Electronic Supplementary Information

Catalytic Enantioselective Addition of Terminal 1,3-Diynes to N-Sulfonyl Aldimines: Access to Chiral Diynylated Carbinamines

Tian-Lin Liu,^a Heng-Xia Zhang,^a Yan Zheng,^a Qingwei Yao,^b Jun-An Ma*^a

^a Department of Chemistry, Tianjin University, Tianjin 300072, P. R. of China,

Fax: (+86)-22-2740-3475; E-mail: majun_an68@tju.edu.cn

^b Sphinx Scientific Laboratory Corporation, Sycamore, IL 60178, USA

Contents

1. General information	S2
2. General procedure for the enantioselective diynylation	S 3
3. Analytical data for the addition adducts	S 3
4. Further transformation of adduct 3aa	S20
5. References	S23
6. NMR Spectra and HPLC Charts for the Addition Adducts	S24
7. X-ray Analysis for the adduct 3ad	S93

1. General information:

¹H, ¹³C and ¹⁹F were recorded on Varian Mercury Plus 400 instruments or Bruker AV 400 MHz at 400 MHz (¹H NMR), 100 MHz (¹³C NMR), as well as 376 MHz (¹⁹F NMR). Chemical shifts were reported in ppm from the solvent resonance as the internal Me₄Si or CDCl₃. LRMS were recorded on a VGZAB-HS spectrometer with the ESI resource. HRMS were recorded on an IonSpec Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS mass spectrometer with ESI resource or a miorOTOF-QII mass spectrometer with APCI resource. Optical rotations were determined using an Autopol IV-T. IR spectra were recorded on a WRS-1A digital melting point apparatus and are uncorrected. HPLC analyses were carried out on a Hewlett Packard Model HP 1200 instrument. X-ray structural analyses was conducted on the XtaLAB mini (600 W, SHINE, CCD, 75mn, 0.1 electorns/pixel/sec).

Materials:

Diethyl ether and toluene were distilled from sodium / benzophenone prior to use; CH₂Cl₂ (DCM) and ClCH₂CH₂Cl (DCE) were distilled from CaH₂. All purchased reagents were used without further purification. Analytical thin layer chromatography was performed on 0.20 mm Qingdao Haiyang silica gel plates. Silica gel (200-300 mesh) (from Qingdao Haiyang Chem. Company, Ltd.) was used for flash chromatography. 3,3-disubstituted (*S*)-binol-derived Ligands **L2–L10** were synthesized by the known method.¹ Substituted terminal 1,3-Diynes and Substituted *N*-sulfonyl aldimines were synthesized according to the literature.² Dimethylzinc (1.2M solution in toluene) were purchased from ACROS Organics. Standard reagents and solvents were purified according to known procedures.

2. General procedure for the enantioselective diynylation:

A solution of Me₂Zn (1.2M) in toluene (0.167 mL, 0.2 mmol) was added dropwise to pure 1, 3-diyne **2** (0.22 mmol) at room temperature (25 °C) under argon. After stirring for 1 h, a solution of ligand **L8** (14.2 mg, 0.02 mmol) in DCE (0.2 mL) was added via syringe. After 30 min, a solution of imine **1** (0.1 mmol) in DCE (0.3 mL) was added via syringe and the solution was stirred until the reaction was complete (detected by TLC). The reaction mixture was quenched with saturated NH₄Cl, extracted with EtOAc (3 × 10 mL), dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography on silica gel afforded compound **3**.

3. Analytical data for the addition adducts:

N-(**1**,**5**-diphenylpenta-2,**4**-diyn-1-yl)-**4**-methylbenzenesulfonamide (**3aa**) : 37.0 mg, 96% yield, 94% ee; mp 140–142 °C; $[α]_D^{20}$ +107.4 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.81 (d, *J* = 8.1 Hz, 2H), 7.46 (d, *J* = 6.8 Hz, 4H), 7.40 – 7.28 (m, 8H), 5.46 (d, *J* = 9.1 Hz, 1H), 5.18 (d, *J* = 9.1 Hz, 1H), 2.39 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.9, 137.0, 136.6, 132.5, 129.7, 129.5, 128.9, 128.7, 128.5, 127.5, 127.3, 121.2, 78.9, 78.6, 73.0, 71.3, 50.0, 21.6; MS (ESI) found: 408.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₁₉NNaO₂S [M+Na]⁺ 408.1034, found: 408.1035; IR (neat) v 3424, 3254, 3064, 3033, 2925, 2854, 2242, 1599, 1334, 1162, 1044, 759, 691, 666, 574, 545 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (minor) = 6.8 min, t_R (major) = 12.3 min.

N-(1-(4-fluorophenyl)-5-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonamide (**3ba**) : 35.9 mg, 89% yield, 97% ee; mp 130–133 °C; [α]_D²⁰ +96.1 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.79 (d, J = 8.2 Hz, 2H), 7.44 (t, J = 7.2 Hz, 4H), 7.38 (d, J = 7.1 Hz, 1H), 7.33 (t, J = 7.2 Hz, 4H), 7.00 (t, J = 8.6 Hz, 2H), 5.43 (d, J = 9.1 Hz, 1H), 5.25 (d, J = 9.1 Hz, 1H), 2.39 (s, 3H); 13C-NMR (CDCl3, 100 MHz) δ 162.8 (d, ¹*J*_{F-C} = 246.5 Hz), 144.0, 136.9, 132.6, 132.5 (d, ⁴*J*_{F-C} = 3.1 Hz), 129.7, 129.6, 129.2 (d, ³*J*_{F-C} = 8.4 Hz), 128.5, 127.5, 121.1, 115.7 (d, ²*J*_{F-C} = 21.7 Hz), 79.2, 78.2, 72.8, 71.5, 49.3, 21.6; ¹⁹F-NMR (376 MHz, CDCl₃) δ -112.89 – -112.97 (m, 1F); MS (ESI) found: 426.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₁₈FNNaO₂S [M+Na]⁺ 426.0940, found: 426.0937; IR (neat) v 3447, 3252, 3049, 2955, 2904, 2853, 2245, 1601, 1506, 1435, 1332, 1157, 1090, 1039, 778, 668, 577, 540 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 80 / 20, 1.0 mL / min, 220 nm) t_R (major) = 4.3 min, t_R (minor) = 4.7 min.

