Supporting Information

2-Pyridylmethyl ether: a readily removable and efficient directing group for amino acid ligand accelerated ortho-C-H olefination of phenols

Xuefeng Cong, Jingsong You*, Ge Gao and Jingbo Lan*

Key Laboratory of Green Chemistry and Technology of Ministry of Education,

College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China Fax: 86-28-85412203; E-mail: jingbolan@scu.edu.cn; jsyou@scu.edu.cn

Table of contents

I. General remarks S3
II. Optimization of the reaction condition S3
III. Preparation of starting materials and characterization S4
IV. General procedure for 2-pyridylmethyl ether directed C-H ortho-olefination of phenols S11
V. Experimental data for the described substances S13
VI. Deprotection of ortho-alkenylated phenols and characterization. S29
VII. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. S34

I. General remarks

The ${ }^{1} \mathrm{H}$ NMR (400 MHz or 600 MHz) chemical shifts were measured relative to TMS, CDCl_{3} or DMSO- d_{6} as the internal reference. The ${ }^{13} \mathrm{C}$ NMR (100 MHz) chemical shifts are given using CDCl_{3} or $\mathrm{DMSO}-d_{6}$ as the internal standard. High resolution mass spectra (HR-MS) were recorded by ESI-TOF. Melting points were determined with XRC-1 and are uncorrected. Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. L-Val-OH, L-Leu-OH and L-Ile-OH were used to synthesize the N-protected amino acid ligands according to known procedures. ${ }^{1,2,3}$ Solvents were dried by refluxing for at least 24 h over CaH_{2} (DMF, DCE, DCM) and freshly distilled prior to use. t-AmylOH was obtained from commercial suppliers and used directly without further purification. Py $=2$-pyridyl, ${ }^{4} \mathrm{Py}=4$-pyridyl.

II. Optimization of the reaction condition

Table 1 Optimization of the reaction conditions. ${ }^{a}$

Entry	Ligand	Oxidant	Additive	Yield (\%) ${ }^{b}$
1^{c}	Boc-Val-OH	O_{2}	KHCO_{3}	17
2	Boc-Val-OH	O_{2}	KHCO_{3}	90
3	Ac-Val-OH	O_{2}	KHCO_{3}	77
4	Ac-Leu-OH	O_{2}	KHCO_{3}	82
5	Ac-Ile-OH	O_{2}	KHCO_{3}	80
6	-	O_{2}	KHCO_{3}	9
7	Boc-Val-OH	Air	KHCO_{3}	63

8^{d}	Boc-Val-OH	O_{2}	KHCO_{3}	29
9	$\mathrm{Boc-Val-OH}$	O_{2}	-	-
10^{e}	-	AgOAc	KHCO_{3}	67
11^{e}	-	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	71
12^{e}	-	AgOAc	-	50
13^{e}	-	$\mathrm{Cu}(\mathrm{OAc})_{2}$	-	-
14^{e}	-	$\mathrm{PhI}(\mathrm{OAc})_{2}$	-	Trace
15^{e}	-	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	-	Trace

${ }^{a}$ Reactions were carried out using 1a $(0.5 \mathrm{mmol})$ and 2a $(0.75 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, ligand ($20 \mathrm{~mol} \%$) and additive (2.0 equiv) in t-AmylOH (2 mL) for 12 hours under $1 \mathrm{~atm} \mathrm{O}_{2} .{ }^{b}$ Yield of isolated product. ${ }^{c} 10 \mathrm{~mol} \% \mathrm{BQ}$ used. ${ }^{d}$ At $60{ }^{\circ} \mathrm{C}$. ${ }^{e}$ Reaction was carried out using 1a (0.5 mmol) and 2a (0.75 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, additive (2.0 equiv) and oxidant (1.0 mmol) in DCE (2 mL) at $110^{\circ} \mathrm{C}$ for 24 hours under N_{2}. DCE $=1,2$-dichloroethane, t - $\mathrm{AmylOH}=$ tert-amyl alcohol, Py $=2$-pyridyl.

