Supporting information for

Iron Promoted Conjugate Addition; Implication of the Six-Centered Mechanism Based

on the Isolation of the Iron-enolate Intermediate

Daisuke Noda,^a Yusuke Sunada,^{a,b} Takuji Hatakeyama,^c Masaharu Nakamura^c and Hideo

Nagashima*^{*a,b*}

^a Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka, 816-8580, Japan

^b Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka, 816-8580, Japan

^c International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.

* Corresponding author. E-mail: nagasima@cm.kyushu-u.ac.jp

Contents

Experimental Procedure

Figure S1. ¹H NMR spectrum of (TMEDA)Fe(-O-C(Ph)=CHCH(Mesityl)(Anisyl))₂(**3**)

Figure S2. ¹H and ¹³C NMR spectra of 4a

Figure S3. ¹H and ¹³C NMR spectra of 4b

Figure S4. ¹H and ¹³C NMR spectra of 4c

Figure S5. ¹H and ¹³C NMR spectra of 4d

Figure S6. ¹H and ¹³C NMR spectra of 4e

Figure S7. ¹H and ¹³C NMR spectra of **4f**

Figure S8. ¹H and ¹³C NMR spectra of 4g

Figure S9. ¹H and ¹³C NMR spectra of $4c-d_1$

Figure S10. ¹H and ¹³C NMR spectra of 5

Figure S11. ¹H spectrum of (TMEDA)Fe(-O-C(Ph)=CHPh)₂(7)

Figure S12. ¹H and ¹³C NMR spectra of 9

Figure S13. The Molecular Structure of (TMEDA)Fe(-O-C(Ph)=CHCH(Mesityl)(Anisyl))₂ (3).

 Table S1. X-ray Crystallographic Data of (TMEDA)Fe(-O-C(Ph)=CHCH(Mesityl)(Anisyl))2 (3).

Figure S14. The Molecular Structure of (TMEDA)Fe(-O-C(Ph)=CHPh)₂ (7).

Table S2. X-ray Crystallographic Data of (TMEDA)Fe(-O-C(Ph)=CHPh)₂ (7).

Experimental Procedure

General. All experiments were carried out under an argon atmosphere using standard Schlenk techniques or performed in a N₂-filled glovebox where solvents and reagents were stored. Benzene-d₆, was distilled from benzophenone kethyl. Tetramethylethylenediamine (TMEDA) was distilled from CaH₂. Dehydrated solvents, diethylether, THF, toluene, benzene, and hexane were purchased from Kanto Chemical CO. INC. and used without further purification. The other reagents were used as received. [Fe(mesityl)₂]₂¹ and (TMEDA)₂Fe(mesityl)₂² were prepared according to the literature methods. The ¹H and ¹³C NMR spectra were recorded on a JEOL Lambda 600 or a Lambda 400 or a JNM–ECS400 spectrometer. Chemical shifts were given in ppm relative to the solvent signal. IR spectra were recorded on a JASCO FT/IR-550 spectrometer. Melting points were measured on a Yanaco micro melting point apparatus. HRMS spectrum was recorded on a JEOL Mstation JMS-70 apparatus. Elemental analyses were performed by a Perkin Elmer 2400/CHN analyzer.

Synthesis of (TMEDA)Fe(-O-C(Ph)=CHCH(Mesityl)(Anisyl))₂ (3). In a 50 mL schlenk tube, (TMEDA)Fe(mesityl)₂ (1') (410 mg, 1.0 mmol) and 4-methoxychalcone (2a) (520 mg, 2.2 mmol) were dissolved in toluene (10 mL). The resulting solution was stirred for 3 h at room temperature. The solvent was removed in vacuo, and the resulting solid was washed with toluene/hexane (1/4). The resulting crude product was dissolved in THF/toluene, and hexane was added to this solution, cooled to -30 °C to afford **3** as colorless crystals in 75 % yield (665 mg, 0.75 mmol). M.p.: 196 °C. ¹H NMR (600MHz, C₆D₆, r.t.): δ 89.60, 62.13, 59.25, 36.10, 13.2 (br d), 8.68 (d), 8.12, 7.98, 7.30, 7.26, 7.20, 6.64, 6.18, 3.62, 3.56, 3.42, 3.23, 1.55, -12.86. Anal. Calcd. for C₅₆H₆₆FeN₂O₄; C, 75.83; H, 7.50; N, 3.16 %. Found C, 75.72; H, 7.77; N,2.99 %.

Reaction of (TMEDA)Fe(-O-C(Ph)=CHCH(Mesityl)(Anisyl))₂ (3) with NH₄Cl (aq). In a 20 mL schlenk tube was placed complex 3 (49 mg, 0.055 mmol) in toluene (2.5 mL), and a saturated aqueous solution of NH₄Cl was added to this solution. The mixed solution was stirred at room temperature for 15

min. After a standard aqueous work up, the ¹H NMR spectrum of the crude product indicated the quantitative formation of 4a.

¹H NMR (400MHz, CDCl₃, r.t.): δ 7.98 (d, J = 7.2, 2H, C₆H₅), 7.57 (t, J = 7.2, 1H, C₆H₅), 7.47 (t, J = 7.2, 2H, C₆H₅), 6.93 (d, J = 8.7, 2H, C₆H₄), 6.83 (s, 2H, C₆H₂Me₃), 6.76 (d, J = 8.7, 2H, C₆H₄), 5.36 (dd, $J_1 = 8.2$, $J_2 = 4.8$, 1H, -CHCH₂-), 4.06 (dd, $J_1 = 17.4$, $J_2 = 8.2$, 1H, -CHCH₂-), 3.75 (s, 3H, OMe), 3.45 (dd, $J_1 = 17.4$, $J_2 = 4.8$, 1H, -CHCH₂-), 2.39-2.03 (br s, 6H, *ortho*-Me of C₆H₃Me₃), 2.25 (s, 3H, *para*-Me of C₆H₂Me₃). ¹³C NMR (100MHz, CDCl₃, r.t.): δ 198.7, 157.5, 138.4, 137.0, 136.8, 135.8, 135.3, 133.0, 130.0(br), 128.6, 128.1, 127.7, 113.6, 55.1, 42.5, 37.6, 21.2, 20.7. IR (neat): v 3058, 3032, 3000, 2953, 2916, 2863, 2835, 1685, 1609 1597, 1580, 1508, 1481, 1463, 1448, 1416, 1377, 1357, 1333, 1298, 1286, 1249, 1203, 1181, 1159, 1114, 1036, 1001, 984, 911, 852, 825, 771, 759, 743, 690, 648 cm⁻¹. HRMS (EI⁺): Calcd for C₂₅H₂₆O₂ 358.1933 ; Found 358.1930.

Reaction of (TMEDA)Fe(-O-C(Ph)=CHCH(Mesityl)(Anisyl))₂ (3) with AcOH-d₄. In a 20 mL schlenk tube was placed complex 3 (49 mg, 0.055 mmol) in toluene (2.5 mL), and AcOH-d₄ (21 mg, 0.328 mmol) was added to this solution. The mixed solution was stirred at room temperature for 15 min, then a saturated aqueous solution of NH₄Cl was added to quench the reaction. After a standard aqueous work up, the product was purified by silica-gel column chromatography (hexane : AcOEt = 9 : 1) to give the product **4a**-*d*₁ (96 %, 38 mg, 0.106 mmol).

¹H NMR (400MHz, CDCl₃, r.t.): δ 7.98 (d, J = 7.2, 2H, C₆H₅), 7.57 (t, J = 7.2, 1H, C₆H₅), 7.47 (t, J = 7.2, 2H, C₆H₅), 6.93 (d, J = 8.7, 2H, C₆H₄), 6.83 (s, 2H, C₆H₂Me₃), 6.76 (d, J = 8.7, 2H, C₆H₄), 5.36 (d, J = 8.2, 1H, -CHCH₂-), 4.06 (d, J = 8.2, 1H, -CHCH₂-), 3.75 (s, 3H, OMe), 2.39-2.03 (br s, 6H, *ortho*-Me of C₆H₃Me₃), 2.25 (s, 3H, *par*a-Me of C₆H₂Me₃). ¹³C NMR (100MHz, CDCl₃, r.t.): δ 198.7, 157.5, 138.4, 137.0, 136.8, 135.8, 135.3, 133.0, 130.0 (br), 128.6, 128.1, 127.7, 113.6, 55.1, 42.4, 42.2, 42.0, 37.6, 21.2, 20.7.

Reaction of (TMEDA)Fe(-O-C(Ph)=CHCH(Mesityl)(Anisyl)₂ (3) with TMSX (X=OTf, Cl). In a 20 mL schlenk tube was placed complex 3 (89 mg, 0.10 mmol) in benzene (3 mL), and trimethylsilyltrifluoromethanesurfonate (TMSOTf) (44 mg, 0.20 mmol) or trimethylsilylchloride (TMSCl) (26 mg, 0.24 mmol) was added to this solution. The mixed solution was stirred at room temperature for 1h, then the solvent was removed under vaccum. The product was extracted with hexane, and the hexane solution was passed through a pad of Celite. The solution was removed in vacuo to give the crude product (50 mg). This crude product was dissolved in hexane, cooled to -35 °C to afford 5 in 31 % yield (27 mg, 0.063 mmol).

¹H NMR (400MHz, CDCl₃, r.t.): δ 7.53 (d, *J* = 6.8, 2H, C₆H₅), 7.31 (t, *J* = 6.8, 2H, C₆H₅), 7.26 (t, *J* = 6.8, 1H, C₆H₅), 7.09 (d, *J* = 8.5, 2H, C₆H₄), 6.83 (s, 2H, C₆H₂Me₃), 6.81 (d, *J* = 8.5, 2H, C₆H₄), 5.69 (AB, *J*₁ = 23.7, *J*₂ = 9.7, 2H, -CHCH=C-), 3.79 (s, 3H, OMe), 2.26-2.21 (br s, 6H, ortho-Me of C₆H₃Me₃), 2.26 (s, 3H, para-Me of C₆H₃Me₃), 0.01 (s, 9H, SiMe₃). ¹³C NMR (100MHz, CDCl₃, r.t.): δ 157.5, 150.6, 139.5, 138.1., 136.9, 136.6, 135.4, 129.9, 128.1, 128.0, 127.7, 126.1, 113.5, 112.0, 55.2, 40.6, 21.5, 20.7, 0.6. IR (KBr): v 3443, 3065, 3029, 2863, 2838, 1642, 1608, 1578, 1507, 1480, 1445, 1377, 1342, 1322, 1280, 1249, 1213, 1173, 1114, 1102, 1077, 1049, 1036, 1022, 901, 842, 827, 759, 697, 673, 632 cm⁻¹. HRMS (FAB⁺): Calcd for C₂₈H₃₄O₂Si 430.2328; Found 430.2328.

Reaction of (TMEDA)Fe(mesityl) (1') with 4-methoxychalcone (2a). In a 20 mL schlenk tube was placed (TMEDA)Fe(mesityl)₂ (1') (49 mg, 0.12 mmol) in toluene (3 mL), and toluene solution (1 mL) of 4-methoxychalcone (**2a**) (48 mg, 0.20 mmol) was added to this solution. The mixed solution was stirred at room temperature for 3 h, then a saturated aqueous solution of NH₄Cl was added to quench the reaction. After a standard aqueous work up, the product was purified by silica-gel column chromatography (hexane : AcOEt = 9 : 1) to give the product **4a** (97 %, 69.9 mg, 0.195 mmol).