N-(1-(4-chlorophenyl)-5-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonamid e (3ca) : 39.0 mg, 93% yield, 91% ee; mp 138–140 °C; $[α]_D^{20}$ +84.8 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 7.0 Hz, 2H), 7.42 – 7.37 (m, 3H), 7.36 – 7.27 (m, 6H), 5.43 (d, *J* = 9.0 Hz, 1H), 5.02 (d, *J* = 9.1 Hz, 1H), 2.40 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 144.1, 136.8, 135.1, 134.7, 132.6, 129.7, 129.6, 129.0, 128.7, 128.5, 127.5, 121.0, 79.3, 77.8, 72.6, 71.6, 49.4, 21.6; MS (ESI) found: 422.1 [M+Na]⁺; HR-MS (ESI) calcd for $C_{24}H_{18}CINNaO_2S$ [M+Na]⁺ 442.0644, found: 442.0640; IR (neat) v 3426, 3250, 3050, 2923, 2856, 2245, 1579, 1490, 1334, 1157, 1091, 1015, 814, 757, 666, 573 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (minor) = 8.5 min, t_R (major) = 22.0 min.

N-(1-(4-bromophenyl)-5-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonamid e (3da) : 42.3 mg, 91% yield, 98% ee; mp 124–126 °C; $[\alpha]_D^{20}$ +5.2 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.77 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 8.1 Hz, 4H), 7.38 (d, *J* = 7.2 Hz, 1H), 7.36 – 7.30 (m, 6H), 5.40 (d, *J* = 9.1 Hz, 1H), 5.12 (d, *J* = 9.1 Hz, 1H), 2.40 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 144.1, 136.8, 135.7, 132.6, 131.9, 129.7, 129.6, 129.0, 128.5, 127.5, 122.9, 121.0, 79.3, 77.8, 72.7, 71.6, 49.5, 21.6; MS (ESI) found: 486.0 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₁₈BrNNaO₂S [M+Na]⁺ 486.0139, found: 486.0148; IR (neat) v 3427, 3264, 3051, 2922, 2855, 2244, 1579, 1486, 1434, 1333, 1159, 1092, 813, 667, 571, 546 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (minor) = 9.2 min, t_R (major) = 24.1 min.

N-(5-phenyl-1-(p-tolyl)penta-2,4-diyn-1-yl)-4-methylbenzenesulfonamide (3ea) : 37.1 mg, 93% yield, 98% ee; mp 148–150 °C; $[α]_D^{20}$ +50.4 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.80 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 7.1 Hz, 2H), 7.37 (d, *J* = 7.1 Hz, 1H) 7.35 – 7.30 (m, 6H), 7.14 (d, *J* = 7.8 Hz, 2H), 5.41 (d, *J* = 8.9 Hz, 1H), 4.89 (d, *J* = 9.0 Hz, 1H), 2.39 (s, 3H), 2.33 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.9, 138.7, 137.0, 133.6, 132.5, 129.7, 129.5, 129.5, 128.5, 127.6, 127.2, 121.2, 78.9, 78.7, 73.0, 71.1, 49.7, 21.6, 21.1; MS (ESI) found: 422.1 $[M+Na]^+$; HR-MS (ESI) calcd for C₂₅H₂₁NNaO₂S $[M+Na]^+$ 422.1191, found: 422.1183; IR (neat) v 3443, 3251, 3026, 2921, 2857, 2244, 1596, 1432, 1331, 1156, 1089, 813, 758, 691, 668, 577 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.9 mL / min, 220 nm) t_R (minor) = 8.6 min, t_R (major) = 15.7 min.

N-(1-(4-methoxyphenyl)-5-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonami de (3fa) : 37.4 mg, 90% yield, 96% ee; mp 159–160 °C; $[\alpha]_D^{20}$ +70.4 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.80 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 6.9 Hz, 2H), 7.39 – 7.30 (m, 7H), 6.85 (d, *J* = 8.6 Hz, 2H), 5.40 (d, *J* = 8.8 Hz, 1H), 5.00 (d, *J* = 8.7 Hz, 1H), 3.79 (s, 3H), 2.39 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 159.9, 143.8, 137.1, 132.5, 129.7, 129.5, 128.6, 128.6, 128.5, 127.5, 121.2, 114.2, 78.9, 78.8, 73.0, 71.1, 55.4, 49.5, 21.6; MS (ESI) found: 438.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₅H₂₁NNaO₃S [M+Na]⁺ 438.1140, found: 438.1140; IR (neat) v 3427, 3261, 3046, 2958, 2927, 2841, 2243, 1607, 1511, 1332, 1158, 1028, 817, 667, 573, 545 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.8 mL / min, 220 nm) t_R (minor) = 14.9 min, t_R (major) = 27.6 min.

N-(1-(3-methoxyphenyl)-5-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonami de (3ga) : 38.6 mg, 93% yield, 94% ee; mp 132–135 °C; $[\alpha]_D^{20}$ +86.0 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.80 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 7.0 Hz, 2H), 7.37 (d, *J* = 7.1 Hz, 1H), 7.33 (d, *J* = 6.9 Hz, 4H), 7.28 – 7.24 (m, 1H), 7.04 (d, *J* = 7.6 Hz, 1H), 6.97 (s, 1H), 6.84 (dd, *J* = 8.2, 1.7 Hz, 1H), 5.42 (d, *J* = 9.0 Hz, 1H), 4.98 (d, *J* = 9.0 Hz, 1H), 3.78 (s, 3H), 2.39 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 159.9, 143.9, 138.0, 137.0, 132.5, 129.9, 129.7, 129.5, 128.5, 127.5, 121.2, 119.5, 114.5, 112.7, 79.0, 78.4, 72.9, 71.2, 55.3, 49.9, 21.6; MS (ESI) found: 438.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₅H₂₁NNaO₃S [M+Na]⁺ 438.1140, found: 438.1133; IR (neat) v 3470, 3254, 3055, 2967, 2941, 2839, 2243, 1605, 1488, 1443, 1329, 1156, 1037, 755, 693, 668, 566, 545 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.9 mL / min, 220 nm) t_R (minor) = 10.2 min, t_R (major) = 21.7 min.

N-(1-(2-chlorophenyl)-5-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonamid e (3ha) : 38.2 mg, 91% yield, 94% ee; mp 167–168 °C; $[\alpha]_D^{20}$ +31.4 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.52 – 7.46 (m, 1H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.35 (d, *J* = 7.0 Hz, 1H), 7.33 – 7.24 (m, 5H), 7.23 – 7.18 (m, 2H), 5.75 (d, *J* = 8.6 Hz, 1H), 5.47 (d, *J* = 8.6 Hz, 1H), 2.35 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.8, 136.9, 134.3, 132.9, 132.6, 130.1, 130.1, 129.6, 129.5, 129.4, 128.5, 127.5, 127.4, 121.1, 79.2, 77.9, 73.0, 70.9, 47.9, 21.6; MS (ESI) found: 422.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₁₈CINNaO₂S [M+Na]⁺ 442.0644, found: 442.0642; IR (neat) v 3426, 3260, 3058, 2919, 2836, 2242, 1426, 1330, 1157, 1028, 754, 668, 578, 548 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (major) = 8.8 min, t_R (minor) = 15.1 min.