III. Preparation of starting materials and characterization

A mixture of phenols (10.0 mmol), 2-(chloromethyl)pyridine hydrochloride (10.0 $\mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.14 \mathrm{~g}, 30.0 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ and heated to reflux under nitrogen for 8 hours. After being cooled to room temperature, the reaction mixture was filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

A mixture of 3,4-dimethylphenol (10.0 mmol), 4-(chloromethyl)pyridine hydrochloride (10.0 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.14 \mathrm{~g}, 30.0 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$
(20 mL) and heated to reflux under nitrogen for 8 hours. After being cooled to room temperature, the reaction mixture was filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel to provide the desired product 1,2-dimethyl-4-(pyridin-4-ylmethoxy)benzene.

A mixture of 3,4-dimethylphenol (10.0 mmol), Benzyl chloride (10.0 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.07 \mathrm{~g}, 15.0 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ and heated to reflux under nitrogen for 8 hours. After being cooled to room temperature, the reaction mixture was filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were concentrated under reduced pressure and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

2-(Pyridin-2-ylmethoxy)toluene

The title compound was obtained as colorless oil ($1.8 \mathrm{~g}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=2.34(\mathrm{~s}, 3 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 6.85-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.5,70.5,111.5,120.9,121.0,122.6,126.9,127.0,130.9,136.9$, 149.2, 156.5, 157.9 ppm.

1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene

The title compound was obtained as colorless oil ($1.9 \mathrm{~g}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=2.18$ (s, 3H), 2.22 (s, 3H), 5.17 (s, 2H), 6.70 (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.81$ (s,
$1 \mathrm{H}), 7.01$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 18.9, 20.1, 70.7, 111.8, 116.5, 121.3, 122.6, 129.2, 130.5, 136.9, 137.9, 149.2, 156.6, 157.8 ppm.

1,2-Dimethyl-4-(pyridin-4-ylmethoxy)benzene

The title compound was obtained as a white solid ($1.77 \mathrm{~g}, 83 \%$). M.p.: $44-46{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=2.20(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 6.66$ (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78$ (s, 1H), 7.02 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.59(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.9,20.2,68.3,111.7,116.5$, 121.6, 129.6, 130.5, 138.1, 146.8, 150.1, 156.5 ppm.

4-(Benzyloxy)-1,2-dimethylbenzene

The title compound was obtained as colorless oil ($1.8 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.22(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}$, 1 H), 7.04 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32-7.46(\mathrm{~m}, 5 \mathrm{H}), \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.9,20.2,70.2,111.9,116.6,127.6,127.9,128.7,129.0,130.4,137.5,137.9$, 157.1 ppm.

3-(Pyridin-2-ylmethoxy)toluene

The title compound was obtained as colorless oil ($1.75 \mathrm{~g}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.32(\mathrm{~s}, 3 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 6.78-6.82(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}$,
$J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.6,70.6,111.7,115.8,121.3,122.1,122.6,129.4,136.9,139.7$, 149.3, 157.6, 158.5 ppm.

tert-Butyl-2-(pyridin-2-ylmethoxy)benzene

The title compound was obtained as colorless oil ($2.2 \mathrm{~g}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.50(\mathrm{~s}, 9 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 6.94-6.99(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.25 (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.36 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (t, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.0$, 35.0, 71.0, 112.9, 121.0, 121.3, 122.6, 126.9, 127.3, 137.0, 138.4, 149.3, 157.2, 157.9 ppm.

1,3-Dimethyl-4-(pyridin-2-ylmethoxy)benzene

The title compound was obtained as a slight yellow solid ($2.0 \mathrm{~g}, 94 \%$). M.p.: $60-62^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.26$ (s, 3H), 2.31 (s, 3H), 5.20 (s, 2H), 6.74 (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (s, 1H), 7.20 (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=16.5,20.6,70.8,111.6,121.1,122.6,126.7,127.2,130.2,131.8$, 137.0, 149.1, 154.5, 158.1 ppm.

Pyridin-2-ylmethoxybenzene

The title compound was obtained as colorless oil ($1.7 \mathrm{~g}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=5.21(\mathrm{~s}, 2 \mathrm{H}), 6.95-7.00(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.31(\mathrm{~m}$,

2H), 7.52 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=70.6,115.0,121.3,121.4,122.7,129.7,137.0$, 149.3, 157.5, 158.5 ppm.