Reaction of (TMEDA)Fe(mesityl) (1') with benzalacetone (2b). In a 20 mL schlenk tube was placed (TMEDA)Fe(mesityl)₂ (1') (49 mg, 0.12 mmol) in toluene (3 mL), and toluene solution (1 mL) of

benzalacetone (**2b**) (29 mg, 0.20 mmol) was added to this solution. The mixed solution was stirred at room temperature for 3 h, then a saturated aqueous solution of NH_4Cl was added to quench the reaction. After a standard aqueous work up, the product was purified by silica-gel column chromatography (hexane : AcOEt = 9 : 1) to give the product **4b** (96 %, 50.5 mg, 0.190 mmol).

¹H NMR (400MHz, CDCl₃, r.t.): δ 7.23 (t, J = 7.2, 2H, C₆H₅), 7.15 (t, J = 7.2, 1H, C₆H₅), 6.99 (d, J = 7.2, 2H, C₆H₅), 6.83 (s, 2H, C₆H₂Me₃), 5.20 (dd, $J_1 = 8.2$, $J_2 = 5.8$, 1H, -CHCH₂-), 3.47 (dd, $J_1 = 17.4$, $J_2 = 8.2$, 1H, -CHCH₂-), 3.01 (dd, $J_1 = 17.4$, $J_2 = 5.8$, 1H, -CHCH₂-), 2.47-1.91 (br s, 6H, *ortho*-Me of C₆H₃Me₃), 2.26 (s, 3H, -C(=O)-Me), 2.17 (s, 3H, *para*-Me of C₆H₃Me₃). ¹³C NMR (100MHz, CDCl₃, r.t.): δ 207.4, 143.2, 137.9, 136.8, 135.9, 130.0 (br), 128.2, 126.6, 125.6, 47.2, 38.2, 30.3, 21.2, 20.7. IR (neat): v 3026, 3001, 2964, 2953, 2919, 1718, 1610, 1601, 1495, 1483, 1447, 1415, 1378, 1356, 1234, 1161, 1028, 911, 851, 763, 737, 729, 698, 579 cm⁻¹. HRMS (EI⁺): Calcd for C₁₉H₂₂O 266.1671 ; Found 266.1671.

Reaction of (TMEDA)Fe(mesityl) (1') with chalcone (2c). In a 20 mL schlenk tube was placed (TMEDA)Fe(mesityl)₂ (1') (49 mg, 0.12 mmol) in toluene (3 mL), and toluene solution (1 mL) of chalcone (2c) (42 mg, 0.20 mmol) was added to this solution. The mixed solution was stirred at room temperature for 3 h, then a saturated aqueous solution of NH_4Cl was added to quench the reaction. After a standard aqueous work up, the product was purified by silica-gel column chromatography (hexane : AcOEt = 9 : 1) to give the product 4c (92 %, 60.7 mg, 0.185 mmol).

¹H NMR (400MHz, CDCl₃, r.t.) δ 7.99 (d, J = 7.7, 2H, C₆H₅), 7.58 (t, J = 7.2, 1H, C₆H₅), 7.47 (t, J = 7.7, 2H, C₆H₅), 7.21 (t, J = 7.2, 2H, C₆H₅), 7.14 (t, J = 7.2, 1H, C₆H₅), 7.02 (d, J = 7.7, 2H, C₆H₅), 6.84 (s, 2H, C₆H₂Me₃), 5.44 (dd, $J_I = 8.2$, $J_2 = 4.8$, 1H, -CHCH₂-), 4.11 (dd, $J_I = 17.4$, $J_2 = 8.2$, 1H, -CHCH₂-), 3.46 (dd, $J_I = 17.4$, $J_2 = 4.8$, 1H, -CHCH₂-), 2.47-1.91 (br s, 6H, *ortho*-Me of C₆H₃Me₃), 2.26 (s, 3H, *para*-Me of C₆H₃Me₃). ¹³C NMR (100MHz, CDCl₃, r.t.): δ 198.6, 143.4, 138.4, 137.0, 136.9, 133.1, 130.0(br), 128.6, 128.2, 128.1, 126.7, 125.5, 42.4, 38.2, 21.3, 20.7. IR (neat): v 3085, 3058, 3026, 3002, 2950, 2917, 2864, 1685, 1609, 1597, 1580, 1495, 1482, 1448, 1410, 1377, 1357, 1332, 1315, 1296,

1286, 1259, 1240, 1203, 1180, 1159, 1077, 1049, 1030, 1020, 1002, 983, 967, 920, 911, 852, 784, 768, 750, 739, 722, 697, 690, 650, 628 cm⁻¹. HRMS (EI⁺): Calcd for C₂₄H₂₄O 328.1827 ; Found 328.1822.

Reaction of (TMEDA)Fe(mesityl) (1') with 4-phenylpropenylketone (2d). In a 20 mL schlenk tube was placed (TMEDA)Fe(mesityl)₂ (1') (49 mg, 0.12 mmol) in toluene (3 mL), and toluene solution (1 mL) of 4-phenylpropenylketone (2d) (29 mg, 0.20 mmol) was added to this solution. The mixed solution was stirred at room temperature for 3 h, then a saturated aqueous solution of NH₄Cl was added to quench the reaction. After a standard aqueous work up, the product was purified by silica-gel column chromatography (hexane : AcOEt = 9 : 1) to give the product 4d (94 %, 50.0 mg, 0.188 mmol).

¹H NMR (400MHz, CDCl₃, r.t.): δ 7.93 (t, J = 7.2, 2H, C₆H₅), 7.55 (t, J = 7.2, 1H, C₆H₅), 7.45 (d, J = 7.2, 2H, C₆H₅), 6.83 (s, 2H, C₆H₂Me₃), 4.02 (ddt, $J_I = 16.4$, $J_2 = 4.8$, $J_3 = 7.2$, 1H, -CHMe), 3.44 (dd, $J_I = 16.4$, $J_2 = 8.7$, 1H, -CHCH₂-), 3.35 (dd, $J_I = 16.4$, $J_2 = 4.8$, 1H, -CHCH₂-), 2.61-2.26 (br, 6H, *ortho*-Me of C₆H₃Me₃), 2.24 (s, 3H, *para*-Me of C₆H₃Me₃), 1.37 (d, J = 7.2, 3H, -CHMe). ¹³C NMR (100MHz, CDCl₃, r.t.): δ 199.4, 139.3, 137.1, 136.0(br), 135.3, 132.9, 131.1(br), 129.3(br), 128.5, 128.0, 44.4, 30.0, 21.5(br), 20.6, 19.2. IR (neat): v 2964, 2921, 2873, 1687, 1611, 1597, 1580, 1482, 1459, 1448, 1380, 1369, 1347, 1316, 1286, 1269, 1247, 1221, 1204, 1180, 1028, 1102, 992, 851, 755, 742, 690, 646 cm⁻¹. HRMS (EI⁺): Calcd for Calcd for C₁₉H₂₂O 266.1671; Found 266.1669.

Reaction of (TMEDA)Fe(mesityl) (1') with 3-hepten-2-one (2e). In a 20 mL schlenk tube was placed (TMEDA)Fe(mesityl)₂ (1') (49 mg, 0.12 mmol) in toluene (3 mL), and toluene solution (1 mL) of 3-hepten-2-one (**2e**) (22 mg, 0.20 mmol) was added to this solution. The mixed solution was stirred at room temperature for 3 h, then a saturated aqueous solution of NH_4Cl was added to quench the reaction. After a standard aqueous work up, the product was purified by silica-gel column chromatography (hexane : AcOEt = 9 : 1) to give the product **4e** (83 %, 38.4 mg, 0.165 mmol).

¹H NMR (400MHz, CDCl₃, r.t.): δ 6.80 (br s, 1H, C₆H₂Me), 6.78 (br s, 1H, C₆H₂Me), 3.80-3.70 (m, 1H, CH(Mes)), 2.88-2.75 (m, 2H,- C(=O)-CH₂-), 2.36 (br s, 3H, *ortho*-Me of C₆H₃Me₃), 2.35 (br s, 3H,

ortho-Me of C₆H₃Me₃), 2.22 and 2.05 (s, 3H x 2, *para*-Me of C₆H₃Me₃ and -C(=O)Me), 2.05 (s, 3H, Me), 1.77-1.57 (m, 2H, -CH₂-), 1.33-1.06 (m, 2H, -CH₂-), 0.85 (t, J = 7.2, 3H, -CH₂Me). ¹³C NMR (100MHz, CDCl₃, r.t.): δ : 208.1, 137.8, 137.0 (br), 135.8 (br), 135.2, 131.0 (br), 129.2 (br), 48.8, 36.7, 34.9, 30.3, 21.7(br), 21.4(br), 21.3, 20.6, 14.3. IR (neat): v 3003, 2956, 2929, 2871, 1717, 1611, 1481, 1465, 1456, 1428, 1423, 1407, 1377, 1355, 1301, 1287, 1258, 1233, 1163, 1107, 1024, 1017, 851, 736 cm⁻¹. HRMS (EI⁺): Calcd for C₁₆H₂₄O 232.1827; Found 232.1829.

Reaction of (TMEDA)Fe(mesityl) (1') with methylvinylketone (2f). In a 20 mL schlenk tube was placed (TMEDA)Fe(mesityl)₂ (1') (49 mg, 0.12 mmol) in toluene (3 mL), and toluene solution (1 mL) of methylvinylketone (2f) (14 mg, 0.20 mmol) was added to this solution. The mixed solution was stirred at room temperature for 3 h, then a saturated aqueous solution of NH_4Cl was added to quench the reaction. After a standard aqueous work up, the product was purified by silica-gel column chromatography (hexane : AcOEt = 9 : 1) to give the product 4f (39 %, 15.1 mg, 0.079 mmol). ¹H NMR (400MHz, CDCl₃, r.t.): δ 6.84 (s, 2H, C₆H₂Me), 2.91-2.84 (m, 2H, -CH₂CH₂-), 2.61-2.54 (m, 2H, -CH₂CH₂-), 2.27 (s, 6H, *ortho*-Me of C₆H₃Me₃), 2.25 and 2.18 (s, 3H x 2, *para*-Me of C₆H₃Me₃ and -C(=O)Me). ¹³C NMR (100MHz, CDCl₃, r.t.): δ 208.3, 135.9, 135.4, 134.4, 129.0, 42.8, 29.8, 23.3, 20.7, 19.6. IR (neat): v 3002, 2962, 2918, 2863, 1715, 1613, 1578, 1485, 1464, 1447, 1412, 1362, 1281, 1257,

1222, 1207, 1160, 1037, 1025, 1014, 945, 853, 723 cm⁻¹. HRMS (EI⁺): Calcd for C₁₃H₁₈O 190.1358; Found 190.1352.

Reaction of (TMEDA)Fe(mesityl) (1') with *trans*-cinnamaldehyde (2g). In a 20 mL schlenk tube was placed (TMEDA)Fe(mesityl)₂ (1') (49 mg, 0.12 mmol) in toluene (3 mL), and toluene solution (1 mL) of *trans*-cinnamaldehyde (2g) (26 mg, 0.20 mmol) was added to this solution. The mixed solution was stirred at room temperature for 3 h, then a saturated aqueous solution of NH₄Cl was added to quench the reaction. After a standard aqueous work up, the product was purified by silica-gel column chromatography (hexane : AcOEt = 9 : 1) to give the product 4g (92 %, 46.2 mg, 0.183 mmol).

¹H NMR (400MHz, CDCl₃, r.t.): δ 7.39-7.18 (m, 5H, C₆H₅), 6.86 (s, 2H, C₆H₂Me), 6.58-6.45 (m, 2H, -CH=CH-), 5.88 (t, J = 3.8, 1H, -CH(OH)(Mes)), 2.42 (s, 6H, *ortho*-Me of C₆H₃Me₃), 2.27 (s, 3H, *parao*-Me of C₆H₃Me₃), 1.89 (d, J = 3.8, 1H, -CH(OH)(Mes)). ¹³C NMR (100MHz, CDCl₃, r.t.): δ 137.1, 136.9, 136.5, 135.1, 130.3, 130.0, 129.5, 128.5, 127.4, 126.4, 71.1, 20.8, 20.6. IR (neat): v 3370, 3026, 2918, 2370, 2344, 1609, 1577, 1493, 1448, 1377, 1005, 964, 849, 770, 722, 694 cm⁻¹. HRMS (EI⁺): Calcd for C₁₈H₂₀O 252.1514; Found 252.1511.