N-(1-(2-bromophenyl)-5-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonamid e (3ia): 42.2 mg, 90% yield, 95% ee; mp 145–147 °C; $[\alpha]_D^{20}$ +17.0 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.77 (d, *J* = 8.2 Hz, 2H), 7.50 (d, *J* = 7.9 Hz, 2H), 7.44

(d, J = 7.0 Hz, 2H), 7.36 (d, J = 7.1 Hz, 1H), 7.34 – 7.26 (m, 5H), 7.15 (t, J = 7.7 Hz, 1H), 5.75 (d, J = 8.3 Hz, 1H), 5.37 (d, J = 8.3 Hz, 1H), 2.37 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.9, 136.8, 135.9, 133.5, 132.6, 130.3, 129.6, 129.5, 128.5, 128.0, 127.5, 122.9, 121.1, 79.2, 77.9, 73.0, 71.1, 50.2, 21.6; MS (ESI) found: 486.0 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₁₈BrNNaO₂S [M+Na]⁺ 486.0139, found: 486.0148; IR (neat) v 3431, 3260, 3059, 2921, 2836, 2242, 1426, 1330, 1157, 1028, 754, 668, 577, 549 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.9 mL / min, 220 nm) t_R (minor) = 10.1 min, t_R (major) = 16.4 min.

N-(1-(2-allylphenyl)-5-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonamide (3ja) : 38.7 mg, 91% yield, 92% ee; mp 112–113 °C; $[\alpha]_D^{20}$ +19.6 (*c* 1.0, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.8 Hz, 2H), 7.52 (d, *J* = 7.3 Hz, 1H), 7.44 (d, *J* = 7.0 Hz, 2H), 7.38 – 7.25 (m, 6H), 7.21 (t, *J* = 8.2 Hz, 2H), 6.08 – 5.90 (m, 1H), 5.64 (d, *J* = 8.3 Hz, 1H), 5.22 – 4.95 (m, 3H), 3.64 (dd, *J* = 16.1, 6.3 Hz, 1H), 3.44 (dd, *J* = 15.9, 3.9 Hz, 1H), 2.28 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 143.9, 137.8, 137.0, 136.6, 134.7, 132.5, 130.7, 129.6, 129.5, 129.2, 128.5, 128.0, 127.6, 127.1, 121.3, 116.6, 79.0, 78.8, 73.1, 71.1, 47.2, 36.4, 21.6; HR-MS (APCI) calcd for C₂₇H₂₄NO₂S [M+H]⁺ 426.1522, found: 426.1531; IR (neat) v 3258, 3071, 3023, 2963, 2924, 2854, 2242, 1597, 1425, 1330, 1157, 1025, 755, 695, 669, 578 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (minor) = 5.6 min, t_R (major) = 9.2 min.

N-[1-(3,4-Dichloro-phenyl)-5-phenyl-penta-2,4-diynyl]-4-methyl-benzenesulfona mide (3ka) : 42.7 mg, 94% yield, 90% ee; mp 125–127 °C; $[\alpha]_D^{20}$ +80.6 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.75 (d, *J* = 8.1 Hz, 2H), 7.49 (s, 1H), 7.45 (d, *J* = 7.2 Hz, 2H), 7.38 – 7.29 (m, 7H), 5.45 (d, *J* = 9.1 Hz, 1H), 5.39 (d, *J* = 9.1 Hz, 1H), 2.39 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 144.2, 136.8, 136.6, 132.9, 132.9, 132.6, 130.7, 129.8, 129.7, 129.3, 128.6, 127.4, 126.7, 120.9, 79.6, 77.2, 72.6, 71.9, 49.0, 21.7; MS (ESI) found: 476.0 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₁₇Cl₂NNaO₂S [M+Na]⁺ 476.0255, found: 476.0249; IR (neat) v 3428, 3252, 3059, 2923, 2855, 2242, 1468, 1437, 1329, 1156, 1090, 1036, 815, 757, 695, 668, 562 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.8 mL / min, 220 nm) t_R (minor) = 13.0 min, t_R (major) = 41.0 min.

4-methyl-*N***-**(**5-phenyl-1-(2,4,6-trimethoxyphenyl)penta-2,4-diyn-1-yl)benzenesulf** onamide (**3**la) : 44.2 mg, 93% yield, 91% ee; mp 125–127 °C; $[\alpha]_D^{20}$ +10.6 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 6.9 Hz, 2H), 7.33 – 7.25 (m, 3H), 7.18 (d, *J* = 7.9 Hz, 2H), 6.14 – 5.87 (m, 4H), 3.77 (s, 6H), 3.74 (s, 3H), 2.33 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 161.6, 157.8, 143.2, 137.4, 132.4, 129.2, 129.1, 128.4, 127.2, 121.7, 106.2, 90.9, 80.6, 77.7, 73.8, 66.7, 56.0, 55.4, 40.5, 21.5; MS (ESI) found: 498.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₇H₂₅NNaO₅S [M+Na]⁺ 498.1351, found: 498.1347; IR (neat) v 3358, 3312, 3005, 2938, 2842, 2235, 1593, 1338, 1166, 1123, 811, 757, 706, 644, 571, 545 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 50 / 50, 0.6 mL / min, 220 nm) t_R (minor) = 13.3 min, t_R (major) = 18.3 min. Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

N-(1-(naphthalen-2-yl)-5-phenylpenta-2,4-diyn-1-yl)-4-methylbenzene-

sulfonamide (**3ma**) : 40.5 mg, 93% yield, 92% ee; mp 141–143 °C; $[α]_D^{20}$ +64.4 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.89 (s, 1H), 7.80 (d, *J* = 8.1 Hz, 5H), 7.54 – 7.46 (m, 5H), 7.38 (d, *J* = 7.1 Hz, 1H), 7.35 (d, *J* = 7.5 Hz, 2H), 7.29 – 7.26 (m, 2H), 5.62 (d, *J* = 9.0 Hz, 1H), 5.15 (s, 1H), 2.35 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.9, 137.0, 133.7, 133.21, 133.0, 132.6, 129.7, 129.6, 128.9, 128.5, 128.2, 127.7, 127.5, 126.7, 126.6, 126.4, 124.8, 121.2, 79.1, 78.5, 73.0, 71.5, 50.2, 21.6; MS (ESI) found: 458.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₈H₂₁NNaO₂S [M+Na]⁺ 458.1191, found: 458.1179; IR (neat) v 3420, 3257, 3056, 2959, 2925, 2854, 2244, 1325, 1155, 816, 761, 669, 573 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.9 mL / min, 220 nm) t_R (major) = 13.5 min, t_R (minor) = 24.4 min.