1,3-Di-tert-butyl-4-(pyridin-2-ylmethoxy)benzene

The title compound was obtained as a white solid ($2.6 \mathrm{~g}, 88 \%$). M.p.: $78-80{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.31$ (s, 9H), 1.47 (s, 9H), 5.25 (s, 2H), 6.82 (d, $J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.15$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (s, 1H), 7.59 (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=30.1,31.7,34.4,35.2,71.1,112.2,121.3,122.5,123.6,124.2$, 137.0, 137.5, 143.2, 149.2, 155.0, 158.2 ppm.

2-(Pyridin-2-ylmethoxy)anisole

The title compound was obtained as a white solid ($1.8 \mathrm{~g}, 84 \%$). M.p.: $50-52{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.91$ (s, 3H), 5.29 (s, 2H), 6.85-6.93 (m, 4H), 7.19 (t, J $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=56.1,71.6,112.1,114.0,121.0,121.4$, 121.7, 122.7, 137.0, 148.0, 149.2, 149.7, 157.6 ppm.

1-(Pyridin-2-ylmethoxy)naphthalene

The title compound was obtained as a white solid ($1.9 \mathrm{~g}, 81 \%$). M.p.: $46-48{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.40(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=6.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.82(\mathrm{~m}, 1 \mathrm{H}), 8.39(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.61$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=70.9,105.5,120.9,121.2$, 122.1, 122.7, 125.4, 125.8, 126.0, 126.6, 127.7, 134.7, 137.0, 149.3, 154.1, 157.5 ppm.

4-(Pyridin-2-ylmethoxy)anisole

The title compound was obtained as a white solid ($1.75 \mathrm{~g}, 81 \%$). M.p.: $39-41{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=3.76$ (s, 3H), 5.16 (s, 2H), $6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.8,71.4$, 114.8, 115.9, 121.4, 122.7, 136.9, 149.3, 152.7, 154.2, 157.7 ppm.

4-(Pyridin-2-ylmethoxy)toluene

The title compound was obtained as colorless oil ($1.7 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=2.28(\mathrm{~s}, 3 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ (d, $J=8.4 \mathrm{~Hz}$, 2H), 7.19 (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.6,70.8,114.8,121.4$, 122.6, 130.1, 130.5, 136.9, 149.3, 156.4, 157.7 ppm.

tert-Butyl-4-(pyridin-2-ylmethoxy)benzene

The title compound was obtained as colorless oil ($2.0 \mathrm{~g}, 83 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=1.30(\mathrm{~s}, 9 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=6.4 \mathrm{~Hz}$, 1H), 7.30 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.59$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.6,34.2,70.8,114.4$, 121.4, 122.7, 126.4, 136.9, 144.0, 149.3, 156.3, 157.8 ppm.

4-(Pyridin-2-ylmethoxy)chlorobenzene

The title compound was obtained as a white solid ($1.9 \mathrm{~g}, 88 \%$). M.p.: $54-56{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.28(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=71.3$, 113.9, 121.3, 122.0, 122.8, 123.2, 127.9, 130.5, 137.1, 149.2, 154.0, 157.0 ppm.

1,3-Dichloro-4-(pyridin-2-ylmethoxy)benzene

The title compound was obtained as a white solid ($2.3 \mathrm{~g}, 91 \%$). M.p.: $100-102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.25(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (d, $J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=71.7$, 114.7, 121.3, 123.0, 124.0, 126.4, 127.8, 130.2, 137.2, 149.3, 152.8, 156.5 ppm.

2-(Pyridin-2-ylmethoxy)nitrobenzene

The title compound was obtained as a slight yellow solid ($2.0 \mathrm{~g}, 87 \%$). M.p.: $76-78{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.34(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4$

Hz, 1H), 7.23 (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=71.6,115.0,121.0,121.4,123.1,126.0,134.5,137.3$, 140.1, 149.2, 151.8, 156.0 ppm.