Reaction of (TMEDA)Fe(mesityl)₂ (1') with 2-cyclohexenone. In a 20 mL schlenk tube was placed (TMEDA)Fe(mesityl)₂ (1') (49 mg, 0.12 mmol) in toluene (3 mL), and toluene solution (1 mL) of 2-cyclohexenone (19 mg, 0.20 mmol) was added to this solution. The resulting solution was stirred for 3 h at -20 °C. The solvent was removed in vacuo, and the resulting solid was dissolved in hexane. This hexane solution was passed through a pad of Celite, then the solvent was removed under vacuum to afford colorless oil. The product **6** was characterized by ¹H NMR spectrum by comparison with previous literature, ³ and the yield of **6** was determined by ¹H-NMR analysis in CDCl₃ with ferrocene as an internal standard. Yield: 52 %.

Reaction of (TMEDA)Fe(mesityl) (1') with acetone-d₆. In a 20 mL schlenk tube was placed (TMEDA)Fe(mesityl)₂ (1') (41 mg, 0.10 mmol) in toluene (3 mL), and acetone-d₆ (13 mg, 0.20 mmol) was added to this solution. The mixed solution was stirred at room temperature for 1 h, then a saturated aqueous solution of NH_4Cl was added to quench the reaction. After a standard aqueous work up, the product was extracted with ethyl acetate, and the solvent was removed in vacuo. The formation of 2-deuterio-1,3,5-trimethylbenzene was determined by GC-MS analysis and ¹H NMR spectrum.

Synthesis of (TMEDA)Fe(-O-C(Ph)=CHPh)₂ (7). In a 50 mL schlenk tube, (TMEDA)Fe(mesityl)₂ (1') (60 mg, 0.15 mmol) and benzylphenylketone (57 mg, 0.29 mmol) were dissolved in toluene (3.5 mL). The resulting solution was stirred for 16 h at 60 °C. The solvent was removed in vacuo, and the

resulting solid was dissolved in THF. Hexane was added to this solution, cooled to -30 °C to afford 7 as brown crystals in 46 % yield (38 mg, 0.068 mmol). M.p.: 186 °C. ¹H NMR (600MHz, C₆D₆, r.t.): δ 95.17, 62.38, 38.69, 26.88, 13.18, 6.07, 3.80, -5.55, -8.85. Anal. Calcd. for C₃₄H₃₈FeN₂O₂; C, 72.60; H, 6.81; N, 4.98 %. Found C, 72.21; H, 6.87; N, 4.65 %.

Synthesis of 3-(4-methoxyphenyl)-1,3-diphenylpropan-1-one (9) using a catalytic amount of FeCl₂ (no TMEDA condition). To a THF solution (2.0 mL) of 2-(4-methoxyphenyl)-4,4,5,5,-tetramethyl-1,3,2-dioxaborolane (0.176 g, 0.75 mmol) was added n-BuLi (0.44 mL, 1.60 M in hexane, 0.70 mmol) at -42 °C. The reaction mixture was stirred at the same temperature for 30 min and at 0 °C for 30 min. The solvent was removed in vacuo at 0 °C. To the residual borate was added THF (2.0 mL) and FeCl₂ (3.2 mg, 0.025 mmol, 5.0 mol%) at 0 °C. After 5 min, chalcone (2c) (0.104 g, 0.50 mmol) was added at this temperature. The reaction was carried out at 60 °C for 1 h. The resulting mixture was cooled to ambient temperature and was added saturated aqueous NH_4Cl . The aqueous layer was extracted four times with EtOAc. The combined organics were passed through a pad of Florisil[®] and were concentrated in vacuo. ¹H NMR analysis using pyrazine as an internal standard revealed that the title compound **9** was obtained in 96% yield; Rf = 0.21 (hexane/EtOAc = 20/1); ¹H NMR (392 MHz, CDCl₃) δ 3.70 (d, J = 7.17 Hz, 2H, Ar₂HCH₂CC(O)-), 3.75 (s, 3H, H₃CO-), 4.77 (t, J = 7.64 Hz, 1H, Ar₂*H*CH₂CC(O)-), 6.79-6.82 (m, 2H, 3-H₂-4-MeOC₆H₂-), 7.14-7.19 (m, 3H, 2-H₂-4-MeOC₆H₂- and C_6H_5 -), 7.24-7.29 (m, 4H, C_6H_5 -), 7.43 (t, J = 7.64 Hz, 2H, $3-H_2C_6H_3C(O)$ -), 7.54 (t, J = 7.64 Hz, 1H, 4- $HC_{6}H_{4}C(O)$ -), 7.93 (m, 2H, 2- $H_{2}C_{6}H_{3}C(O)$ -); ¹³C NMR (99 MHz, CDCl₃) δ 44.9, 45.1, 55.2, 113.9, 126.3, 127.7, 128.0, 128.5, 128.6, 128.7, 133.0, 136.2, 137.0, 144.5, 158.0, 198.1; IR (neat) v 3061, 3027, 2930, 2835, 1683, 1610, 1597, 1580, 1509, 1494, 1448, 1361, 1302, 1245, 1204, 1177, 1111, 1076, 1031, 1001, 981, 921, 827, 750, 689; HRMS (FAB) M⁺ Calcd for C₂₂H₂₀O₂ 316.1463. Found 316.1463.

Synthesis of 3-(4-methoxyphenyl)-1,3-diphenylpropan-1-one (9) using a catalytic amount of FeCl₂. To a THF solution (2.0 mL) of 2-(4-methoxyphenyl)-4,4,5,5,-tetramethyl-1,3,2-dioxaborolane (0.176 g, 0.75 mmol) was added n-BuLi (0.44 mL, 1.60 M in hexane, 0.70 mmol) at -42 °C. The reaction mixture was stirred at the same temperature for 30 min and at 0 °C for 30 min. The solvent was removed *in vacuo* at 0 °C. To the residual borate was added THF (2.0 mL), *N*,*N*,*N*',*N*'-tetramethylethylenediamine (2.9 mg, 0.025 mmol, 5.0 mol%) and FeCl₂ (3.2 mg, 0.025 mmol, 5.0 mol%) at 0 °C. After 5 min, chalcone (**2c**) (0.104 g, 0.50 mmol) was added at this temperature. The reaction was carried out at 60 °C for 1 h. The resulting mixture was cooled to ambient temperature and was added saturated aqueous NH₄Cl. The aqueous layer was extracted four times with EtOAc. The combined organics were passed through a pad of Florisil[®] and were concentrated *in vacuo*. ¹H NMR analysis using pyrazine as an internal standard revealed that the title compound **9** was obtained in 97% yield.

X-ray data collection and reduction. X-ray crystallography was performed on a Rigaku Saturn CCD area detector with graphite monochromated Mo-K α radiation ($\lambda = 0.71070$ A). The data were collected at 123(2) K using \Box ω scan in the θ range of $3.0 \le \theta \le 27.5$ deg (**3**) and $3.2 \le \theta \le 27.5$ deg (**7**). The data obtained were processed using Crystal-Clear (Rigaku) on a Pentium computer, and were corrected for Lorentz and polarization effects. The structure was solved by direct methods⁴ for **3** and **7**, and expanded using Fourier techniques.⁵ The non-hydrogen atoms were refined anisotropically except for the disordered carbon atoms. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F^2 was based on 11,203 observed reflections and 634 variable parameters for **3** and 6,279 observed reflections and 390 variable parameters for **7**. Neutral atom scattering factors were taken from Cromer and Waber.⁶ All calculations were performed using the CrystalStructure^{7,8} crystallographic software package. Details of final refinement as well as the bond distances and angles are summarized in the supporting information, and the numbering scheme employed is also shown in the supporting information, which were drawn with ORTEP at 50%

probability ellipsoid. CCDC 888725 (**3**) and 888724 (**7**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

1. A. Klose, E. Solari, R. Ferguson, C. Floriani, A. Chiesi-Villa, C. Rizzoli, *Organometallics* 1993, **12**, 2414.

2. a) E. J. Hawrelak, W. H. Bernskoetter, E. Lobkovsky, G. T. Yee, E. Bill, P. J. Chirik, Inorg. Chem.

2005, **44**, 3103; b) D. Noda, Y. Sunada, T. Hatakeyama, M. Nakamura, H. Nagashima, *J. Am. Chem. Soc.*, 2009, **131**, 6078.

3. D. Birney, T. K. Lim, J. H. P. Koh, B. R. Pool, J. M. White, J. Am. Chem. Soc., 2002, 124, 5091.

4. SIR97: A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, A. Guagliardi, A. Moliterni, G. Polidori,R. Spagna, 1999.

5. DIRDIF99: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M.

N. Smits, DIRDIF-99 program system; *Technical Report of the Crystallography Laboratory*; University of Nijmegen, Nijmegen, The Netherlands, 1999.

6. D. T. Cromer, J. T. Waber, *International Tables for X-ray Crystallography*; Kynoch Press: Birmingham, U.K., 1974 Vol. 4.

7. CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.

8. CRYSTALS Issue 11: J. R. Carruthers, J. S. Rollett, P. W. Betteridge, D. Kinna, L. Pearce, A. Larsen, E. Gabe, *Chemical Crystallography Laboratory*; Oxford, U.K., 1999.

Figure S1. ¹H NMR spectrum of (TMEDA)Fe(-O-C(Ph)=CHCH(Mesityl)(Anisyl))₂(**3**)

 $(^{1}H NMR in C_{6}D_{6})$

Figure S4. ¹H and ¹³C NMR spectra of 4a

Figure S2. ¹H and ¹³C NMR spectra of 4b

S-15

Figure S3. ¹H and ¹³C NMR spectra of 4c

Figure S5. ¹H and ¹³C NMR spectra of 4d

(¹³C NMR in CDCl₃)

Figure S6. ¹H and ¹³C NMR spectra of 4e

Figure S7. ¹H and ¹³C NMR spectra of 4f

Figure S8. ¹H and ¹³C NMR spectra of 4g

Figure S9. ¹H and ¹³C NMR spectra of $4a-d_1$

Figure S10. ¹H and ¹³C NMR spectra of 5

Figure S11. ¹H NMR spectrum of (TMEDA)Fe(-O-C(Ph)=CHPh)₂(7)

 $(^{1}H NMR in C_{6}D_{6})$

Figure S12. ¹H and ¹³C NMR spectra of 9

Figure S13. The Molecular Structure of (TMEDA)Fe(-O-C(Ph)=CHCH(Mesityl)(Anisyl))₂ (3).

Table S1. X-ray Crystallographic Data of (TMEDA)Fe(-O-C(Ph)=CHCH(Mesityl)(Anisyl))₂ (3).