N-(1-(furan-2-yl)-5-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonamide

(**3na**) : 33.8 mg, 90% yield, 96% ee; mp 143–145 °C; $[\alpha]_D^{20}$ +78.6 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.78 (d, *J* = 6.7 Hz, 2H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.39 – 7.28 (m, 6H), 6.31 (d, *J* = 28.1 Hz, 2H), 5.51 (d, *J* = 8.7 Hz, 1H), 5.26 (d, *J* = 8.7 Hz, 1H), 2.38 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 148.5, 143.9, 143.4, 137.0, 132.6, 129.7, 129.6, 128.5, 127.4, 121.0, 110.6, 108.7, 79.1, 76.4, 72.8, 70.1, 44.2, 21.6; MS (ESI) found: 398.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₂H₁₇NNaO₃S [M+Na]⁺ 398.0827, found: 398.0828; IR (neat) v 3434, 3250, 3073, 2923, 2856, 2242, 1436, 1336, 1161, 1029, 917, 813, 757, 673, 544 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (minor) = 7.9 min, t_R (major) = 17.0 min. Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

(*E*)-*N*-(1,7-diphenylhepta-1-en-4,6-diyn-3-yl)-4-methylbenzenesulfonamide (3oa) : 39.1 mg, 95% yield, 91% ee; mp 117–119 °C; $[\alpha]_D^{20}$ +58.6 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.83 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 6.9 Hz, 2H), 7.40 – 7.26 (m, 10H), 6.75 (d, *J* = 15.8 Hz, 1H), 6.08 (dd, *J* = 15.8, 5.4 Hz, 1H), 5.06 (m, 1H), 4.91 (d, *J* = 9.0 Hz, 1H), 2.38 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 144.0, 137.1, 135.5, 133.6, 132.6, 129.7, 129.6, 128.7, 128.5, 128.5, 127.6, 126.9, 124.2, 121.2, 79.0, 77.7, 72.9, 71.3, 48.0, 21.6; MS (ESI) found: 434.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₆H₂₁NNaO₂S [M+Na]⁺ 434.1191, found: 434.1194; IR (neat) v 3444, 3256, 3047, 3030, 2957, 2923, 2853, 2243, 1336, 1157, 750, 690, 673, 573 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.9 mL / min, 220 nm) t_R (minor) = 18.2 min, t_R (major) = 31.1 min.

N-(**1**,**5**-diphenylpenta-2,**4**-diyn-1-yl)cyclopropanesulfonamide (**3**pa) : 30.2 mg, 93% yield, 90% ee; mp 121–122 °C; $[\alpha]_D^{20}$ +42.0 (*c* 1.0, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.2 Hz, 2H), 7.51 (d, *J* = 7.2 Hz, 2H), 7.44 – 7.30 (m, 6H), 5.55 (d, *J* = 8.9 Hz, 1H), 4.95 (d, *J* = 8.9 Hz, 1H), 2.61 – 2.51 (m, 1H), 1.36 – 1.28 (m, 1H), 1.16 – 1.10 (m, 1H), 1.05 – 0.96 (m, 1H), 0.92 – 0.80 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 137.0, 132.7, 129.6, 129.0, 128.8, 128.5, 127.3, 121.1, 79.8, 79.3, 73.0, 71.3, 50.0, 31.5, 6.6, 5.8; HR-MS (APCI) calcd for C₂₀H₁₈NO₂S [M+H]⁺ 336.1052, found: 336.1047; IR (neat) v 3290, 3251, 3081, 3062, 3032, 2927, 2866, 2243, 1599, 1490, 1441, 1332, 1146, 1042, 755, 719, 698, 685, 578 cm⁻¹; HPLC (DAICEL Chiralpak IC, Hexane / *i*-PrOH = 70 / 30, 0.9 mL / min, 254 nm) t_R (major) = 9.9 min, t_R (minor) = 11.0 min.

N-(1,5-diphenylpenta-2,4-diyn-1-yl)-1-allylcyclopropane-1-sulfonamide (3qa) : 34.1 mg, 91% yield, 90% ee; mp 109 – 111 °C; $[\alpha]_D^{20}$ +40.6 (*c* 1.0, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.3 Hz, 2H), 7.52 (d, *J* = 7.2 Hz, 2H), 7.42 – 7.31 (m, 6H), 5.89 – 5.74 (m, 1H), 5.50 (d, *J* = 8.8 Hz, 1H), 5.24 – 5.10 (m, 2H), 4.88 (d, *J* = 8.8 Hz, 1H), 2.82 (dd, *J* = 14.4, 7.9 Hz, 1H), 2.68 (dd, *J* = 14.4, 6.7 Hz, 1H), 1.54 – 1.45 (m, 1H), 1.43 – 1.33 (m, 1H), 1.08 – 0.99 (m, 1H), 0.88 – 0.81 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 137.3, 133.1, 132.67, 129.6, 129.0, 128.8, 128.5, 127.3, 121.1, 119.3, 79.9, 79.3, 73.0, 71.3, 50.1, 39.6, 34.9, 11.1, 9.8; HR-MS (APCI) calcd for C₂₃H₂₂NO₂S [M+H]⁺ 376.1365, found: 376.1358; IR (neat) v 3255, 3065, 3032, 3015, 2975, 2922, 2854, 2243, 1489, 1449, 1416, 1317, 1131, 1023, 925, 757, 694, 632, 564 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.9 mL / min, 220 nm) t_R (minor) = 6.4 min, t_R (major) = 11.7 min.