2,2'-Bis(pyridin-2-ylmethoxy)-1,1'-binaphthyl

The title compound was obtained as a white solid ($3.2 \mathrm{~g}, 71 \%$). M.p.: $124-126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.20$ (s, 4H), 6.69 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99 (t, $J=6.4 \mathrm{~Hz}$, 2H), 7.22-7.24 (m, 6H), 7.31-7.34 (m, 2H), 7.44 (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.87 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.42(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=71.6,115.2,120.3,120.9,122.3,124.0,125.6,126.6,128.1,129.5,129.7$, 134.3, 136.6, 148.7, 153.8, 157.8 ppm.

IV. General procedure for 2-pyridylmethyl ether directed C-H ortho-olefination of phenols

A mixture of phenol ethers $1(0.5 \mathrm{mmol})$, alkenes $2(0.75 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}$, $10 \mathrm{~mol} \%$), $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol}$) and ligand ($20 \mathrm{~mol} \%$) was dissolved in t-AmylOH (2 mL) in a 50 mL Schlenk-type sealed tube. The reaction tube was filled with O_{2}. Subsequently, the reaction mixture was stirred for 10 min at room temperature, and then heated at $90{ }^{\circ} \mathrm{C}$ for 12 h . After being cooled to room temperature, the reaction mixture was diluted with 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a plug of celite, and washed with $10-20 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts
were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product $\mathbf{3}$.

A mixture of phenol ethers $\mathbf{1}(0.5 \mathrm{mmol})$, alkenes $\mathbf{2}(2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2$ $\mathrm{mg}, 10 \mathrm{~mol} \%), \mathrm{KHCO}_{3}(200 \mathrm{mg}, 2.0 \mathrm{mmol})$ and Boc-Val-OH (21.7 mg, $20 \mathrm{~mol} \%$) was dissolved in t-AmylOH (2 mL) in a 50 mL Schlenk-type sealed tube. The reaction tube was filled with O_{2}. Subsequently, the reaction mixture was stirred for 10 min at room temperature, and then heated at $90^{\circ} \mathrm{C}$ for 20 h . After being cooled to room temperature, the reaction mixture was diluted with 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a plug of celite, and washed with $10-20 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product 4.

A mixture of 4-(pyridin-2-ylmethoxy)anisole (0.5 mmol), N, N-dimethylacrylamide (0.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}\left(11.2 \mathrm{mg}, 10 \mathrm{~mol} \%\right.$), $\mathrm{KHCO}_{3}(200 \mathrm{mg}, 2.0 \mathrm{mmol})$ and Boc-Val-OH ($21.7 \mathrm{mg}, 20 \mathrm{~mol} \%$) was dissolved in t-AmylOH (2 mL) in a 50 mL Schlenk-type sealed tube. The reaction tube was filled with O_{2}. Subsequently, the reaction mixture was stirred for 10 min at room temperature, and then heated at $90^{\circ} \mathrm{C}$ for 10 h . After being cooled to room temperature, n-butyl acrylate was added into the mixture under the oxygen environment, and then the mixture was heated at $90^{\circ} \mathrm{C}$ for another 10 h . After being cooled to room temperature, the reaction mixture was diluted with 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a plug of celite, and washed with 10-20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired
product.

V. Experimental data for the described substances

(E)-N,N-Dimethyl-3-(3-methyl-2-(pyridin-2-ylmethoxy)phenyl)acrylamide (3a)

2-(Pyridin-2-ylmethoxy)toluene ($100 \mathrm{mg}, 0.5 \mathrm{mmol}$), N, N-dimethylacrylamide (75 $\mathrm{mg}, 0.75 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 50\% EtOAc in petroleum ether afforded a white solid ($134 \mathrm{mg}, 90 \%$ yield). M.p.: $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.31$ (s, 3H), 3.02 (s, 3H), 3.06 (s, 3H), 4.96 (s, 2H), 6.97 (d, $J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=6.0 \mathrm{~Hz}$, 1H), 7.39 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.57(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 16.3, 36.0, 37.4, 75.7, 119.4, 121.8, 122.9, 124.6, 126.5, 129.2, 132.2, 132.6, 137.0, 137.7, 149.3, 156.1, 157.2, 167.0 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 297.1603, found 297.1609.