Empirical Formula Formula Weight Crystal Color, Habit **Crystal Dimensions** Crystal System Lattice Type Lattice Parameters Space Group Z value D_{calc} F000 μ (MoK α) Detector Radiation Voltage, Current Temperature **Detector** Aperture Data Images ω oscillation Range (χ =45.0, ϕ =90.0) **Exposure Rate Detector Swing Angle Detector Position** Pixel Size $2\theta_{max}$ No. of Reflections Measured Structure Solution No. Observations (All reflections) No. Variables **Reflection/Parameter Ratio** Residuals: R1 ($I \ge 2.00\sigma(I)$) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

C56H66FeN2O4 887.00 colorless, block 0.200 X 0.200 X 0.100 mm monoclinic Primitive a = 11.523(2) Åb = 31.766(5) Åc = 14.061(3) Å $\beta = 105.738(3)$ o $V = 4954(2) Å^3$ $P2_1/c$ (#14) 4 1.189 g/cm^3 1896.00 3.504 cm⁻¹ Rigaku Saturn MoKα ($\lambda = 0.71070$ Å) graphite monochromated 50kV, 16mA -150.0°C 70 mm x 70 mm 720 exposures -110.0 - 70.00 80.0 sec./0 -20.11 0 45.04 mm 0.137 mm 55.00 Total: 38564 Unique: 11203 (Rint = 0.0575) Direct Methods (SIR97) 11203 634 17.67 0.0586 0.0705 0.1934 1.002 0.000 $1.44 \text{ e}^{-}/\text{Å}^{3}$ -0.61 e⁻/Å³

Table S1-1. Atomic coordinates and B_{iso}/B_{eq}

atom	Х	у	Z	Beq
Fe(1)	0.65083(3)	0.253820(10)	0.49463(2)	1.384(7)
O(1)	0.55016(13)	0.29394(5)	0.53284(12)	1.99(3)
O(2)	0.3043(2)	0.46395(6)	0.16097(12)	2.73(4)
O(3)	0.74720(13)	0.21365(5)	0.58025(12)	2.04(3)
O(4)	0.9890(2)	0.05614(7)	0.3089(2)	3.38(5)
N(1)	0.5725(2)	0.21736(6)	0.36092(13)	1.99(4)
N(2)	0.7383(2)	0.28883(6)	0.40026(13)	2.01(4)
C(1)	0.5830(3)	0.17150(8)	0.3789(2)	3.06(6)
C(2)	0.4452(3)	0.22712(10)	0.3162(2)	2.91(6)
C(3)	0.6458(2)	0.22990(8)	0.2929(2)	2.26(5)
C(4)	0.6690(2)	0.27645(9)	0.2987(2)	2.41(5)
C(5)	0.8665(2)	0.27751(10)	0.4162(2)	2.72(6)
C(6)	0.7298(3)	0.33487(8)	0.4125(2)	3.05(6)
C(7)	0.4339(2)	0.29774(7)	0.5282(2)	1.54(4)
C(8)	0.3805(2)	0.33535(7)	0.5299(2)	1.79(4)
C(9)	0.4456(2)	0.37678(7)	0.5308(2)	1.74(4)
C(10)	0.3635(2)	0.25779(7)	0.5223(2)	1.54(4)
C(11)	0.4202(2)	0.22113(7)	0.5660(2)	1.84(4)
C(12)	0.3561(3)	0.18380(8)	0.5593(2)	2.54(5)
C(13)	0.2353(3)	0.18199(8)	0.5070(3)	2.92(6)
C(14)	0.1787(3)	0.21789(8)	0.4618(2)	2.65(5)
C(15)	0.2415(2)	0.25557(7)	0.4699(2)	2.03(5)
C(16)	0.4040(2)	0.40010(7)	0.4315(2)	1.72(4)
C(17)	0.4136(2)	0.44368(7)	0.4241(2)	1.95(5)
C(18)	0.3807(2)	0.46410(7)	0.3338(2)	2.20(5)
C(19)	0.3372(2)	0.44097(8)	0.2472(2)	2.04(5)
C(20)	0.3287(2)	0.39771(8)	0.2525(2)	2.11(5)
C(21)	0.3621(2)	0.37785(7)	0.3438(2)	1.99(5)
C(22)	0.2506(3)	0.44142(9)	0.0722(2)	2.97(6)
C(23)	0.4437(2)	0.40358(6)	0.6204(2)	1.84(4)
C(24)	0.3355(3)	0.41911(7)	0.6353(2)	2.32(5)
C(25)	0.3396(3)	0.44249(8)	0.7206(2)	2.92(6)
C(26)	0.4467(3)	0.45067(8)	0.7915(2)	3.03(6)
C(27)	0.5522(3)	0.43515(8)	0.7760(2)	2.85(6)
C(28)	0.5532(3)	0.41171(7)	0.6918(2)	2.30(5)
C(29)	0.2140(3)	0.41218(9)	0.5628(2)	3.01(6)
C(30)	0.6720(3)	0.39587(10)	0.6826(2)	3.31(6)
C(31)	0.4492(4)	0.47652(11)	0.8829(3)	4.59(8)
C(32)	0.8607(2)	0.20905(7)	0.6342(2)	1.57(4)
C(33)	0.9082(2)	0.17053(7)	0.6619(2)	1.89(4)
C(34)	0.8405(2)	0.13036(7)	0.6267(2)	1.77(4)
C(35)	0.9330(2)	0.24842(7)	0.6609(2)	1.72(5)
C(36)	1.0569(3)	0.24871(8)	0.6696(2)	2.30(5)
C(37)	1.1216(3)	0.28655(9)	0.6876(2)	2.98(6)
C(38)	1.0641(3)	0.32390(9)	0.6980(2)	2.96(6)
C(39)	0.9426(3)	0.32390(8)	0.6900(2)	2.42(5)
C(40)	0.8770(2)	0.28621(7)	0.6709(2)	1.83(4)
C(41)	0.8866(2)	0.10825(7)	0.5470(2)	1.74(4)
C(42)	0.9443(2)	0.13137(8)	0.4882(2)	2.21(5)

~ (
C(43)	0.9775(3)	0.11302(8)	0.4108(2)	2.61(5)
C(44)	0.9534(3)	0.07090(8)	0.3879(2)	2.39(5)
C(45)	0.8958(3)	0.04738(8)	0.4442(2)	2.80(6)
C(46)	0.8627(3)	0.06609(8)	0.5229(2)	2.50(5)
C(47)	0.9549(4)	0.01461(11)	0.2764(3)	4.26(8)
C(48)	0.8258(2)	0.10133(7)	0.7092(2)	1.81(4)
C(49)	0.9257(2)	0.08680(7)	0.7841(2)	1.96(5)
C(50)	0.9065(3)	0.06354(8)	0.8623(2)	2.41(5)
C(51)	0.7913(3)	0.05373(8)	0.8688(2)	2.54(5)
C(52)	0.6945(3)	0.06631(8)	0.7932(2)	2.62(5)
C(53)	0.7095(2)	0.08972(7)	0.7136(2)	2.14(5)
C(54)	1.0536(2)	0.09520(9)	0.7832(2)	2.75(6)
C(55)	0.5988(3)	0.10289(10)	0.6336(3)	3.59(7)
C(56)	0.7722(4)	0.03045(9)	0.9571(3)	3.72(7)
. /				

 $B_{eq} = \frac{8}{3} \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

Table S1-2. Anisotropic displacement parameters

atom	U11	U22	U33	U12	U13	U23
Fe(1)	0.0194(2)	0.0198(2)	0.0137(2)	0.00188(10)	0.00505(12)	0.00059(10)
O(1)	0.0210(8)	0.0216(8)	0.0339(9)	-0.0003(6)	0.0093(7)	-0.0036(7)
O(2)	0.0449(11)	0.0347(10)	0.0219(8)	0.0006(8)	0.0056(7)	0.0043(7)
O(3)	0.0208(8)	0.0248(8)	0.0289(8)	0.0002(6)	0.0016(6)	0.0054(7)
O(4)	0.0493(12)	0.0496(12)	0.0328(10)	-0.0071(9)	0.0170(9)	-0.0119(9)
N(1)	0.0255(10)	0.0342(11)	0.0170(9)	-0.0014(8)	0.0076(7)	-0.0059(8)
N(2)	0.0245(10)	0.0338(11)	0.0190(9)	-0.0011(8)	0.0071(7)	0.0040(8)
C(1)	0.055(2)	0.0314(13)	0.0327(13)	-0.0049(12)	0.0159(12)	-0.0110(11)
C(2)	0.0270(12)	0.063(2)	0.0199(11)	-0.0044(12)	0.0050(9)	-0.0081(11)
C(3)	0.0264(12)	0.046(2)	0.0155(10)	0.0024(10)	0.0086(9)	-0.0049(10)
C(4)	0.0269(12)	0.049(2)	0.0165(10)	0.0011(10)	0.0070(9)	0.0057(10)
C(5)	0.0253(12)	0.059(2)	0.0204(11)	-0.0023(11)	0.0087(9)	0.0016(11)
C(6)	0.052(2)	0.0314(13)	0.0350(13)	-0.0083(12)	0.0168(12)	0.0084(11)
C(7)	0.0211(10)	0.0219(10)	0.0158(9)	-0.0028(8)	0.0051(8)	0.0001(8)
C(8)	0.0204(10)	0.0208(10)	0.0276(11)	0.0010(8)	0.0076(8)	-0.0010(8)
C(9)	0.0219(10)	0.0186(10)	0.0245(11)	0.0011(8)	0.0041(8)	-0.0003(8)
C(10)	0.0240(11)	0.0202(10)	0.0161(9)	-0.0000(8)	0.0087(8)	-0.0020(8)
C(11)	0.0225(10)	0.0263(11)	0.0212(10)	-0.0006(8)	0.0058(8)	0.0020(9)
C(12)	0.0315(13)	0.0246(12)	0.041(2)	-0.0010(9)	0.0101(10)	0.0069(10)
C(13)	0.0291(13)	0.0266(12)	0.058(2)	-0.0081(10)	0.0165(12)	0.0004(11)
C(14)	0.0224(12)	0.0314(13)	0.046(2)	-0.0034(9)	0.0073(10)	-0.0045(11)
C(15)	0.0213(11)	0.0264(11)	0.0299(12)	0.0030(8)	0.0076(9)	-0.0010(9)
C(16)	0.0211(10)	0.0243(11)	0.0211(10)	0.0027(8)	0.0078(8)	-0.0005(8)
C(17)	0.0271(11)	0.0239(11)	0.0235(11)	-0.0022(9)	0.0073(9)	-0.0031(9)
C(18)	0.0311(12)	0.0227(11)	0.0298(12)	-0.0022(9)	0.0080(9)	-0.0003(9)
C(19)	0.0240(11)	0.0320(12)	0.0227(11)	0.0036(9)	0.0081(9)	0.0020(9)
C(20)	0.0282(11)	0.0306(12)	0.0225(11)	0.0019(9)	0.0088(9)	-0.0049(9)
C(21)	0.0289(12)	0.0215(11)	0.0266(11)	0.0021(8)	0.0096(9)	-0.0038(9)
C(22)	0.045(2)	0.043(2)	0.0233(12)	0.0052(12)	0.0069(10)	0.0005(11)