(**3ra**): 27.9 mg, 74% yield, 61% ee (**L10** was used as the chiral ligand); mp 156–157 $^{\circ}$ C; [α]_D²⁰ +55.6 (*c* 1.0, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.9 Hz, 2H), 7.46 (d, *J* = 7.3 Hz, 2H), 7.42 – 7.30 (m, 5H), 5.53 – 5.37 (m, 1H), 4.86 (s, 1H), 2.42 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 144.6, 136.5, 132.7, 130.0, 129.9, 128.6, 127.3, 122.1 (q, ¹*J*_{F-C} = 280.0 Hz), 120.4, 79.8, 72.1, 72.0, 70.9, 49.2 (q, ²*J*_{F-C} = 36.9

Hz), 21.6; ¹⁹F-NMR (376 MHz, CDCl₃) δ -75.24 (d, *J* = 6.0 Hz); HR-MS (ESI) calcd for C₁₉H₁₅F₃NO₂S [M+H]⁺ 378.0770, found: 378.0776; IR (neat) v 3274, 3047, 2931, 2877, 2247, 1595, 1447, 1345, 1268, 1191, 1154, 1084, 921, 689 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (minor) = 4.7 min, t_R (major) = 6.5 min.

(S)-4-methyl-N-(8-phenylocta-5,7-diyn-4-yl)benzenesulfonamide (3sa) : 26.0 mg, 74% yield, 63% ee (L10 was used as the chiral ligand); mp 118 – 120 °C; $[\alpha]_D^{20}$ +99.4 (*c* 1.0, CH₂Cl₂); ¹H-NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 7.0 Hz, 2H), 7.39 – 7.28 (m, 5H), 4.89 (d, J = 9.4 Hz, 1H), 4.26 – 4.13 (m, 1H), 2.38 (s, 3H), 1.72 – 1.66 (m, 2H), 1.52 – 1.41 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 143.8, 137.1, 132.5, 129.7, 129.4, 128.5, 127.5, 121.3, 80.5, 78.1, 73.0, 69.1, 46.2, 38.3, 21.6, 18.7, 13.4; HR-MS (ESI) calcd for C₂₁H₂₅N₂O₂S [M+NH₄]⁺ 369.1637, found: 369.1638; IR (neat) v 3450, 3269, 2960, 2934, 2873, 2240, 1598, 1332, 1158, 1090, 1022, 880, 760, 692, 666, 572, 535 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (minor) = 5.6 min, t_R (major) = 6.2 min.

N-(5-(4-fluorophenyl)-1-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonamide (3ab) : 37.1 mg, 92% yield, 90% ee; mp 139–140 °C; $[α]_D^{20}$ +92.4 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.80 (d, *J* = 8.2 Hz, 2H), 7.48 – 7.41 (m, 4H), 7.38 – 7.30 (m, 5H), 7.03 (t, *J* = 8.6 Hz, 2H), 5.45 (d, *J* = 9.0 Hz, 1H), 5.06 (d, *J* = 9.0 Hz, 1H), 2.39 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 163.2 (d, ¹*J*_{F-C} = 250.8 Hz), 143.8, 137.1, 136.5, 134.6 (d, ${}^{3}J_{F-C} = 8.6$ Hz), 129.7, 128.9, 128.7, 127.5, 127.2, 117.3 (d, ${}^{4}J_{F-C} = 3.5$ Hz), 116.0 (d, ${}^{2}J_{F-C} = 22.3$ Hz), 78.6, 77.8, 72.7, 71.1, 49.9, 21.6; ${}^{19}F$ -NMR (376 MHz, CDCl₃) δ -107.91 – -107.99 (m, 1F); MS (ESI) found: 426.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₁₈FNNaO₂S [M+Na]⁺ 426.0940, found: 426.0942; IR (neat) v 3418, 3263, 3067, 3033, 2924, 2852, 2243, 1598, 1505, 1335, 1233, 1156, 1091, 834, 677, 573, 544 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (minor) = 6.8 min, t_R (major) = 7.0 min.

N-(5-(4-chlorophenyl)-1-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonamid e (3ac) : 39.0 mg, 95% yield, 95% ee; mp 114–118 °C; $[\alpha]_D^{20}$ +74.0 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.80 (d, *J* = 8.2 Hz. 2H), 7.45 (d, *J* = 6.1 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 7.35 – 7.29 (m, 7H), 5.45 (d, *J* = 8.9 Hz, 1H), 4.96 (d, *J* = 8.9 Hz, 1H), 2.40 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.9, 137.0, 136.4, 135.8, 133.7, 129.7, 128.9, 128.9, 128.8, 127.5, 127.2, 119.7, 79.2, 77.7, 73.9, 71.0, 49.9, 21.6; MS (ESI) found: 442.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₁₈ClNNaO₂S [M+Na]⁺ 442.0644, found: 442.0635; IR (neat) v 3405, 3258, 3061, 3032, 2922, 2854, 2245, 1597, 1490, 1336, 1160, 1090, 827, 670, 579 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.9 mL / min, 220 nm) t_R (minor) = 7.1 min, t_R (major) = 8.0 min.

(*S*)-*N*-(5-(4-bromophenyl)-1-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfona mide (3ad): 45.0 mg, 97% yield, 90% ee (>99.9 after recrystallization); mp 83–87 °C; $[\alpha]_{D}^{20}$ +71.2 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.80 (d, *J* = 8.1 Hz, 2H),

7.50 – 7.42 (m, 4H), 7.37 – 7.28 (m, 7H), 5.45 (d, J = 8.9 Hz, 1H), 5.05 (d, J = 9.0 Hz, 1H), 2.39 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.9, 137.0, 136.4, 133.8, 131.9, 129.7, 128.9, 128.8, 127.5, 127.2, 124.1, 120.1, 79.3, 77.8, 74.0, 71.0, 49.9, 21.6; MS (ESI) found: 486.0 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₁₈BrNNaO₂S [M+Na]⁺ 486.0139, found: 486.0138; IR (neat) v 3361, 3255, 3065, 2961, 2921, 2857, 2243, 1601, 1570, 1321, 1157, 1089, 814, 784, 672, 544 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (minor) = 7.3 min, t_R (major) = 8.2 min.

N-(1-phenyl-5-(p-tolyl)penta-2,4-diyn-1-yl)-4-methylbenzenesulfonamide (3ae): 37.9 mg, 95% yield, 93% ee; mp 154–156 °C; $[\alpha]_D^{20}$ +91.4 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.81 (d, *J* = 8.1 Hz, 2H), 7.46 (d, *J* = 6.4 Hz, 2H), 7.37 – 7.29 (m, 7H), 7.14 (d, *J* = 7.8 Hz, 2H), 5.45 (d, *J* = 9.1 Hz, 1H), 5.15 (d, *J* = 9.1 Hz, 1H), 2.39 (s, 3H), 2.36 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.9, 140.0, 137.0, 136.7, 132.5, 129.7, 129.3, 128.8, 128.7, 127.5, 127.3, 118.1, 79.3, 78.2, 72.4, 71.5, 50.0, 21.6; MS (ESI) found: 442.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₅H₂₁NNaO₂S [M+Na]⁺ 422.1191, found: 422.1183; IR (neat) v 3426, 3261, 3062, 3033, 2918, 2854, 2238, 1600, 1334, 1159, 1091, 1030, 810, 673, 633, 572, 544 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.8 mL / min, 220 nm) t_R (minor) = 8.9 min, t_R (major) = 12.2 min.

