-)-Dehydro-mitragynine $23(22.4 \mathrm{mg}, 0.0562 \mathrm{mmol})$ was stirred with $10 \% \mathrm{Pd} / \mathrm{C}(5.0 \mathrm{mg})$ in EtOAc (2 mL) under H_{2} (1 atm.) for 18 h . Filtration over celite and evaporation furnished (-)-mitragynine $1(22.2 \mathrm{mg}, 0.0556$ $\mathrm{mmol}, 99 \%$) as an off-white solid, mp $97-105{ }^{\circ} \mathrm{C}$ lit. $103-105{ }^{\circ} \mathrm{C} .{ }^{6}$ Optical rotation after chromatography (EtOAc:PE, 1:1): $|\alpha|_{3}^{2 n}=-128^{\circ}\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$ and $|\alpha|_{5}^{2 n}=-122^{\circ}\left(\mathrm{c}=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Lit.: $|\alpha|_{j}^{2 \pi}=-126(\mathrm{c}=1.2$, $\left.\mathrm{CHCl}_{3}\right) .^{7} e e: 98 \%\left(\right.$ Chiralcel ${ }^{\circledR}$ OD-H, eluent: n-heptane:iso-propanol $=90: 10$, flow: $0.6 \mathrm{~mL} / \mathrm{min}$); 27.5 (minor); 30.5 (major). ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.73$ (bs, 1 H); $7.46(\mathrm{~s}, 1 \mathrm{H}) ; 7.02(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 6.92(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 6.48$ (d, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}) ; 3.90(\mathrm{~s}, 3 \mathrm{H}) ; 3.75(\mathrm{~s}, 3 \mathrm{H}) ; 3.73(\mathrm{~s}, 3 \mathrm{H}) ; 3.13(\mathrm{~m}, 2 \mathrm{H}) ; 3.05(\mathrm{~m}, 3 \mathrm{H}) ; 2.94(\mathrm{~m}, 1 \mathrm{H}) ; 2.53(\mathrm{~m}$, $3 \mathrm{H}) ; 1.79(\mathrm{~m}, 2 \mathrm{H}) ; 1.66(\mathrm{~m}, 2 \mathrm{H}) ; 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR} \delta 169.2,160.5,154.5,137.2,133.7,121.8$, $117.6,111.5,107.8,104.2,99.7,61.5,61.2,57.7,55.3,53.8,51.3,40.7,39.9,29.9,23.9,19.1,12.8 . \operatorname{IR}: 3367$, 2933, 2849, 2796, 2747, 1703, 1643, $1624 \mathrm{~cm}^{-1}$. HRMS (FAB): m/z calcd for (M+H) ${ }^{+} \mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~N}_{2}$: 399.2284; found: 399.2291 .

Hydrogenation of (+)-paynantheine (2) to (+)-speciogynine (3)

(+)-Paynantheine $2(34.2 \mathrm{mg}, 0.0861 \mathrm{mmol})$ was stirred with $10 \% \mathrm{Pd} / \mathrm{C}(6.0 \mathrm{mg})$ in EtOAc (4 mL) under $\mathrm{H}_{2}(1$ atm.) for 18 h . Filtration over celite and evaporation furnished (+)-speciogynine 3 ($33.9 \mathrm{mg}, 0.0850 \mathrm{mmol}, 99 \%$) as a glass. Optical rotation: $|\alpha|_{3}^{2 n}=+22.8^{\circ}\left(\mathrm{c}=0.89, \mathrm{CHCl}_{3}\right) ; \mathrm{Lit} .:|\alpha|_{3}^{2_{j}^{\prime}}=+26.8^{\circ}\left(\mathrm{c}=0.85, \mathrm{CHCl}_{3}\right)^{5} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (strong line broadening for all ring protons) ${ }^{8} \delta 7.81(\mathrm{bs}, 1 \mathrm{H}) ; 7.36(\mathrm{bs}, 1 \mathrm{H}) ; 6.99(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 6.86(\mathrm{~d}, 1 \mathrm{H}$, $J=8.1 \mathrm{~Hz}) ; 6.45(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}) ; 3.87(\mathrm{~s}, 3 \mathrm{H}) ; 3.58-3.81(\mathrm{bs}, 6 \mathrm{H}) ; 3.28-2.93(\mathrm{~m}, 5 \mathrm{H}) ; 2.78-2.5(\mathrm{~m}, 2 \mathrm{H}) ;$ $2.35-2.20(\mathrm{~m}, 1 \mathrm{H}) ; 2.15-1.82(\mathrm{~m}, 3 \mathrm{H}) ; 1.50-1.36(\mathrm{~m}, 1 \mathrm{H}) ; 1.12-0.97(\mathrm{~m}, 1 \mathrm{H}) ; 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (incomplete due to broadening of signals) ${ }^{8} \delta 159.9,154.4,137.4,133.1,121.8,117.5,107.7,104.3,99.7,61.7$, $60.9,60.3,55.3,53.5,51.5,39.9,38.7,33.7,30.6,29.7,24.4,23.7$, 11.3. IR: 2936, 2851, 2802, 2750, 1698, 1635, 1597, $1569 \mathrm{~cm}^{-1}$. HRMS (FAB): m/z calcd for (M+H) ${ }^{+} \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{~N}_{2}$: 399.2284; found: 399.2289.