(E)-N,N-Dimethyl-3-(4-methyl-2-(pyridin-2-ylmethoxy)phenyl)acrylamide (3b)

3-(Pyridin-2-ylmethoxy)toluene ($100 \mathrm{mg}, 0.5 \mathrm{mmol}$), N, N-dimethylacrylamide (75 $\mathrm{mg}, 0.75 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 50\% EtOAc in petroleum ether afforded a white solid ($126 \mathrm{mg}, 85 \%$ yield). M.p.: $132-134{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.33(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 6.79-6.80(\mathrm{~m}$,

2H), 6.98 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.27$ (m, 1H), 7.42 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.9,36.0,37.4,70.8,113.4,117.6,121.7$, 122.0, 122.1, 122.9, 129.1, 137.4, 137.8, 141.4, 149.0, 156.9, 167.5 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$297.1603, found 297.1615.

(E)-3-(4,5-Dimethyl-2-(pyridin-2-ylmethoxy)phenyl)-N,N-dimethylacrylamide (3c)

1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene (106 mg, 0.5 mmol), N, N-dimethylacrylamide ($75 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol}$) in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 50% EtOAc in petroleum ether afforded a white solid (143 mg , 92% yield). M.p.: $108-110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.20$ (s, 3H), 2.23 (s, 3H), 3.05 (s, 3H), 3.09 (s, 3H), 5.24 (s, 2H), 6.76 (s, 1H), 6.98 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.22-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.9,20.4$, 36.0, 37.5, 71.2, 114.3, 117.5, 121.6, 122.1, 122.8, 129.2, 130.3, 137.1, 138.0, 139.8, 149.2, 155.2, 157.3, 167.7 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 311.1760, found 311.1756.

(E)-3-(3,5-Dimethyl-2-(pyridin-2-ylmethoxy)phenyl)-N,N-dimethylacrylamide (3d)

1,3-Dimethyl-4-(pyridin-2-ylmethoxy)benzene (107 mg, 0.5 mmol),
N, N-dimethylacrylamide ($75 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 50\% EtOAc in petroleum ether afforded colorless oil (141 mg , 91% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.25$ (s, 3H), 2.28 (s, 3H), 3.00 (s, 3H), 3.05 (s, 3H), 4.90 (s, 2H), 6.94 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (s, 1H), 7.18 (s, 1H), 7.20 (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.1,20.8,35.9,37.3,75.6,118.9,121.8$, $122.8,126.5,128.5,131.6,133.4,133.9,137.1,137.7,149.0,153.8,157.0,166.9 \mathrm{ppm}$. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$311.1760, found 311.1764.

(E)-3-(3-tert-Butyl-2-(pyridin-2-ylmethoxy)phenyl)- N, N-dimethylacrylamide (3e)
tert-Butyl-2-(pyridin-2-ylmethoxy)benzene (121 mg, 0.5 mmol), N, N-dimethylacrylamide ($75 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 50\% EtOAc in petroleum ether afforded colorless oil (159 mg , 94% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.39(\mathrm{~s}, 9 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H})$, 5.03 (s, 2H), 6.88 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.78-7.84$ (m, 2H), 7.89 (d, $J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.9$, 35.2, 35.9, 37.4, 76.7, 119.0, 121.3, 122.7, 124.1, 126.8, 128.7, 130.0, 137.2, 138.5, 143.5, 148.9, 157.0, 157.3, 166.7 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 339.2073, found 339.2069.

(E)-3-(3,5-Di-tert-butyl-2-(pyridin-2-ylmethoxy)phenyl)-N,N-dimethylacrylamide

 (3f)1,3-Di-tert-butyl-4-(pyridin-2-ylmethoxy)benzene (149 mg, 0.5 mmol), N, N-dimethylacrylamide ($75 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol}$) in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 50% EtOAc in petroleum ether afforded a white solid (188 mg , 95% yield). M.p.: $106-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.34(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{~s}$, 9H), 2.99 (s, 3H), 3.05 (s, 3H), 5.05 (s, 2H), 6.87 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.37(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.89(\mathrm{~m}, 3 \mathrm{H}), 8.55(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=31.1,31.6,34.7,35.4,35.9,37.4,76.2,118.8,121.4,122.7$, 123.9, 126.1, 129.1, 137.5, 139.3, 142.5, 146.4, 148.6, 154.6, 157.4, 166.9 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 395.2699$, found 395.2690.