N-(5-(4-methoxyphenyl)-1-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonami de (3af) : 40.6 mg, 98% yield, 97% ee; mp 153–155 °C; $[\alpha]_D^{20}$ +107.4 (*c* 1.0, CH₂Cl₂);

¹H-NMR (CDCl₃, 400 MHz) δ 7.79 (d, *J* = 8.1 Hz, 2H), 7.46 (d, *J* = 6.6 Hz, 2H), 7.39 (d, *J* = 8.7 Hz, 2H), 7.35 – 7.29 (m, 5H), 6.84 (d, *J* = 8.7 Hz, 2H), 5.45 (d, *J* = 9.0 Hz, 1H), 5.12 (s, 1H), 3.81 (s, 3H), 2.39 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 160.6, 143.8, 137.1, 136.7, 134.2, 129.7, 128.8, 128.7, 127.5, 127.3, 114.2, 113.1, 79.2, 78.0, 71.8, 71.6, 55.4, 50.0, 21.6; MS (ESI) found: 438.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₅H₂₁NNaO₃S [M+Na]⁺ 438.1140, found: 438.1134; IR (neat) v 3451, 3262, 2965, 2932, 2837, 2239, 1602, 1508, 1430, 1335, 1254, 1157, 1029, 830, 681, 543 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.8 mL / min, 220 nm) t_R (minor) = 12.7 min, t_R (major) = 32.1 min.

N-(5-(2-methoxyphenyl)-1-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonami de (3ag) : 37.4 mg, 90% yield, 93% ee; mp 153–154 °C; $[\alpha]_D^{20}$ +92.0 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.80 (d, *J* = 8.1 Hz, 2H), 7.46 (d, *J* = 6.4 Hz, 2H), 7.40 (d, *J* = 7.5 Hz, 1H), 7.38 – 7.28 (m, 6H), 6.90 (dd, *J* = 15.9, 8.1 Hz, 2H), 5.46 (d, *J* = 9.0 Hz, 1H), 5.01 (s, 1H), 3.88 (s, 3H), 2.39 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 161.5, 143.9, 137.0, 136.7, 134.5, 131.0, 129.7, 128.8, 128.7, 127.5, 127.3, 120.6, 110.8, 110.4, 79.0, 76.6, 75.6, 71.6, 55.8, 50.0, 21.6; MS (ESI) found: 438.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₅H₂₁NNaO₃S [M+Na]⁺ 438.1140, found: 438.1118; IR (neat) v 3450, 3261, 3007, 2920, 2850, 2238, 1594, 1491, 1330, 1277, 1158, 1024, 750, 701, 570, 545 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 50 / 50, 0.6 mL / min, 220 nm) t_R (minor) = 13.0 min, t_R (major) = 35.7 min.

N-(5-(2-chlorophenyl)-1-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonamid

e (**3ah**) : 37.0 mg, 88% yield, 90% ee; mp 163–165 °C; $[\alpha]_D^{20}$ +75.4 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.81 (d, *J* = 8.2 Hz, 2H), 7.47 (m, 3H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.37 – 7.27 (m, 6H), 7.22 (t, *J* = 7.6 Hz, 1H), 5.48 (d, *J* = 9.1 Hz, 1H), 5.08 (d, *J* = 9.1 Hz, 1H), 2.38 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 144.0, 136.9, 136.9, 136.4, 134.3, 130.4, 129.7, 129.5, 128.9, 128.8, 127.5, 127.3, 126.6, 121.4, 80.1, 77.6, 75.3, 71.0, 50.0, 21.6; MS (ESI) found: 442.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₁₈ClNNaO₂S [M+Na]⁺ 442.0644, found: 442.0635; IR (neat) v 3425, 3277, 3063, 3032, 2856, 2243, 1588, 1434, 1333, 1157, 1081, 1040, 759, 672, 572, 546 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (minor) = 7.1 min, t_R (major) = 9.6 min.

N-(5-(3-methoxyphenyl)-1-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfonami de (3ai) : 38.6 mg, 93% yield, 88% ee; mp 160–162 °C; $[\alpha]_D^{20}$ +83.8 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.81 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 6.3 Hz, 2H), 7.38 – 7.29 (m, 5H), 7.23 (d, *J* = 7.9 Hz, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.94 (dd, *J* = 12.6, 4.3 Hz, 2H), 5.46 (d, *J* = 9.0 Hz, 1H), 4.95 (d, *J* = 9.0 Hz, 1H), 3.80 (s, 3H), 2.41 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 159.3, 143.9, 137.0, 136.5, 129.7, 129.6, 128.9, 128.8, 127.5, 127.3, 125.1, 122.1, 117.3, 116.1, 78.9, 78.5, 72.6, 71.3, 55.3, 50.0, 21.6; MS (ESI) found: 438.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₅H₂₁NNaO₃S [M+Na]⁺ 438.1140, found: 438.1130; IR (neat) v 3429, 3286, 3004, 2961, 2924, 2836, 2237, 1600, 1573, 1427, 1331, 1314, 1161, 1041, 677, 572, 547 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 1.0 mL / min, 220 nm) t_R (minor) = 8.9 min, t_R (major) = 17.8 min. Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

N-(5-(cyclohex-1-en-1-yl)-1-phenylpenta-2,4-diyn-1-yl)-4-methylbenzenesulfona mide (3aj) : 37.8 mg, 97% yield, 95% ee; mp 132–134 °C; $[\alpha]_D^{20}$ +89.2 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.76 (d, *J* = 8.2 Hz 2H), 7.42 (d, *J* = 6.2 Hz 2H), 7.34 – 7.26 (m, 5H), 6.25 (s, 1H), 5.40 (d, *J* = 9.0 Hz, 1H), 5.02 (t, *J* = 8.3 Hz, 1H), 2.42 (s, 3H), 2.14 – 2.05 (m, 4H), 1.64 – 1.54 (m, 4H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.7, 139.5, 137.0, 136.8, 129.6, 128.8, 128.6, 127.5, 127.3, 119.4, 81.1, 77.5, 71.6, 70.5, 50.0, 28.6, 25.9, 22.0, 21.6, 21.2; MS (ESI) found: 412.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₂₃NNaO₂S [M+Na]⁺ 412.1347, found: 412.1349; IR (neat) v 3448, 3260, 3033, 2931, 2858, 2233, 1598, 1335, 1158, 1089, 810, 674, 542 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 90 / 10, 1.0 mL / min, 220 nm) t_R (minor) = 12.6 min, t_R (major) = 13.8 min.