C(23) C(24) C(25) C(26) C(27) C(28)	0.0310(12) 0.0391(13) 0.055(2) 0.066(2) 0.054(2) 0.0386(13)	$\begin{array}{c} 0.0167(10)\\ 0.0226(11)\\ 0.0301(13)\\ 0.0266(12)\\ 0.0280(12)\\ 0.0193(11)\\ \end{array}$	$\begin{array}{c} 0.0209(10)\\ 0.0263(11)\\ 0.0296(13)\\ 0.0214(11)\\ 0.0203(11)\\ 0.0261(12)\\ \end{array}$	0.0011(8) 0.0023(9) 0.0082(12) -0.0025(12) -0.0096(11) -0.0057(9)	$\begin{array}{c} 0.0048(9) \\ 0.0086(10) \\ 0.0177(12) \\ 0.0103(11) \\ 0.0001(11) \\ 0.0031(10) \end{array}$	$\begin{array}{c} 0.0017(8) \\ -0.0010(9) \\ -0.0030(10) \\ -0.0008(9) \\ 0.0016(9) \\ 0.0025(9) \end{array}$
C(29) C(30) C(31) C(32)	$\begin{array}{c} 0.033(2) \\ 0.0303(13) \\ 0.099(3) \\ 0.0195(10) \end{array}$	$\begin{array}{c} 0.044(2) \\ 0.050(2) \\ 0.047(2) \\ 0.0259(11) \end{array}$	$\begin{array}{c} 0.039(2) \\ 0.038(2) \\ 0.029(2) \\ 0.0151(9) \end{array}$	$\begin{array}{c} 0.0100(11) \\ -0.0066(12) \\ -0.007(2) \\ 0.0010(8) \end{array}$	$\begin{array}{c} 0.0143(11) \\ -0.0031(11) \\ 0.020(2) \\ 0.0064(8) \end{array}$	-0.0061(12) -0.0042(12) -0.0116(13) -0.0001(8)
C(33) C(34) C(35)	$\begin{array}{c} 0.0199(10) \\ 0.0185(10) \\ 0.0227(11) \\ 0.0222(12) \end{array}$	$\begin{array}{c} 0.0268(11) \\ 0.0234(10) \\ 0.0285(11) \\ 0.027(2) \end{array}$	$\begin{array}{c} 0.0238(11) \\ 0.0253(11) \\ 0.0145(10) \\ 0.026((12)) \end{array}$	0.0024(8) 0.0028(8) -0.0006(8)	0.0036(8) 0.0056(8) 0.0055(8)	0.0006(9) 0.0029(8) -0.0001(8)
C(36) C(37) C(38) C(39)	$\begin{array}{c} 0.0223(12) \\ 0.0251(12) \\ 0.041(2) \\ 0.039(2) \end{array}$	$\begin{array}{c} 0.037(2) \\ 0.048(2) \\ 0.036(2) \\ 0.0260(12) \end{array}$	$\begin{array}{c} 0.0266(12) \\ 0.038(2) \\ 0.0323(13) \\ 0.0275(12) \end{array}$	-0.0021(9) -0.0088(11) -0.0154(11) -0.0038(10)	$\begin{array}{c} 0.0044(9) \\ 0.0043(10) \\ 0.0057(11) \\ 0.0105(10) \end{array}$	-0.0020(9) -0.0028(12) -0.0054(11) -0.0045(9)
C(40) C(41) C(42) C(43)	$\begin{array}{c} 0.0256(11) \\ 0.0188(10) \\ 0.0310(12) \\ 0.0330(13) \end{array}$	$\begin{array}{c} 0.0264(11) \\ 0.0245(11) \\ 0.0276(12) \\ 0.038(2) \end{array}$	$\begin{array}{c} 0.0178(10) \\ 0.0209(10) \\ 0.0245(11) \\ 0.0265(12) \end{array}$	-0.0027(8) 0.0032(8) -0.0027(9) -0.0046(10)	$\begin{array}{c} 0.0065(8) \\ 0.0018(8) \\ 0.0058(9) \\ 0.0053(9) \end{array}$	-0.0019(8) 0.0017(8) 0.0017(9) 0.0028(10)
C(45) C(44) C(45) C(46)	$\begin{array}{c} 0.0350(15)\\ 0.0285(12)\\ 0.046(2)\\ 0.0375(13) \end{array}$	$\begin{array}{c} 0.038(2) \\ 0.0388(13) \\ 0.0297(13) \\ 0.0285(12) \end{array}$	$\begin{array}{c} 0.0203(12) \\ 0.0215(11) \\ 0.0324(13) \\ 0.0317(12) \end{array}$	-0.0006(10) -0.0006(10) -0.0053(11) -0.0049(10)	$\begin{array}{c} 0.0035(9) \\ 0.0035(9) \\ 0.0135(11) \\ 0.0141(10) \end{array}$	-0.0020(10) -0.0032(10) -0.0034(10) 0.0020(10)
C(47) C(48) C(49) C(50)	$\begin{array}{c} 0.071(3) \\ 0.0222(10) \\ 0.0248(11) \\ 0.0364(13) \end{array}$	$\begin{array}{c} 0.046(2) \\ 0.0224(10) \\ 0.0269(11) \\ 0.0306(12) \end{array}$	$\begin{array}{c} 0.049(2) \\ 0.0248(11) \\ 0.0242(11) \\ 0.0244(11) \end{array}$	0.003(2) 0.0019(8) 0.0029(9) 0.0019(10)	$\begin{array}{c} 0.024(2) \\ 0.0073(8) \\ 0.0091(9) \\ 0.0078(10) \end{array}$	-0.017(2) -0.0020(8) -0.0010(9) 0.0011(9)
C(51) C(52) C(53) C(54) C(55) C(56)	$\begin{array}{c} 0.0300 (13) \\ 0.046(2) \\ 0.0336(13) \\ 0.0232(11) \\ 0.0226(12) \\ 0.0220(13) \\ 0.072(2) \end{array}$	$\begin{array}{c} 0.0228(11)\\ 0.0292(12)\\ 0.0245(11)\\ 0.044(2)\\ 0.047(2)\\ 0.037(2) \end{array}$	$\begin{array}{c} 0.0244(13)\\ 0.0344(13)\\ 0.043(2)\\ 0.0358(13)\\ 0.0363(13)\\ 0.066(2)\\ 0.041(2) \end{array}$	$\begin{array}{c} -0.0019(10) \\ -0.0031(10) \\ -0.0062(10) \\ -0.0005(8) \\ 0.0063(10) \\ -0.0038(11) \\ -0.007(2) \end{array}$	$\begin{array}{c} 0.0213(11)\\ 0.0211(11)\\ 0.0114(9)\\ 0.0052(10)\\ 0.0093(12)\\ 0.030(2) \end{array}$	$\begin{array}{c} -0.0052(10) \\ -0.0040(11) \\ -0.0020(9) \\ 0.0089(11) \\ 0.011(2) \\ 0.0032(12) \end{array}$

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table S1-3. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
Fe(1)	O(1)	1.8965(18)	Fe(1)	O(3)	1.8936(16)
Fe(1)	N(1)	2.1841(18)	Fe(1)	N(2)	2.177(2)
O(1)	C(7)	1.329(3)	O(2)	C(19)	1.378(3)
O(2)	C(22)	1.426(3)	O(3)	C(32)	1.330(3)
O(4)	C(44)	1.367(4)	O(4)	C(47)	1.416(4)
N(1)	C(1)	1.478(4)	N(1)	C(2)	1.463(3)
N(1)	C(3)	1.492(4)	N(2)	C(4)	1.487(3)
N(2)	C(5)	1.478(4)	N(2)	C(6)	1.479(4)
C(3)	C(4)	1.501(4)	C(7)	C(8)	1.347(4)

C(7)	C(10)	1.497(4)	C(8)	C(9)	1.513(4)
C(9)	C(16)	1.538(3)	C(9)	C(23)	1.525(4)
C(10)	C(11)	1.394(3)	C(10)	C(15)	1.400(3)
C(11)	C(12)	1.387(4)	C(12)	C(13)	1.388(4)
C(13)	C(14)	1.380(4)	C(14)	C(15)	1.387(4)
C(16)	C(17)	1.395(4)	C(16)	C(21)	1.389(3)
C(17)	C(18)	1.383(4)	C(18)	C(19)	1.394(4)
C(19)	C(20)	1.381(4)	C(20)	C(21)	1.388(4)
C(23)	C(24)	1.409(4)	C(23)	C(28)	1.408(3)
C(24)	C(25)	1.401(4)	C(24)	C(29)	1.507(4)
C(25)	C(26)	1.384(4)	C(26)	C(27)	1.383(5)
C(26)	C(31)	1.519(5)	C(27)	C(28)	1.401(4)
C(28)	C(30)	1.496(4)	C(32)	C(33)	1.354(3)
C(32)	C(35)	1.493(3)	C(33)	C(34)	1.507(3)
C(34)	C(41)	1.535(4)	C(34)	C(48)	1.527(4)
C(35)	C(36)	1.399(4)	C(35)	C(40)	1.388(4)
C(36)	C(37)	1.401(4)	C(37)	C(38)	1.386(4)
C(38)	C(39)	1.374(4)	C(39)	C(40)	1.403(4)
C(41)	C(42)	1.400(4)	C(41)	C(46)	1.390(4)
C(42)	C(43)	1.378(4)	C(43)	C(44)	1.386(4)
C(44)	C(45)	1.383(4)	C(45)	C(46)	1.397(4)
C(48)	C(49)	1.410(3)	C(48)	C(53)	1.408(4)
C(49)	C(50)	1.392(4)	C(49)	C(54)	1.501(4)
C(50)	C(51)	1.390(4)	C(51)	C(52)	1.376(4)
C(51)	C(56)	1.511(5)	C(52)	C(53)	1.393(4)
C(53)	C(55)	1.513(4)			

Table S1-4. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom	angle
O(1)	Fe(1)	O(3)	124.82(8)	O(1)	Fe(1)	N(1)	117.28(7)
O(1)	Fe(1)	N(2)	104.43(8)	O(3)	Fe(1)	N(1)	102.95(7)
O(3)	Fe(1)	N(2)	116.32(8)	N(1)	Fe(1)	N(2)	84.14(8)
Fe(1)	O(1)	C(7)	137.15(14)	C(19)	O(2)	C(22)	117.1(2)
Fe(1)	O(3)	C(32)	138.87(15)	C(44)	O(4)	C(47)	117.6(3)
Fe(1)	N(1)	C(1)	112.32(14)	Fe(1)	N(1)	C(2)	112.92(16)
Fe(1)	N(1)	C(3)	103.68(13)	C(1)	N(1)	C(2)	108.0(2)
C(1)	N(1)	C(3)	109.8(2)	C(2)	N(1)	C(3)	110.11(18)
Fe(1)	N(2)	C(4)	103.51(15)	Fe(1)	N(2)	C(5)	113.09(15)
Fe(1)	N(2)	C(6)	112.25(18)	C(4)	N(2)	C(5)	109.60(19)
C(4)	N(2)	C(6)	109.74(19)	C(5)	N(2)	C(6)	108.5(2)
N(1)	C(3)	C(4)	110.6(2)	N(2)	C(4)	C(3)	110.75(19)
O(1)	C(7)	C(8)	122.6(2)	O(1)	C(7)	C(10)	116.75(19)
C(8)	C(7)	C(10)	120.7(2)	C(7)	C(8)	C(9)	122.9(2)
C(8)	C(9)	C(16)	112.28(16)	C(8)	C(9)	C(23)	112.0(2)
C(16)	C(9)	C(23)	114.20(18)	C(7)	C(10)	C(11)	120.09(18)
C(7)	C(10)	C(15)	121.56(19)	C(11)	C(10)	C(15)	118.3(2)
C(10)	C(11)	C(12)	120.4(2)	C(11)	C(12)	C(13)	120.7(3)
C(12)	C(13)	C(14)	119.4(3)	C(13)	C(14)	C(15)	120.3(3)
C(10)	C(15)	C(14)	120.9(2)	C(9)	C(16)	C(17)	122.30(18)
C(9)	C(16)	C(21)	120.6(2)	C(17)	C(16)	C(21)	117.0(2)