Binolphosphoric acid catalysis

10

11

All yields > 85\%

entry	catalyst	drying agent	temperature	$e e$ [\%]
1	10	MS 4 A	$0^{\circ} \mathrm{C}$	-3
2	11	MS 4 A	$0^{\circ} \mathrm{C}$	7
3	12	MS 4 A	$0^{\circ} \mathrm{C}$	7

Table 1: Variation of the catalyst

entry	catalyst	drying agent	temperature	$e e[\%]$
1	10	MS 4 \AA	$-10^{\circ} \mathrm{C}$	-2
2	11	MS 4 \AA	$-10^{\circ} \mathrm{C}$	-6
3	12	MS 4 \AA	$-10^{\circ} \mathrm{C}$	0
4	10	MS 4 \AA	$-78^{\circ} \mathrm{C}$	11

Table 2: Variation of the temperature

entry	catalyst	drying agent	temperature	$e e[\%]$
1	11	MgSO 4	$-10^{\circ} \mathrm{C}$	-
2	11	$\mathrm{Na}_{2} \mathrm{SO} 4$	$-10^{\circ} \mathrm{C}$	-9
3	11	-	$0^{\circ} \mathrm{C}$	-10

Table 3: Variation of drying agents

NMR-tables

${ }^{1} \mathrm{H}$-NMR data of $\mathbf{1 , 2}$ and 3 taken in CDCl_{3}. Literature values are obtained from ref. 9 and 10

	Mitragynine $\mathbf{1}^{10}$ Natural	Mitragynine 1 Synthetic	Paynantheine $\mathbf{2}^{10}$ Natural	Paynantheine 2 Synthetic	Speciogynine 3^{9} Natural	Speciogynine 3 Synthetic (Strong line- broadening ${ }^{8}$)
3	3.14 brd (11)	3.17 brd (12.5)	3.27 brd (11)	3.26 brd (11.6)	3.57 m	3.6
5	$\begin{aligned} & 2.89 \mathrm{~m} \\ & 2.51 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 2.93 m \\ & 2.5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 3.06 \mathrm{~m} \\ & 2.55 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 3.02 \mathrm{~m} \\ & 2.62 d d d \\ & (11.2 / 11.2 / 4.3) \end{aligned}$	$\begin{aligned} & 3.07 \mathrm{~m} \\ & 2.57 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.6 \end{aligned}$
6	$\begin{aligned} & 3.10 \mathrm{~m} \\ & 2.51 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 3.12 \mathrm{~m} \\ & 2.5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 3.17 \mathrm{~m} \\ & 2.99 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 3.20 \mathrm{~m} \\ & 3.02 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 2.99 \mathrm{~m} \\ & 3.21 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$
10	6.43 brd (8)	$6.48 d$ (7.7)	6.44 brd (8)	$6.46 d(7.7)$	6.45 brd (8)	$6.45 d$ (7.7)
11	6.97 dd (8/8)	$7.02 d d(7.9 / 7.9)$	$6.98 d d(8 / 8)$	$7.00 d d$ (7.9/7.9)	$\begin{array}{r} 6.99 d d \\ (7.9 / 7.9) \end{array}$	$\begin{aligned} & 6.99 d d \\ & (7.9 / 7.9) \end{aligned}$
12	6.88 brd (8)	$6.92 d$ (8.0)	6.86 brd (8)	$6.87 d$ (8.1)	6.87 brd (7.9)	$6.86 d(8.1)$
14	2.49 m	$\begin{aligned} & \hline 2.47 \mathrm{brdd} \\ & (10.7 / 2.4) \end{aligned}$	2.10 m	$\begin{aligned} & 2.14 d d d \\ & (12.0 / 12.0 / 12.2) \end{aligned}$	$2.43 \mathrm{~m}(2 \mathrm{H})$	2.3