N-(1-phenyl-5-(triisopropylsilyl)penta-2,4-diyn-1-yl)-4-methylbenzenesulfonamid e (**3ak**): 44.4 mg, 95% yield, 93% ee; mp 67–69 °C; $[\alpha]_D^{20}$ +1.3 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.78 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 6.2 Hz, 2H), 7.35 – 7.26 (m, 5H), 5.40 (d, *J* = 8.9 Hz, 1H), 5.17 (d, *J* = 8.9 Hz, 1H), 2.42 (s, 3H), 1.08 (s, 21H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.7, 137.0, 136.6, 129.6, 128.8, 128.7, 127.5, 127.3, 88.5, 85.2, 72.7, 71.7, 49.7, 21.6, 18.5, 11.2; MS (ESI) found: 488.2 [M+Na]⁺; HR-MS (ESI) calcd for C₂₇H₃₅NNaO₂SSi [M+Na]⁺ 488.2055, found: 488.2064; IR (neat) v 3360, 3261, 3063, 2943, 2865, 2352, 1592, 1156, 1090, 883, 824, 665, 553 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 90 / 10, 0.8 mL / min, 220 nm) t_R (major) = 8.4 min, t_R (minor) = 9.0 min.

N-(6-methyl-1-phenyl-6-((trimethylsilyl)oxy)hepta-2,4-diyn-1-yl)-4-methylbenzen esulfonamide (3al) : 39.6 mg, 90% yield, 92% ee; $[\alpha]_D^{20}$ +68.4 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.77 (d, *J* = 8.1 Hz, 2H), 7.42 (d, *J* = 6.2 Hz, 2H), 7.35 – 7.28 (m, 5H), 5.40 (d, *J* = 8.9 Hz, 1H), 5.02 (d, *J* = 8.9 Hz, 1H), 2.44 (s, 3H), 1.47 (s, 6H), 0.17 (s, 9H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.7, 137.1, 136.6, 129.6, 128.8, 128.7, 127.5, 127.2, 84.7, 75.6, 70.6, 66.9, 66.8, 49.7, 32.6, 21.7, 1.8; MS (ESI) found: 462.2 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₂₉NNaO₃SSi [M+Na]⁺ 462.1535, found: 462.1538; IR (neat) v 3417, 3264, 3064, 3033, 2984, 2961, 2932, 2352, 1598, 1453, 1333, 1250, 1163, 1034, 842 cm⁻¹; HPLC (DAICEL Chiralpak IA, Hexane / *i*-PrOH = 98.7 / 1.3, 1.0 mL / min, 220 nm) t_R (minor) = 26.7 min, t_R (major) = 33.7 min.

N-(1,7-diphenylhepta-2,4-diyn-1-yl)-4-methylbenzenesulfonamide (3am) : 38.8 mg, 94% yield, >99% ee; mp 105–107 °C; $[\alpha]_D^{20}$ +58.6 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.76 (d, *J* = 8.1 Hz, 2H), 7.43 (d, *J* = 6.0 Hz, 2H), 7.35 – 7.25 (m, 8H), 7.20 (d, *J* = 7.3 Hz, 2H), 5.36 (d, *J* = 8.9 Hz, 1H), 4.96 (d, *J* = 8.9 Hz, 1H), 2.83 (t, *J* = 7.5 Hz, 2H), 2.55 (t, *J* = 7.5 Hz, 2H), 2.40 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.7, 139.9, 137.0, 136.8, 129.6, 128.8, 128.6, 128.4, 127.5, 127.3, 126.6, 81.1, 72.0, 71.6, 64.9, 49.7, 34.5, 21.6, 21.5; MS (ESI) found: 436.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₆H₂₃NNaO₂S [M+Na]⁺ 436.1347, found: 436.1348; IR (neat) v 3426, 3272, 3059, 3030, 2924, 2856, 2255, 1329, 1156, 1051, 698, 663, 543 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.9 mL / min, 220 nm) t_R (minor) = 9.2 min, t_R (major) = 10.0 min.

A solution of compound **3aa** (38.5 mg, 0.1 mmol, 94% ee) in abs EtOH (10 mL) was stirred under hydrogen (balloon) in the presence of 10% Pd/C (10 mg) for 1.5 h. After this time, the mixture was filtered through a short pad of silica gel, eluting with EtOAc, and the solvent was removed under reduced pressure to give compound **4** (39 mg, 94% ee).

N-(**1**,**5**-diphenylpentyl)-4-methylbenzenesulfonamide (4) : 39 mg, 99% yield, 94% ee; $[α]_D^{20}$ -21.0 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.58 (d, *J* = 8.1 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 2H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.17 – 7.13 (m, 3H), 7.11 (d, *J* = 7.8 Hz, 4H), 7.04 (m, 2H), 5.57 (d, *J* = 6.0 Hz, 1H), 4.27 (q, *J* = 7.3 Hz, 1H), 2.55 – 2.46 (m, 2H), 2.35 (s, 3H), 1.86 – 1.77 (m, 1H), 1.76 – 1.67 (m, 1H), 1.60 – 1.47 (m, 2H), 1.34 – 1.26 (m, 1H), 1.2 – 1.14 (m, 1H); ¹³C-NMR (CDCl₃, 100 MHz) δ 142.9, 142.4, 141.1, 137.8, 129.3, 128.4, 128.4, 128.3, 127.2, 127.1, 126.6, 125.7, 58.3, 37.5, 35.6, 30.9, 25.6, 21.5; MS (ESI) found: 416.2 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₂₇NNaO₂S [M+Na]⁺ 416.1660, found: 416.1648; IR (neat) v 3275, 3061, 3028, 2931, 2857, 1600, 1453, 1324, 1158, 1091, 701, 668, 556 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 70 / 30, 0.9 mL / min, 220 nm) t_R (minor) = 7.1 min, t_R (major) = 10.3 min.