C(16)	C(17)	C(18)	121.8(2)	C(17)	C(18)	C(19)	119.9(2)
O(2)	C(19)	C(18)	116.0(3)	O(2)	C(19)	C(20)	124.6(2)
C(18)	C(19)	C(20)	119.4(2)	C(19)	C(20)	C(21)	119.8(2)
C(16)	C(21)	C(20)	122.1(2)	C(9)	C(23)	C(24)	122.03(18)
C(9)	C(23)	C(28)	118.7(2)	C(24)	C(23)	C(28)	119.2(2)
C(23)	C(24)	C(25)	119.2(3)	C(23)	C(24)	C(29)	123.1(3)
C(25)	C(24)	C(29)	117.8(3)	C(24)	C(25)	C(26)	122.2(3)
C(25)	C(26)	C(27)	118.0(3)	C(25)	C(26)	C(31)	121.3(3)
$\dot{C(27)}$	C(26)	C(31)	120.7(3)	C(26)	C(27)	C(28)	122.1(3)
C(23)	C(28)	C(27)	119.3(3)	C(23)	C(28)	C(30)	122.7(3)
$\dot{C(27)}$	C(28)	C(30)	118.0(3)	O(3)	$\dot{C(32)}$	C(33)	121.4(2)
O(3)	C(32)	C(35)	116.53(19)	C(33)	$\dot{C(32)}$	C(35)	122.01(18)
C(32)	C(33)	C(34)	122.53(18)	C(33)	C(34)	C(41)	112.1(2)
C(33)	C(34)	C(48)	114.55(18)	C(41)	C(34)	C(48)	114.21(19)
C(32)	C(35)	C(36)	121.0(2)	C(32)	C(35)	C(40)	120.4(2)
C(36)	C(35)	C(40)	118.5(2)	C(35)	C(36)	C(37)	120.1(3)
C(36)	C(37)	C(38)	120.5(3)	C(37)	C(38)	C(39)	119.8(3)
C(38)	C(39)	C(40)	120.0(3)	C(35)	C(40)	C(39)	121.1(3)
C(34)	C(41)	C(42)	120.3(2)	C(34)	C(41)	C(46)	122.2(3)
C(42)	C(41)	C(46)	117.2(3)	C(41)	C(42)	C(43)	121.5(3)
C(42)	C(43)	C(44)	120.7(3)	O(4)	C(44)	C(43)	115.7(3)
O(4)	C(44)	C(45)	125.2(3)	C(43)	C(44)	C(45)	119.0(3)
C(44)	C(45)	C(46)	120.0(3)	C(41)	C(46)	C(45)	121.6(3)
C(34)	C(48)	C(49)	122.0(2)	C(34)	C(48)	C(53)	119.65(18)
C(49)	C(48)	C(53)	118.4(3)	C(48)	C(49)	C(50)	119.4(3)
C(48)	C(49)	C(54)	122.7(3)	C(50)	C(49)	C(54)	117.9(2)
C(49)	C(50)	C(51)	122.0(2)	C(50)	C(51)	C(52)	118.2(3)
C(50)	C(51)	C(56)	121.2(3)	C(52)	C(51)	C(56)	120.6(3)
C(51)	C(52)	C(53)	121.6(3)	C(48)	C(53)	C(52)	120.2(2)
C(48)	C(53)	C(55)	121.0(3)	C(52)	C(53)	C(55)	118.8(3)

Table S1-5. Torsion Angles(⁰) (Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
O(1)	Fe(1)	O(3)	C(32)	-96.83(19)	O(3)	Fe(1)	O(1)	C(7)	-98.56(17)
O(1)	Fe(1)	N(1)	C(1)	-124.69(12)	O(1)	Fe(1)	N(1)	C(2)	-2.30(15)
O(1)	Fe(1)	N(1)	C(3)	116.85(10)	N(1)	Fe(1)	O(1)	C(7)	33.2(2)
O(1)	Fe(1)	N(2)	C(4)	-101.11(10)	O(1)	Fe(1)	N(2)	C(5)	140.37(10)
O(1)	Fe(1)	N(2)	C(6)	17.17(11)	N(2)	Fe(1)	O(1)	C(7)	124.00(16)
O(3)	Fe(1)	N(1)	C(1)	16.38(14)	O(3)	Fe(1)	N(1)	C(2)	138.78(12)
O(3)	Fe(1)	N(1)	C(3)	-102.08(10)	N(1)	Fe(1)	O(3)	C(32)	126.03(18)
O(3)	Fe(1)	N(2)	C(4)	117.17(10)	O(3)	Fe(1)	N(2)	C(5)	-1.36(14)
O(3)	Fe(1)	N(2)	C(6)	-124.56(10)	N(2)	Fe(1)	O(3)	C(32)	36.2(2)
N(1)	Fe(1)	N(2)	C(4)	15.60(10)	N(1)	Fe(1)	N(2)	C(5)	-102.93(11)
N(1)	Fe(1)	N(2)	C(6)	133.87(11)	N(2)	Fe(1)	N(1)	C(1)	132.08(13)
N(2)	Fe(1)	N(1)	C(2)	-105.52(12)	N(2)	Fe(1)	N(1)	C(3)	13.62(10)
Fe(1)	O(1)	C(7)	C(8)	-155.98(14)	Fe(1)	O(1)	C(7)	C(10)	24.8(3)
C(22)	O(2)	C(19)	C(18)	-175.1(2)	C(22)	O(2)	C(19)	C(20)	4.3(4)
Fe(1)	O(3)	C(32)	C(33)	-158.09(15)	Fe(1)	O(3)	C(32)	C(35)	20.8(4)
C(47)	O(4)	C(44)	C(43)	-173.4(2)	C(47)	O(4)	C(44)	C(45)	6.0(4)
Fe(1)	N(1)	C(3)	C(4)	-41.75(16)	C(1)	N(1)	C(3)	C(4)	-161.95(16)

C(2)	N(1)	C(3)	C(4)	79.3(2)	Fe(1)	N(2)	C(4)	C(3)	-43.64(19)
C(5)	N(2)	C(4)	C(3)	77.3(3)	C(6)	N(2)	C(4)	C(3)	-163.6(2)
N(1)	C(3)	C(4)	N(2)	61.3(3)	O(1)	C(7)	C(8)	C(9)	3.8(3)
O(1)	C(7)	C(10)	C(11)	30.0(3)	O(1)	C(7)	C(10)	C(15)	-147.20(19)
C(8)	C(7)	C(10)	C(11)	-149.3(2)	C(8)	C(7)	C(10)	C(15)	33.6(3)
C(10)	C(7)	C(8)	C(9)	-176.98(17)	C(7)	C(8)	C(9)	C(16)	107.7(3)
C(7)	C(8)	C(9)	C(23)	-122.2(2)	C(8)	C(9)	C(16)	C(17)	154.98(19)
C(8)	C(9)	C(16)	$\dot{C(21)}$	-29.2(3)	C(8)	C(9)	C(23)	C(24)	-63.6(3)
C(8)	C(9)	C(23)	C(28)	114.13(19)	C(16)	C(9)	C(23)	C(24)	65.4(3)
C(16)	C(9)	C(23)	C(28)	-116.84(19)	C(23)	C(9)	C(16)	C(17)	26.1(3)
C(23)	C(9)	C(16)	C(21)	-158.11(18)	C(7)	C(10)	$\hat{C(11)}$	C(12)	-178.77(19)
C(7)	C(10)	C(15)	$\dot{C(14)}$	177.4(2)	C(11)	C(10)	C(15)	C(14)	0.2(4)
C(15)	$\dot{C(10)}$	C(11)	$\dot{C(12)}$	-1.5(4)	C(10)	C(11)	$\dot{C(12)}$	C(13)	1.6(4)
C(11)	$\dot{C(12)}$	C(13)	C(14)	-0.4(5)	C(12)	C(13)	C(14)	C(15)	-1.0(5)
C(13)	C(14)	C(15)	$\dot{C(10)}$	1.1(5)	C(9)	C(16)	C(17)	C(18)	177.17(19)
C(9)	C(16)	C(21)	$\dot{C(20)}$	-177.22(19)	C(17)	C(16)	C(21)	$\dot{C(20)}$	-1.2(4)
C(21)	C(16)	C(17)	C(18)	1.3(4)	C(16)	C(17)	C(18)	C(19)	-0.3(4)
C(17)	C(18)	C(19)	$\dot{O(2)}$	178.7(2)	C(17)	C(18)	C(19)	C(20)	-0.7(4)
O(2)	C(19)	C(20)	C(21)	-178.6(2)	C(18)	C(19)	C(20)	C(21)	0.7(4)
C(19)	C(20)	C(21)	C(16)	0.3(4)	C(9)	C(23)	C(24)	C(25)	178.10(18)
C(9)	C(23)	C(24)	C(29)	-2.5(4)	C(9)	C(23)	C(28)	C(27)	-177.97(18)
C(9)	C(23)	C(28)	C(30)	1.3(3)	C(24)	C(23)	C(28)	C(27)	-0.2(3)
C(24)	C(23)	C(28)	C(30)	179.08(19)	C(28)	C(23)	C(24)	C(25)	0.4(3)
C(28)	C(23)	C(24)	C(29)	179.75(19)	C(23)	C(24)	C(25)	C(26)	-0.5(4)
C(29)	C(24)	C(25)	C(26)	-179.9(2)	C(24)	C(25)	C(26)	C(27)	0.3(4)
C(24)	C(25)	C(26)	C(31)	179.3(2)	C(25)	C(26)	C(27)	C(28)	-0.1(4)
C(31)	C(26)	C(27)	C(28)	-179.1(3)	C(26)	C(27)	C(28)	C(23)	0.0(4)
C(26)	C(27)	C(28)	C(30)	-179.3(2)	O(3)	C(32)	C(33)	C(34)	5.5(4)
O(3)	C(32)	C(35)	C(36)	-146.69(19)	O(3)	C(32)	C(35)	C(40)	28.9(3)
C(33)	C(32)	C(35)	C(36)	32.2(4)	C(33)	C(32)	C(35)	C(40)	-152.2(2)
C(35)	C(32)	C(33)	C(34)	-173.39(19)	C(32)	C(33)	C(34)	C(41)	104.4(3)
C(32)	C(33)	C(34)	C(48)	-123.4(3)	C(33)	C(34)	C(41)	C(42)	-24.8(3)
C(33)	C(34)	C(41)	C(46)	161.94(15)	C(33)	C(34)	C(48)	C(49)	-55.9(3)
C(33)	C(34)	C(48)	C(53)	121.7(2)	C(41)	C(34)	C(48)	C(49)	75.4(3)
C(41)	C(34)	C(48)	C(53)	-107.0(2)	C(48)	C(34)	C(41)	C(42)	-157.21(15)
C(48)	C(34)	C(41)	C(46)	29.5(3)	C(32)	C(35)	C(36)	C(37)	175.38(19)
C(32)	C(35)	C(40)	C(39)	-176.08(17)	C(36)	C(35)	C(40)	C(39)	-0.4(4)
C(40)	C(35)	C(36)	C(37)	-0.3(4)	C(35)	C(36)	C(37)	C(38)	0.7(4)
C(36)	C(37)	C(38)	C(39)	-0.4(4)	C(37)	C(38)	C(39)	C(40)	-0.3(4)
C(38)	C(39)	C(40)	C(35)	0.7(4)	C(34)	C(41)	C(42)	C(43)	-174.48(16)
C(34)	C(41)	C(46)	C(45)	174.09(16)	C(42)	C(41)	C(46)	C(45)	0.6(3)
C(46)	C(41)	C(42)	C(43)	-0.9(3)	C(41)	C(42)	C(43)	C(44)	0.7(4)
C(42)	C(43)	C(44)	O(4)	179.25(19)	C(42)	C(43)	C(44)	C(45)	-0.2(4)
O(4)	C(44)	C(45)	C(46)	-179.45(19)	C(43)	C(44)	C(45)	C(46)	-0.1(4)
C(44)	C(45)	C(46)	C(41)	-0.2(4)	C(34)	C(48)	C(49)	C(50)	174.22(18)
C(34)	C(48)	C(49)	C(54)	-6.0(4)	C(34)	C(48)	C(53)	C(52)	-174.37(18)
C(34)	C(48)	C(53)	C(55)	4.6(4)	C(49)	C(48)	C(53)	C(52)	3.3(4)
C(49)	C(48)	C(53)	C(55)	-177.71(19)	C(53)	C(48)	C(49)	C(50)	-3.4(4)
C(53)	C(48)	C(49)	C(54)	176.34(19)	C(48)	C(49)	C(50)	C(51)	0.6(4)
C(54)	C(49)	C(50)	C(51)	-179.2(2)	C(49)	C(50)	C(51)	C(52)	2.4(4)
C(49)	C(50)	C(51)	C(56)	-176.7(2)	C(50)	C(51)	C(52)	C(53)	-2.6(4)
C(56)	C(51)	C(52)	C(53)	176.6(3)	C(51)	C(52)	C(53)	C(48)	-0.3(4)

C(51) C(52) C(53) C(55) -179.3(2)

Figure S14. The Molecular Structure of (TMEDA)Fe(-O-C(Ph)=CHPh)₂ (7).

