Electronic Supplementary Information

Highly Efficient SO₂ Capture through Tuning the Interaction between Anion-Functionalized Ionic Liquids and SO₂

Congmin Wang, ¹ Junjie Zheng, ¹ Guokai Cui, ¹ Yanxiao Luo, ¹ Guo Yan, ¹ and Haoran Li^{1,2}

¹Department of Chemistry, Zhejiang University, Hangzhou 310027, China ²State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

Email: <u>chewcm@zju.edu.cn;</u> <u>lihr@zju.edu.cn</u>

Experimental Section

Materials and general methods

[Emim][SCN] and [Emim][C(CN)3] were purchased from Chengjie Chemical Co., Ltd. N₂ (99.99%) and SO₂ (99.9%) were purchased from Hangzhou Jingong Special Gas Co., Ltd. All chemicals were used as received unless otherwise stated. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker spectrometer (500 MHz) in DMSO-d6 with tetramethylsilane as the standard. FT-IR spectra were measured on a Nicolet 470 FT-IR spectrometer. Decomposition temperatures were measured with a TGA 2100 series of TA Instrument with a heating rate of 10 °C min⁻¹.

Absorption and desorption of SO₂

In a typical absorption of SO₂, SO₂ at atmospheric pressure was bubbled through about 1 g of IL in a glass container with an inner diameter of 10 mm at a flow rate of about 60 ml min⁻¹. The glass container was partly immersed in a water bath at 20 °C. The amount of SO₂ absorbed was determined at regular intervals by an electronic balance with an accuracy of ± 0.1 mg. During the absorption of SO₂ under reduced pressure, SO₂ was diluted with N₂ in order to reduce the partial pressure of SO₂ passing through the system. The SO₂ partial pressure was controlled by changing the flow of SO₂ and N₂.

The IL was regenerated by bubbling N₂ at 80 °C through the IL. In a typical desorption of SO₂, N₂ of atmospheric pressure was bubbled though about 1.0 g IL that captured SO₂ in a glass container, which was partly immersed in a circulated oil bath at 80 °C, and the flow rate was about 60 ml min⁻¹. The desorption of SO₂ was determined at regular intervals by an electronic balance with an accuracy of ± 0.1 mg.

ILs ^{<i>a</i>}	Absorption temperature/°C	Desorption ^c temperature/ ^o C	Available SO ₂ absorption at 1 atm (g SO ₂ /g IL)	Reference
[Emim][SCN]	20	80	1.13	This work
[Emim][C(CN) ₃]	20	80	0.74	This work
[P ₆₆₆₁₄][Tetz]	20	80	0.43	Wang ¹
[P ₆₆₆₁₄][Im]	20	80	0.48	Wang ¹
[Bmim][BF ₄]	20	20 ^e	0.40	Riisager ²
[Bmim][Tf ₂ N]	20	20 ^e	0.20	Riisager ²
[TMGB ₂][Tf ₂ N]	20	20 ^e	0.20	Riisager ²
[TMG][Lactate]	40	100	0.42	Han, ³ Kim ⁴
[E ₁ mim][MeSO ₃]	30	100	0.62	Kim ⁴
[Bmim][MeSO ₄]	50	130 ^{<i>d</i>}	0.25	Jung ⁵
[Bmim][OAc]	25	130 ^{<i>d</i>}	0.42	Shiflett, ⁶ Jung ⁵
[TMG][TE]	20	100 ^e	0.87	Zhang ⁷
[TMG][PhO]	20	100 ^e	0.55	Zhang ⁷

Table S1 The comparison of SO2 absorption by nitrile-containing anion-functionalizedILs with that by other typical ILs.