	1.78 m	1.82 m	1.94 m	1.95 m		
15	$\begin{aligned} & 3.02 d d d \\ & (14 / 4 / 4) \\ & \hline \end{aligned}$	3.05 m	$\begin{aligned} & 2.74 d d d \\ & (12 / 12 / 3) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.75 d d d \\ & (11.7 / 11.7 / 3.5) \end{aligned}$	2.26 m	2.3 m
17	7.41 s	$7.46 s$	7.31 s	7.33 s	7.36 brs	7.36 brs
18	$0.85 t(7.5 ; 3 \mathrm{H})$	$0.89 t(7.3 ; 3 \mathrm{H})$	$\begin{aligned} & 4.98 d d(17.5 / 2) \\ & 4.93 d d(10.5 / 2) \end{aligned}$	$\begin{aligned} & 5.03 d d \\ & (17.2 / 1.3) \\ & (4.98 d d \\ & (10.3 / 2.0) \end{aligned}$	$0.86 t(7.5 ; 3 \mathrm{H})$	$0.87 t(7.4 ; 3 \mathrm{H})$
19	$\begin{aligned} & 1.77 \mathrm{~m} \\ & 1.18 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1.77 \mathrm{~m} \\ & 1.22 \mathrm{~m} \end{aligned}$	5.56 m	5.58 m	$\begin{aligned} & 1.48 \mathrm{~m} \\ & 1.17 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.2 \end{aligned}$
20	1.60 m	1.66 m	3.03 m	3.02 m	2.61 m	2.6 br
21	$\begin{aligned} & 2.99 d d(12 / 2.5) \\ & 2.43 d d(12 / 3) \end{aligned}$	$\begin{aligned} & 3.02 m \\ & 2.46 d d(11.5 / 2.4) \end{aligned}$	$\begin{aligned} & 3.01 \mathrm{~m} \\ & 2.27 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline 3.02 \mathrm{~m} \\ & 2.32 d d \\ & (12.1 / 11.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.15 m \\ & 2.05 \end{aligned}$	$\begin{aligned} & 3.2 b r \\ & 2.0 \mathrm{br} \end{aligned}$
$9-\mathrm{OCH}_{3}$	$3.86 s(3 \mathrm{H})$	3.90 (3H)	$3.85 s(3 \mathrm{H})$	$3.87 s(3 \mathrm{H})$	3.72 brs (3H)	$3.87 s(3 \mathrm{H})$
$17-\mathrm{OCH}_{3}$	$3.71 \mathrm{~s}(3 \mathrm{H})$	3.75 (3H)	$3.76 s(3 \mathrm{H})$	$3.77 s(3 \mathrm{H})$	3.72 brs (3H)	3.74 brs (3H)
COOCH_{3}	3.69 s (3H)	3.73 (3H)	3.67 s (3H)	$3.69 s(3 \mathrm{H})$	3.67 s (3H)	3.74 brs (3H)
NH	7.65 brs	7.73 brs	7.66 brs	7.73 brs	7.72 brs	$7.81{ }^{8} \mathrm{brs}$

${ }^{13}$ C-NMR data of 1, 2 and 3 taken in CDCl_{3}. Literature values are obtained from ref. 9 and 10

	Mitragynine $\mathbf{1}^{9}$ Natural	Mitragynine $\mathbf{1}$ Synthetic	Paynantheine $\mathbf{2}^{10}$ Natural	Paynantheine 2 Synthetic	Speciogynine $\mathbf{3}^{9}$ Natural	${\text { Speciogynine } \mathbf{3}^{8}}_{\text {Synthetic }}$
2	133.7	133.7	133.7	133.0	133.2	133.1
3	61.2	61.2	60.0	60.0	60.4	60.3
5	53.8	53.8	53.2	53.2	53.6	53.5
6	23.9	23.9	23.7	23.7	23.8	23.7
7	107.9	107.8	107.9	107.8	107.8	107.7
8	117.7	117.6	117.5	117.5	117.6	117.6
9	154.5	154.5	154.5	154.4	154.5	154.5
10	99.8	99.7	99.8	99.7	99.7	99.7
11	121.8	121.8	121.9	121.8	121.8	121.8
13	104.1	104.2	104.2	104.3	104.2	104.3
14	137.2	137.2	137.3	137.4	137.3	137.4
15	30.0	29.9	33.4	33.4	33.8	33.7
16	111.5	111.5	111.5	111.5	111.7	38.7
17	160.5	160.5	159.8	159.8	159.9	111.7

18	12.9	12.8	115.5	115.4	11.3	11.3
19	19.1	19.1	139.1	139.4	24.4	24.4
20	40.7	40.7	42.9	42.8	40.0	39.9
21	57.8	57.7	61.3	61.3	61.0	60.8
22	169.6	169.2	172.2	not observed	169.5	not observed
$9-\mathrm{OCH}_{3}$	55.32	55.3	55.3	55.3	55.3	55.3
$17-\mathrm{OCH}_{3}$	61.5	61.2	61.6	61.5	61.7	61.7
COOCH_{3}	51.3	51.3	51.3	51.2	51.5	51.5

References.