Table S2. X-ray Crystallographic Data of (TMEDA)Fe(-O-C(Ph)=CHPh)2 (7).

Empirical Formula	C34H38FeN2O2
Formula Weight	562.53
Crystal Color, Habit	brown, block
Crystal Dimensions	0.160 X 0.140 X 0.120 mm
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	a = 11.09(2) Å
	b = 11.68(2) Å
	c = 13.261(6) Å
	$\alpha = 59.84(9)^{\circ}$
	$\beta = 75.33(9)^{\circ}$
	$\gamma = 84.57(13)^{\circ}$
	$V = 1435(4) Å^{3}$
Space Group	P-1 (#2)
Z value	$\frac{1}{2}$
Deele	$\frac{1}{1}$ 301 g/cm ³
Foo	596.00
	5 580 cm - 1
$\mu(MOK\alpha)$	Bigala Saturn
Detector	$M_0 K_{CI} (\lambda = 0.71070 \text{ Å})$
Radiation	graphite monochromated
Detector Aperture	70 mm x 70 mm
Data Images	720 exposures
ω oscillation Range ($\gamma = 45.0 \ \phi = 0.0$)	-110 0 - 70 0 ⁹
Exposure Rate	72.0 sec / 9
Detector Swing Angle	-20,109
Detector Position	45 04 mm
Pixel Size	0.137 mm
20max	54.90
No of Reflections Measured	Total: 11342
	Unique: 6279 (R _{int} = 0.0325)
Structure Solution	Direct Methods (SIR97)
No. Observations (All reflections)	6279
No. Variables	390
Reflection/Parameter Ratio	16.10
Residuals: R1 (I>2.00 σ (I))	0.0616
Residuals: R (All reflections)	0.0655
Residuals: wR2 (All reflections)	0.1988
Goodness of Fit Indicator	1.001
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$2.30 \text{ e}^{-}/\text{Å}^{3}$
Minimum peak in Final Diff. Map	-0.61 e ⁻ /Å ³

atom	Х	у	Z	Beq
Fe(1)	0.35046(2)	0.20389(3)	0.76412(2)	1.157(9)
O(1)	0.2948(2)	0.3013(2)	0.6202(2)	1.93(4)
O(2)	0.2693(2)	0.0750(2)	0.9213(2)	1.86(4)
N(1)	0.5382(2)	0.1507(2)	0.7022(2)	1.36(4)
N(2)	0.4525(2)	0.3294(2)	0.7963(2)	1.31(4)
C(1)	0.6236(2)	0.2513(3)	0.6882(2)	1.77(5)
C(2)	0.5806(2)	0.2806(3)	0.7909(2)	1.63(4)
C(3)	0.5574(3)	0.1551(3)	0.5858(3)	2.26(5)
C(4)	0.5648(3)	0.0162(3)	0.7925(3)	2.03(5)
C(5)	0.4535(3)	0.4698(3)	0.7029(3)	2.03(5)
C(6)	0.4006(3)	0.3184(3)	0.9158(3)	2.07(5)
C(7)	0.2108(2)	0.3924(2)	0.5818(2)	1.44(4)
C(8)	0.1799(2)	0.4342(2)	0.4759(2)	1.49(4)
C(9)	0.1525(2)	0.4487(2)	0.6612(2)	1.47(4)
C(10)	0.1374(2)	0.5856(2)	0.6168(2)	1.73(5)
C(11)	0.0965(3)	0.6348(3)	0.6946(3)	2.15(5)
C(12)	0.0656(3)	0.5498(3)	0.8181(3)	2.21(5)
C(13)	0.0724(3)	0.4135(3)	0.8628(2)	2.00(5)
C(14)	0.1163(2)	0.3639(3)	0.7853(2)	1.63(4)
C(15)	0.2279(2)	0.3867(2)	0.3906(2)	1.45(4)
C(16)	0.2006(2)	0.4554(3)	0.2779(3)	1.76(5)
C(17)	0.2472(3)	0.4167(3)	0.1922(2)	2.04(5)
C(18)	0.3200(3)	0.3076(3)	0.2172(2)	2.14(5)
C(19)	0.3448(3)	0.2349(3)	0.3305(3)	1.97(5)
C(20)	0.2995(2)	0.2738(2)	0.4159(2)	1.67(4)
C(21)	0.2202(2)	-0.0467(2)	0.9713(2)	1.53(4)
C(22)	0.1481(2)	-0.1122(2)	1.0850(2)	1.57(4)
C(23)	0.2499(2)	-0.1115(2)	0.8957(2)	1.49(4)
C(24)	0.2417(3)	-0.0401(3)	0.7761(3)	1.68(5)
C(25)	0.2764(3)	-0.0945(3)	0.7016(2)	1.95(5)
C(26)	0.3222(3)	-0.2214(3)	0.7445(3)	2.13(5)
C(27)	0.3290(3)	-0.2942(3)	0.8637(3)	2.27(5)
C(28)	0.2925(3)	-0.2407(2)	0.9392(2)	1.79(5)
C(29)	0.1079(2)	-0.0642(2)	1.1700(2)	1.45(4)
C(30)	0.1227(2)	0.0688(2)	1.1398(2)	1.62(4)
C(31)	0.0842(3)	0.1068(3)	1.2258(3)	1.94(5)
C(32)	0.0286(3)	0.0154(3)	1.3440(2)	2.19(5)
C(33)	0.0120(3)	-0.1162(3)	1.3750(2)	2.09(5)
C(34)	0.0503(2)	-0.1544(3)	1.2900(3)	1.82(5)

 $B_{eq} = \frac{8}{3} \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

Table S2-2. Anisotropic displacement parameters

atom	U11	U22	U33	U12	U13	U23
Fe(1)	0.0146(2)	0.0137(3)	0.0147(3)	-0.00002(13) -0.0031(2)	-0.0064(2)

O(1)	0.0298(9)	0.0241(8)	0.0240(9)	0.0135(7)	-0.0144(7)	-0.0138(7)
O(2)	0.0297(9)	0.0159(8)	0.0203(8)	-0.0071(7)	0.0031(7)	-0.0082(7)
N(1)	0.0154(8)	0.0158(8)	0.0187(9)	0.0022(7)	-0.0022(7)	-0.0083(8)
N(2)	0.0185(9)	0.0143(8)	0.0180(9)	-0.0006(7)	-0.0048(7)	-0.0083(8)
C(1)	0.0142(10)	0.0267(11)	0.0259(12)	-0.0011(8)	-0.0031(9)	-0.0131(10)
C(2)	0.0160(10)	0.0213(10)	0.0226(11)	-0.0033(8)	-0.0042(8)	-0.0090(9)
C(3)	0.0278(12)	0.0371(13)	0.0282(12)	0.0039(10)	-0.0029(10)	-0.0237(11)
C(4)	0.0232(12)	0.0186(11)	0.033(2)	0.0097(9)	-0.0135(10)	-0.0099(10)
C(5)	0.0281(12)	0.0141(10)	0.0293(13)	-0.0018(9)	-0.0067(10)	-0.0063(10)
C(6)	0.0289(12)	0.0314(12)	0.0281(12)	0.0018(10)	-0.0088(10)	-0.0212(11)
C(7)	0.0166(10)	0.0163(10)	0.0206(10)	0.0004(8)	-0.0038(8)	-0.0086(9)
C(8)	0.0185(10)	0.0164(10)	0.0186(10)	0.0023(8)	-0.0039(8)	-0.0070(9)
C(9)	0.0155(10)	0.0190(10)	0.0234(11)	0.0015(8)	-0.0043(8)	-0.0124(9)
C(10)	0.0212(11)	0.0166(10)	0.0243(12)	0.0005(8)	-0.0046(9)	-0.0080(10)
C(11)	0.0256(12)	0.0199(11)	0.039(2)	0.0044(9)	-0.0073(10)	-0.0170(11)
C(12)	0.0264(12)	0.037(2)	0.0324(13)	0.0079(10)	-0.0080(10)	-0.0260(12)
C(13)	0.0256(12)	0.0307(12)	0.0226(11)	0.0097(10)	-0.0093(9)	-0.0152(10)
C(14)	0.0203(11)	0.0201(10)	0.0220(11)	0.0030(8)	-0.0046(9)	-0.0114(10)
C(15)	0.0160(10)	0.0170(10)	0.0206(11)	-0.0043(8)	-0.0005(8)	-0.0093(9)
C(16)	0.0196(11)	0.0193(10)	0.0276(12)	0.0004(8)	-0.0066(9)	-0.0110(10)
C(17)	0.0315(13)	0.0265(12)	0.0187(11)	-0.0062(10)	-0.0051(10)	-0.0099(10)
C(18)	0.0318(13)	0.0304(12)	0.0234(12)	-0.0026(10)	-0.0030(10)	-0.0175(11)
C(19)	0.0293(12)	0.0231(11)	0.0273(12)	0.0039(9)	-0.0069(10)	-0.0165(10)
C(20)	0.0242(11)	0.0184(10)	0.0193(11)	0.0000(9)	-0.0048(9)	-0.0083(9)
C(21)	0.0201(10)	0.0146(9)	0.0221(11)	0.0002(8)	-0.0051(8)	-0.0080(9)
C(22)	0.0191(10)	0.0143(9)	0.0212(11)	-0.0018(8)	-0.0029(8)	-0.0055(9)
C(23)	0.0164(10)	0.0174(10)	0.0226(11)	-0.0010(8)	-0.0019(8)	-0.0109(9)
C(24)	0.0225(11)	0.0211(11)	0.0238(12)	0.0037(9)	-0.0090(9)	-0.0127(10)
C(25)	0.0282(12)	0.0251(12)	0.0226(12)	-0.0012(9)	-0.0075(9)	-0.0123(10)
C(26)	0.0315(13)	0.0290(12)	0.0283(12)	0.0007(10)	-0.0057(10)	-0.0205(11)
C(27)	0.035(2)	0.0184(11)	0.035(2)	0.0040(9)	-0.0060(11)	-0.0163(11)
C(28)	0.0273(12)	0.0153(10)	0.0216(11)	0.0003(9)	-0.0055(9)	-0.0065(9)
C(29)	0.0154(10)	0.0164(10)	0.0203(11)	0.0026(8)	-0.0052(8)	-0.0069(9)
C(30)	0.0190(10)	0.0169(10)	0.0176(11)	0.0003(8)	-0.0001(8)	-0.0047(9)
C(31)	0.0246(12)	0.0219(11)	0.0277(13)	0.0036(9)	-0.0056(10)	-0.0134(10)
C(32)	0.0298(13)	0.0340(13)	0.0209(12)	0.0081(10)	-0.0060(10)	-0.0159(11)
C(33)	0.0223(11)	0.0283(12)	0.0179(11)	0.0025(9)	-0.0020(9)	-0.0052(10)
C(34)	0.0194(11)	0.0192(10)	0.0244(12)	0.0007(8)	-0.0044(9)	-0.0068(10)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table S2-3. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
Fe(1)	O(1)	1.897(3)	Fe(1)	O(2)	1.891(4)
Fe(1)	N(1)	2.189(4)	Fe(1)	N(2)	2.190(4)
O(1)	C(7)	1.329(4)	O(2)	C(21)	1.331(4)
N(1)	C(1)	1.488(5)	N(1)	C(3)	1.479(4)
N(1)	C(4)	1.481(4)	N(2)	C(2)	1.477(4)
N(2)	C(5)	1.476(4)	N(2)	C(6)	1.486(4)

