Electronic Supplementary Information

Hierarchical NiCo₂O₄@MnO₂ core-shell heterostructured nanowire arrays on Ni

foam as high-performance supercapacitor electrodes

Le Yu, Genqiang Zhang, Changzhou Yuan, and Xiong Wen (David) Lou *

School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang

Drive, Singapore 637459. Email: xwlou@ntu.edu.sg

Webpage: http://www.ntu.edu.sg/home/xwlou/

Experimental Section

Materials Synthesis. In a typical synthesis, Ni foam (2 cm x 10 cm in rectangular shape) was immersed in a 3 M HCl solution for 15 min to get rid of the surface oxide layer. 1.16 g of Co(NO₃)₂·6H₂O, 0.58 g of Ni(NO₃)₂·6H₂O and 1.44 g of urea were dissolved in 160 mL of mixed solution with ethanol and $H_2O(V : V = 1 : 1)$ at room temperature to form a clear pink solution. The solution was transferred into a 250 mL bottle, and the pretreated Ni foam was placed in the bottle. Then, the bottle was capped tightly, heated to 90 °C and maintained at the temperature for 8 h in an electric oven. After cleaned with the assistance of ultrasonication and dried in air at 60 °C, the Ni foam with grown precursor was further put into a 40 mL Teflon-lined stainless steel autoclave containing 1.6 mM KMnO₄ solution, which was subsequently heated to and maintained at 160 °C for 30 min. For comparison, 14 and 28 mM KMnO₄ solutions were further used to fabricate other NiCo₂O₄@MnO₂ core-shell NW arrays. Finally, the Ni foam with the as-grown hybrid precursor arrays was annealed at 350 °C for 2 h to obtain hierarchical NiCo₂O₄@MnO₂ core-shell heterostructured NW arrays grown on Ni foam. As a control, the NiCo₂O₄ NW arrays supported on Ni foam were also obtained under the same condition but without the following coating of the MnO₂ phase.

Materials Characterization. X-ray diffraction (XRD) patterns were collected on a Bruker D2 Phaser X-Ray Diffractometer with Ni filtered Cu $K\alpha$ radiation ($\lambda = 1.5406$ Å) at a voltage of 30 kV and a current of 10 mA. Field-emission scanning electron microscope (FESEM) images and energy dispersive X-ray spectroscopy (EDX) spectra were acquired on a JEOL JSM 6700F microscope operated at 5 kV. Transmission electron microscope (TEM) images were taken on JEOL 2010 and JEOL 2100F microscopes. *Electrochemical Measurements*. Electrochemical measurements (CHI 660D electrochemical workstation) were conducted in a three-electrode configuration at room temperature using a 1.0 M LiOH as electrolyte. The nickel foam supported electroactive materials ($\sim 1 \text{ cm}^2$ in area) serves directly as the working electrode. Pt foil and standard calomel electrode (SCE) were used as the counter electrode and the reference electrode, respectively. The mass loading of the hybrid NiCo₂O₄@MnO₂ core-shell NWs on Ni foam is about 1.4 mg cm⁻². Meanwhile, the mass loading of the NiCo₂O₄ NWs on Ni foam is about 1.15 mg cm⁻². The area specific capacitance of the electrodes was calculated from the CP curves based on equation (1):

$$C = \frac{It}{\Delta V} \tag{1}$$

where *C*, *I*, *t* and ΔV are the SC (F cm⁻²) of the electroactive materials, the discharging current density (A cm⁻²), the discharging time (*s*), and the discharging potential range (V), respectively. Electrochemical impedance spectroscopy (EIS) measurements were carried out by applying an AC voltage with 1 mV amplitude in a frequency range from 0.1 Hz to 100 kHz at open circuit potential.

Fig. S1 XRD patterns of NiCo₂O₄ NW arrays and hierarchical NiCo₂O₄@MnO₂ core-shell heterostructured NW arrays on Ni foam

Fig. S2 Typical FESEM images and corresponding EDX data of (a, b) NiCo₂O₄ and (c, d) hierarchical NiCo₂O₄@MnO₂ core-shell NW arrays grown on Ni foam.

Fig. S3 Low-magnification FESEM images of (a) derived $NiCo_2O_4$ NW arrays and (b) hierarchical $NiCo_2O_4@MnO_2$ core-shell NW arrays grown on Ni foam. (The inset in (a) shows the precursor of $NiCo_2O_4$ NW arrays supported on Ni foam).

As seen from Fig. S3a, after the annealing treatment at 350 °C, the NiCo₂O₄ NW arrays sample maintain the same morphology as its precursor (the inset in a) without any noticeable alteration. Moreover, both the NiCo₂O₄ NW arrays and hierarchical NiCo₂O₄@MnO₂ core-shell NW arrays were uniformly grown on Ni foam on a large scale.

Fig. S4 FESEM and TEM images of as-fabricated hierarchical NiCo₂O₄@MnO₂ core-shell NW arrays grown on Ni foam by using KMnO₄ solutions with different concentrations: (a, c) 14 mM and (b, d) 28 mM.

Clearly, when the higher concentration of KMnO₄ is used, much thicker MnO₂ layer can be seen. In the case of 14 mM KMnO₄, the shell thickness of ultrathin MnO₂ nanoflakes is *ca*. 50 nm. When the KMnO₄ concentration is increased to 28 mM, the thickness of MnO₂ layer increases up to *ca*. 100 nm.

Fig. S5 Electrochemical characterizations of the hierarchical NiCo₂O₄@MnO₂ core-shell NW arrays grown on Ni foam: (a) CVs curves at various scan rates ranging from 2 to 50 mV s⁻¹, (b) discharge voltage profiles at different current densities.

Fig. S6 Impedance Nyquist plots of the MnO₂, NiCo₂O₄ NW arrays and the hierarchical NiCo₂O₄@MnO₂ core-shell NW arrays grown on Ni foam at open circuit potential.