S20

Hydrogenation adduct **4** (39.4 mg, 0.1 mmol, 94% ee) in dry THF (2 mL) was added to a 0.1 M THF solution of SmI₂ (12 mL, 1.2 mmol) and HMPA (1 mL) at rt under nitrogen. The solution was heated at 70 °C for 2h until the purple color of the solution disappeared. The reaction was cooled at rt and quenched with satd aqueous NaCl and extracted with diethyl ether. The organic layer was washed with brine (several times), dried over Na₂SO₄ and concentrated under reduced pressure. Purification by chromatography (Petroleum ether-EtOAc 1:1, contianing 10 drops Et₃N for 100 ml of eluent) on silica gel afforded compound **5** (16.3 mg).

(**R**)-1,5-diphenylpentan-1-amine (5) : 16.3 mg, 68% yield, 94% ee; $[\alpha]_D^{20}$ -7.6 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.36 – 7.28 (m, 4H), 7.24 (s, 2H), 7.20 – 7.10 (m, 3H), 3.87 (t, *J* = 6.9 Hz, 1H), 2.63 – 2.50 (m, 2H), 2.03 (br s, 2H), 1.77 – 1.67 (m, 2H), 1.66 – 1.57 (m, 2H), 1.49 – 1.28 (m, 2H); ¹³C-NMR (101 MHz, CDCl₃) δ 146.6, 142.6, 128.5, 128.4, 128.3, 126.9, 126.3, 125.6, 56.2, 39.4, 35.8, 31.4, 26.3; HR-MS (ESI) calcd for C₁₇H₂₂N [M+H]⁺ 240.1752, found: 240.1752; IR v 3436, 3061, 3027, 2958, 2929, 2856, 1602, 1454, 1283, 1265, 1123, 1074, 1026, 798, 746, 700 cm⁻¹. Determination of the ee: Tosyl chloride (18 mg, 0.086 mmol) was added to a solution of compound **5** (16.0 mg, 0.068 mmol) and pyridine (10 drops) in CH₂Cl₂ (2 mL) at rt. After 48, the mixture was diluted with EtOAc, washed with 2M HCl and brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue chromatographed on silica gel to give the corresponding tosyl imine **4** (20.0 mg, 0.051 mmol, 75%) which was analyzed by HPLC as described above (94% ee).

To a -78°C solution of **3aa** (38.5 mg, 0.1 mmol, 94% ee) in anhydrous THF (1 ml) containing 1,2-dichlorobenzene (29.4 mg, 0.2 mmol) was dropwise via an addition funnel a 1M solution in THF of LiAlH₄. Followed the solution of LiAlH₄ the cooling bath was removed and the mixture was stirred at room temperature overnight. Upon completion of the reaction, the mixture was cooled to 0°C, and carefully quenched with 20% KHSO₄, filtrated and extracted with EtOAc (3 × 10mL) washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography on silica gel afforded compound **6** (32.5 mg, 94% ee).

(*E*)-*N*-(**1**,**5**-diphenylpent-2-en-4-yn-1-yl)-4-methylbenzenesulfonamide (**6**) : 32.5 mg, 85% yield, 94% ee; mp 164–166 °C; $[\alpha]_D^{20}$ +20.8 (*c* 1.0, CH₂Cl₂); ¹H-NMR (CDCl₃, 400 MHz) δ 7.66 (d, *J* = 8.1 Hz, 2H), 7.41 – 7.35 (m, 2H), 7.32 – 7.27 (m, 3H), 7.26 – 7.20 (m, 5H), 7.16 – 7.08 (m, 2H), 6.15 (dd, *J* = 15.8, 6.2 Hz, 1H), 5.76 (d, *J* = 15.8 Hz, 1H), 5.06 – 4.99 (m, 1H), 4.96 (d, *J* = 7.0 Hz, 1H), 2.38 (s, 3H); ¹³C-NMR (CDCl₃, 100 MHz) δ 143.5, 141.1, 138.7, 137.5, 131.5, 129.6, 128.7, 128.4, 128.3, 128.2, 127.3, 127.1, 123.0, 112.5, 91.2, 86.7, 59.4, 21.5; MS (ESI) found: 410.1 [M+Na]⁺; HR-MS (ESI) calcd for C₂₄H₂₁NNaO₂S [M+Na]⁺ 410.1191, found: 410.1201; IR (neat) v 3427, 3327, 3244, 3061, 3029, 2961, 2924, 2868, 2353, 1597, 1432, 1325, 1165, 1091, 697, 674, 565 cm⁻¹; HPLC (DAICEL Chiralpak IB, Hexane / *i*-PrOH = 50 / 50, 0.5 mL / min, 220 nm) t_R (minor) = 9.9 min, t_R (major) = 29.8 min.

5. References:

- (a) T. Ooi, M. Kameda, K. J. Maruoka, J. Am. Chem. Soc,. 2003, 125, 5139; (b) T.
 Ooi, K. J. Maruoka, Angew. Chem., Int. Ed., 2007, 46, 4222; (c) T. Hashimoto, K. J.
 Maruoka, Chem. Rev., 2007, 107, 5656.
- For the synthesis of substituted terminal 1,3-Diynes see: (a) X.-W. Jiang, M. Rawat, W. D. Wulff, J. Am. Chem. Soc., 2004, **126**, 5970. For the synthesis of substituted N-sulfonyl aldimines see: (a) J. Esquivias, R. Gómez Arrayás, J. C. Carretero, Angew. Chem., Int. Ed., 2006, **45**, 629; (b) Z. Cui, H.-J.Yu, R.-F. Yang, W.-Y. Gao, C.-G. Feng, G.-Q. Lin, J. Am. Chem. Soc., 2011, **132**, 12394; (c) S. Jonoshita, A. Harada, M. Omote, A. Ando, I. Kumadaki, J. Fluorine. Chem., 1999, **97**, 61.

6. NMR Spectra and HPLC Charts for the Addition Adducts

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 fl (ppm)

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 fl (ppm)

8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 fl (ppm)

^{8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2} fl (ppm)

8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 fl (ppm)

rean	VECITWE	rype	WIGON	ALEA		nergno		ALEA	
#	[min]		[min]	mAU	*s	[mAU	1	÷	
									L
1	5.573	vv	0.1463	418.	59106	41.	68880	3.6801	
2	9.185	VB	0.2297	1.095	57e4	726.	86371	96.3199	

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU	1	\$
1	4.830	vv	0.1977	1.14	750e4	837.6	53593	50.2303
2	6.771	VB	0.2622	1.130	598e4	632.2	27618	49.7697

S92

7. X-Ray Analysis for the Adduct 3ad:

CCDC 870991 contains the supplementary crystallographic data for the adduct **3ad**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.