1. a. G. Massiot, T. Mulamba, J. Levy, Bull. Soc. Chim. Fr., 1982, 241-248. b. J. Gonzalez, F. Sanchez and T. Torres, Synthesis, 1983, 911-913.
2. M. J. Wanner, E. Claveau, J. H. van Maarseveen and H. Hiemstra, Chem. Eur. J., 2011, 17, 1368013683.
3. B. Vakulya, S. Varga, A. Csámpai and T. Soós, Org. Lett., 2005, 7, 1967-1969.
4. S. Butini, S. Gemma, G. Campiani, S. Franceschini, F. Trotta, M. Borriello, N. Ceres, S. Ros, S. S. Coccone, M. Bernetti, A. M. De, M. Brindisi, V. Nacci, I. Fiorini, E. Novellino, A. Cagnotto, T.
Mennini, K. Sandager-Nielsen, J. T. Andreasen, J. Scheel-Kruger, J. D. Mikkelsen and C. Fattorusso, J. Med. Chem., 2009, 52, 151-169.
5. S. Horie, F. Koyama, H. Takayama, H. Ishikawa, N. Aimi, D. Ponglux, K. Matsumoto and T.

Murayama, Planta Med., 2005, 71, 231-236.
6. G. T. Beng, M. R. Hamdan, M. J. Siddiqui, M. N. Mordi and S. M. Mansor, Malays. J. Anal. Sc. 2011, 15, 54-60.
7. A. H. Beckett, E. J. Shellard and A. N. Tackie, Planta Med., 1965, 13, 241-246.
8. For an explanation of this linebroadening in the demethoxy (corynantheine) series see: D. Staerk, P.-O. Norrby, and J. W. Jaroszewski, J. Org. Chem., 2001, 66, 2217-2221.
9. M. Kitajima, K. Misawa, N. Kogure, I. M. Said, S. Horie, Y. Hatori, T. Murayama and H. Takayama, J. Nat. Med. 2006, 60, 28-35.
10. A. H. Philipp, D. K. Wissenbach, A. A. Weber, J. Zapp and H. H. Maurer, J. Chromatography B, 2011, 879, 1049-1055.

989% ee
uV

1PDA Multi 1

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
Results

PDA Ch1 254nm 4nm PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	5.017	13262	1368	0.086	0.600
2	8.094	57850	6433	0.375	2.824
3	17.831	14487048	209874	93.981	92.124
4	23.674	856647	10143	5.557	4.452
Total		15414806	227818	100.000	100.000

989% ee
uv

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$

Results

PDA Ch1 254nm 4nm		PeakTable			
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	17.551	6075337	90324	49.890	58.580
2	25.291	6102207	63865	50.110	41.420
Total		12177544	154190	100.000	100.000

Crystallization of 21-Z

Crystals

Filtrate

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
Results
PeakTable

| PDA Ch1 254 nm 4 nm |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Peak\# Ret. Time Area Height Area \% Height $\%$
 1 5.014 24703 2647 0.055 0.340
 2 8.735 13398 1124 0.030 0.145
 3 10.099 109698 4117 0.246 0.529
 4 10.832 40001 1651 0.090 0.212
 5 12.725 362111 7996 0.812 1.028
 6 13.777 258775 6164 0.580 0.792
 7 15.222 42439966 739912 95.148 95.124
 8 21.771 1355662 14232 3.039 1.830
 Total 44604315 777843 100.000 100.000 |

mitragynine 1 98\% ee

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
Results

PDA Ch1 254nm 4nm PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	7.123	1858161	117225	1.866	13.307
2	7.753	440884	14195	0.443	1.611
3	27.519	1144151	13761	1.149	1.562
4	30.546	96123327	735728	96.542	83.519
Total		99566524	880909	100.000	100.000

mitragynine 1 racemic

1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
Results
PDA Ch1 254 nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	28.523	19245046	230922	48.821	59.146
2	32.038	20174198	159506	51.179	40.854
Total		39419244	390427	100.000	100.000