$\begin{array}{c} C(1) \\ C(7) \\ C(9) \\ C(10) \\ C(12) \\ C(15) \\ C(16) \\ C(18) \\ C(21) \\ C(22) \\ C(22) \end{array}$	C(2) C(9) C(10) C(11) C(13) C(16) C(17) C(19) C(22) C(29)	$\begin{array}{c} 1.519(5) \\ 1.493(5) \\ 1.408(5) \\ 1.382(5) \\ 1.394(5) \\ 1.396(4) \\ 1.391(5) \\ 1.392(4) \\ 1.358(4) \\ 1.455(5) \end{array}$	$C(7) \\ C(8) \\ C(9) \\ C(11) \\ C(13) \\ C(15) \\ C(17) \\ C(17) \\ C(19) \\ C(21) \\ C(23) \\ C(24) \\$	$C(8) \\ C(15) \\ C(14) \\ C(12) \\ C(14) \\ C(20) \\ C(18) \\ C(20) \\ C(23) \\ C(24) \\ C(24) \\ C(25) \\ C(25)$	$\begin{array}{c} 1.361(4) \\ 1.463(5) \\ 1.398(4) \\ 1.389(4) \\ 1.385(5) \\ 1.405(4) \\ 1.380(5) \\ 1.388(5) \\ 1.494(5) \\ 1.397(4) \\ 1.397(4) \end{array}$
C(15)	C(16)	1.396(4)	C(15)	C(20)	1.405(4)
C(16)	C(17)	1.391(5)	C(17)	C(18)	1.380(5)
C(18)	C(19)	1.392(4)	C(19)	C(20)	1.388(5)
C(21)	C(22)	1.358(4)	C(21)	C(23)	1.494(5)
C(22)	C(29)	1.455(5)	C(23)	C(24)	1.397(4)
C(23)	C(28)	1.401(5)	C(24)	C(25)	1.387(5)
C(25)	C(26)	1.391(5)	C(26)	C(27)	1.388(5)
C(27)	C(28)	1.390(5)	C(29)	C(30)	1.411(5)
C(29)	C(34)	1.407(4)	C(30)	C(31)	1.381(5)
C(31)	C(32)	1.389(4)	C(32)	C(33)	1.394(5)
C(33)	C(34)	1.370(5)			

Table S2-4. Bond angles (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
O(1)	Fe(1)	O(2)	131.99(11)	O(1)	Fe(1)	N(1)	102.75(14)
O(1)	Fe(1)	N(2)	112.39(14)	O(2)	Fe(1)	N(1)	113.27(15)
O(2)	Fe(1)	N(2)	102.70(15)	N(1)	Fe(1)	N(2)	83.20(14)
Fe(1)	O(1)	C(7)	136.0(2)	Fe(1)	O(2)	C(21)	135.1(2)
Fe(1)	N(1)	C(1)	105.1(2)	Fe(1)	N(1)	C(3)	113.26(18)
Fe(1)	N(1)	C(4)	110.3(2)	C(1)	N(1)	C(3)	109.1(2)
C(1)	N(1)	C(4)	110.5(3)	C(3)	N(1)	C(4)	108.6(3)
Fe(1)	N(2)	C(2)	104.9(2)	Fe(1)	N(2)	C(5)	110.9(3)
Fe(1)	N(2)	C(6)	113.07(19)	C(2)	N(2)	C(5)	110.4(3)
C(2)	N(2)	C(6)	108.9(3)	C(5)	N(2)	C(6)	108.6(3)
N(1)	C(1)	C(2)	110.6(2)	N(2)	C(2)	C(1)	110.9(3)
O(1)	C(7)	C(8)	122.7(3)	O(1)	C(7)	C(9)	116.1(3)
C(8)	C(7)	C(9)	121.3(3)	C(7)	C(8)	C(15)	127.1(3)
C(7)	C(9)	C(10)	122.7(3)	C(7)	C(9)	C(14)	119.2(3)
C(10)	C(9)	C(14)	118.0(3)	C(9)	C(10)	C(11)	120.7(3)
C(10)	C(11)	C(12)	120.6(3)	C(11)	C(12)	C(13)	119.2(4)
C(12)	C(13)	C(14)	120.3(3)	C(9)	C(14)	C(13)	121.0(3)
C(8)	C(15)	C(16)	118.9(3)	C(8)	C(15)	C(20)	123.7(3)
C(16)	C(15)	C(20)	117.4(3)	C(15)	C(16)	C(17)	121.2(3)
C(16)	C(17)	C(18)	120.8(3)	C(17)	C(18)	C(19)	119.0(3)
C(18)	C(19)	C(20)	120.5(3)	C(15)	C(20)	C(19)	121.1(3)
O(2)	C(21)	C(22)	123.4(3)	O(2)	C(21)	C(23)	116.4(3)
C(22)	C(21)	C(23)	120.2(3)	C(21)	C(22)	C(29)	127.8(3)
C(21)	C(23)	C(24)	119.7(3)	C(21)	C(23)	C(28)	122.0(3)
C(24)	C(23)	C(28)	118.3(3)	C(23)	C(24)	C(25)	121.0(3)
C(24)	C(25)	C(26)	120.3(3)	C(25)	C(26)	C(27)	119.2(4)
C(26)	C(27)	C(28)	120.7(3)	C(23)	C(28)	C(27)	120.5(3)
C(22)	C(29)	C(30)	124.1(2)	C(22)	C(29)	C(34)	118.9(3)
C(30)	C(29)	C(34)	117.1(3)	C(29)	C(30)	C(31)	120.9(3)
C(30)	C(31)	C(32)	120.8(3)	C(31)	C(32)	C(33)	119.0(4)
C(32)	C(33)	C(34)	120.3(3)	C(29)	C(34)	C(33)	121.8(3)

Table S2-5. Torsion Angle	es(⁰) (Those hav	ing bond angles > 160 c	r < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
O(1)	Fe(1)	O(2)	C(21)	64.3(3)	O(2)	Fe(1)	O(1)	C(7)	65.0(3)
O(1)	Fe(1)	N(1)	$\dot{C(1)}$	97.76(16)	O(1)	Fe(1)	N(1)	C(3)	-21.22(14)
O(1)	Fe(1)	N(1)	C(4)	-143.13(15)	N(1)	Fe(1)	O(1)	C(7)	-156.53(18)
O(1)	Fe(1)	N(2)	C(2)	-116.01(16)	O(1)	Fe(1)	N(2)	C(5)	3.20(13)
O(1)	Fe(1)	N(2)	C(6)	125.43(15)	N(2)	Fe(1)	O(1)	C(7)	-68.7(3)
O(2)	Fe(1)	N(1)	C(1)	-114.67(16)	O(2)	Fe(1)	N(1)	C(3)	126.35(15)
O(2)	Fe(1)	N(1)	C(4)	4.44(18)	N(1)	Fe(1)	O(2)	C(21)	-71.0(3)
O(2)	Fe(1)	N(2)	C(2)	97.42(16)	O(2)	Fe(1)	N(2)	C(5)	-143.38(13)
O(2)	Fe(1)	N(2)	C(6)	-21.14(13)	N(2)	Fe(1)	O(2)	C(21)	-158.97(17)
N(1)	Fe(1)	N(2)	C(2)	-14.98(9)	N(1)	Fe(1)	N(2)	C(5)	104.23(18)
N(1)	Fe(1)	N(2)	C(6)	-133.54(14)	N(2)	Fe(1)	N(1)	C(1)	-13.74(10)
N(2)	Fe(1)	N(1)	C(3)	-132.71(14)	N(2)	Fe(1)	N(1)	C(4)	105.38(19)
Fe(1)	O(1)	C(7)	C(8)	-171.67(14)	Fe(1)	O(1)	C(7)	C(9)	9.1(3)
Fe(1)	O(2)	C(21)	C(22)	-168.86(14)	Fe(1)	O(2)	C(21)	C(23)	12.0(4)
Fe(1)	N(1)	C(1)	C(2)	40.63(18)	C(3)	N(1)	C(1)	C(2)	162.37(17)
C(4)	N(1)	C(1)	C(2)	-78.4(3)	Fe(1)	N(2)	C(2)	C(1)	41.92(17)
C(5)	N(2)	C(2)	C(1)	-77.6(3)	C(6)	N(2)	C(2)	C(1)	163.26(17)
N(1)	C(1)	C(2)	N(2)	-58.7(3)	O(1)	C(7)	C(8)	C(15)	1.8(4)
O(1)	C(7)	C(9)	C(10)	134.4(3)	O(1)	C(7)	C(9)	C(14)	-42.4(3)
C(8)	C(7)	C(9)	C(10)	-44.8(4)	C(8)	C(7)	C(9)	C(14)	138.3(3)
C(9)	C(7)	C(8)	C(15)	-178.98(18)	C(7)	C(8)	C(15)	C(16)	-169.9(2)
C(7)	C(8)	C(15)	C(20)	10.7(4)	C(7)	C(9)	C(10)	C(11)	-172.4(2)
C(7)	C(9)	C(14)	C(13)	174.1(2)	C(10)	C(9)	C(14)	C(13)	-3.0(4)
C(14)	C(9)	C(10)	C(11)	4.5(4)	C(9)	C(10)	C(11)	C(12)	-2.1(4)
C(10)	C(11)	C(12)	C(13)	-2.1(4)	C(11)	C(12)	C(13)	C(14)	3.6(4)
C(12)	C(13)	C(14)	C(9)	-1.1(4)	C(8)	C(15)	C(16)	C(17)	177.98(19)
C(8)	C(15)	C(20)	C(19)	-178.62(19)	C(16)	C(15)	C(20)	C(19)	2.0(4)
C(20)	C(15)	C(16)	C(17)	-2.6(4)	C(15)	C(16)	C(17)	C(18)	1.1(4)
C(16)	C(17)	C(18)	C(19)	1.1(4)	C(17)	C(18)	C(19)	C(20)	-1.6(4)
C(18)	C(19)	C(20)	C(15)	0.1(4)	O(2)	C(21)	C(22)	C(29)	2.2(4)
O(2)	C(21)	C(23)	C(24)	-45.5(3)	O(2)	C(21)	C(23)	C(28)	131.1(3)
C(22)	C(21)	C(23)	C(24)	135.3(3)	C(22)	C(21)	C(23)	C(28)	-48.1(4)
C(23)	C(21)	C(22)	C(29)	-178.7(2)	C(21)	C(22)	C(29)	C(30)	10.3(4)
C(21)	C(22)	C(29)	C(34)	-169.8(3)	C(21)	C(23)	C(24)	C(25)	175.74(19)
C(21)	C(23)	C(28)	C(27)	-174.72(19)	C(24)	C(23)	C(28)	C(27)	1.9(4)
C(28)	C(23)	C(24)	C(25)	-1.0(4)	C(23)	C(24)	C(25)	C(26)	-0.9(4)
C(24)	C(25)	C(26)	C(27)	1.9(4)	C(25)	C(26)	C(27)	C(28)	-1.0(4)
C(26)	C(27)	C(28)	C(23)	-1.0(4)	C(22)	C(29)	C(30)	C(31)	-178.9(2)
C(22)	C(29)	C(34)	C(33)	178.9(2)	C(30)	C(29)	C(34)	C(33)	-1.2(4)
C(34)	C(29)	C(30)	C(31)	1.3(4)	C(29)	C(30)	C(31)	C(32)	-0.7(4)
C(30)	C(31)	C(32)	C(33)	-0.0(4)	C(31)	C(32)	C(33)	C(34)	0.1(4)
C(32)	C(33)	C(34)	C(29)	0.5(4)					