1-ethyl-3-methylimidazolium ^{*a*}[Emim][SCN], $[\text{Emim}][C(CN)_3],$ thiocyanate; 1-ethyl-3-methylimidazolium tricyanomethanide; [P₆₆₆₁₄][Tetz], trihexyl(tetradecyl)phosphonium tetrazolate; trihexyl(tetradecyl)phosphonium imidazolate; [Bmim][BF₄], [P₆₆₆₁₄][Im], 1-butyl-3-methylimidazolium tetrafluoroborate; [Bmim][Tf₂N], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; [TMGB₂][Tf₂N], tetramethydibutylguandinium bis(trifluoromethylsulfonyl)imide; [TMG][Lactate], 1,1,3,3-tetramethyguandinium lactate: 1-ethyl-3-methoxyimidazolium [E₁mim][MeSO₃], methyl sulfate; [Bmim][OAc], 1-butyl-3-methylimidazolium acetate; [TMG][TE], 1,1,3,3-tetramethyguandinium trifluoroethoxylate; [TMG][PhO], 1,1,3,3-tetramethyguandinium phenolate. ^bDesorbed under bubbling N₂. ^cAt 1.2 bar.^e Desorbed under vacuum. ^dDesorbed by bubbling O₂.

Figure S1 Absorption of SO₂ in [Emim][SCN] (•) and [Emim][C(CN)₃] (•) at 20^oC and 1 atm.

Figure S2 SO₂ absorption/desorption cycles of [Emim][SCN] and [Emim][C(CN)₃]. In each cycle, SO₂ is absorbed at 20 °C and 1 atm, and desorbed at 80 °C under N₂. [Emim][SCN], absorption (\blacktriangle); desorption, (\bigtriangleup). [Emim][C(CN)3], absorption, (\blacksquare); desorption, (\square).

Figure S3 SO₂ absorption/desorption cycles of [Emim][SCN] under vacuum. In each cycle, SO₂ is absorbed at 20 $^{\circ}$ C and 1 atm, and desorbed at 80 $^{\circ}$ C under 0.1atm.

Figure S4 Variation in the natural logarithm equilibrium constant of [EMIM][SCN] with temperature.

Figure S5 Variation in the natural logarithm equilibrium constant of $[EMIM][C(CN)_3]$ with temperature.

Figure S6 Optimized structures of [SCN]-SO₂, [SCN]-2SO₂, [SCN]-3SO₂ complexes. (a), [SCN]-SO₂, \triangle H=-73.0 kJ mol⁻¹; (b) [SCN]-2SO₂, \triangle H=-45.7 kJ mol⁻¹; (c) [SCN]-3SO₂, \triangle H=-26.7 kJ mol⁻¹.

Figure S7 IR spectra of [Emim][SCN] and [Emim][C(CN)₃] before and after the absorption of SO₂.

References:

1 C. M. Wang, G. K. Cui, X. Y. Luo, Y. J. Xu, H. R. Li, S. Dai, *J. Am. Chem. Soc.* **2011**, *133*, 11916.

2 J. Huang, A. Riisager, P. Wasserscheid, R. Fehrmann, Chem. Commun. 2006, 4027.

3 W. Z. Wu, B. X. Han, H. X. Gao, Z. M. Liu, T. Jiang, J. Huang, *Angew. Chem., Int. Ed.* **2004**, *43*, 2415.

4. S. Y. Hong, J. Im, J. Palgunadi, S. D. Lee, J. S. Lee, H. S. Kim, M. Cheong, K. D. Jung, *Energy Environ. Sci.* **2011**, *4*, 1802.

5 K. Y. Lee, G. T. Gong, K. H. Song, H. Kim, K. D. Jung, C. S. Kim, *Int. J. Hydrogen Energy*, **2008**, 33, 6031.

6 M. B. Shiflett, A. Yokozeki, *Ind. Eng. Chem. Res.* **2010**, *49*, 1370; (b) K. Y. Lee, H. S. Kim, C. S. Kim, K. D. Jung, *Int. J. Hydrogen Energy*. **2010**, *35*, 10173.

7 Y. Shang, H. P. Li, S. J. Zhang, H. Xu, Z. X. Wang, L. Zhang, J. M. Zhang, *Chem. Eng. J.* **2011**, *175*, 324.