(E)-3-(3-Methoxy-2-(pyridin-2-ylmethoxy)phenyl)-N, N-dimethylacrylamide (3g)

2-(Pyridin-2-ylmethoxy)anisole ($108 \mathrm{mg}, 0.5 \mathrm{mmol}$), N, N-dimethylacrylamide (75 mg , 0.75 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($11.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH $(2 \mathrm{~mL})$ at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 50\% EtOAc in petroleum ether afforded colorless oil ($125 \mathrm{mg}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 2.98 (s, 3H), 3.01 (s, 3H), 3.80 (s, 3H), 5.12 (s, 2H), 6.88 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.19(\mathrm{~m}, 1 \mathrm{H})$, 7.70-7.75 (m, 2H), $7.87(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=35.7,37.2,55.7,75.2,113.1,119.4,119.8,121.9,122.5,124.3$, 129.5, 136.8, 137.0, 146.5, 148.7, 153.0, 157.3, 166.7 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$313.1552, found 313.1553.

(E)-N,N-Dimethyl-3-(1-(pyridin-2-ylmethoxy)naphthalen-2-yl)acrylamide (3h)

1-(Pyridin-2-ylmethoxy)naphthalene (118 mg, 0.5 mmol), N, N-dimethylacrylamide ($75 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($11.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), Boc-Val-OH ($21.7 \mathrm{mg}, 0.1$ mmol), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 50% EtOAc in petroleum ether afforded a white solid ($146 \mathrm{mg}, 88 \%$ yield). M.p.: $120-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.06$ (s, 3H), 3.14 (s, 3H), 5.17 (s, 2H), 7.05 (d, $J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (t, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.51$ (m, 2H), 7.63-7.67 (m, 2H), 7.82-7.89 (m, 3H), 8.15-8.19 (m, 2H), 8.63 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=36.0,37.5,77.4,119.1,122.2,122.9,123.2,124.3,124.4,124.9$, 126.8, 127.3, 128.1, 128.3, 135.5, 136.8, 137.5, 149.1, 154.1, 156.7, 166.9 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$333.1603, found 333.1601.

(E)-N,N-Dimethyl-3-(2-(pyridin-2-ylmethoxy)phenyl)acrylamide (3i)

Pyridin-2-ylmethoxybenzene ($93 \mathrm{mg}, 0.5 \mathrm{mmol}$), N, N-dimethylacrylamide (75 mg , 0.75 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($11.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 50\% EtOAc in petroleum ether afforded a white solid ($88 \mathrm{mg}, 62 \%$ yield). M.p.: $108-110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.06$ (s, 3H), 3.10 (s, 3H), 5.31 (s, 2H), 6.96-7.00 (m, 2H), 7.02 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76-7.81 (m, 1H), $8.02(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=36.0,37.5,70.9,112.6,118.8,121.3,121.7,123.0,124.8$, 129.2, 130.8, 137.4, 137.8, 149.1, 156.86, 156.93, 167.3 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$283.1447, found 283.1443.

(E)-3-(3-Chloro-2-(pyridin-2-ylmethoxy)phenyl)-N,N-dimethylacrylamide (3j)

2-(Pyridin-2-ylmethoxy)chlorobenzene ($110 \mathrm{mg}, 0.5 \mathrm{mmol}$), N, N-dimethylacrylamide ($75 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($11.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), Ac-Ile-OH ($17.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) or Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH $(2 \mathrm{~mL})$ at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 50\% EtOAc in petroleum ether afforded colorless oil (124 mg , 78% yield) or ($81 \mathrm{mg}, 51 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.02(\mathrm{~s}, 3 \mathrm{H}), 3.05$ (s, 3H), 5.10 (s, 2H), 7.03 (d, J = $15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 (t, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.25-7.27 (m, 1H), 7.39 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77-7.79 (m, 2H), 7.81 (d, J = $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=35.9$, 37.3, 75.6, 120.8, 122.2, 123.0, 125.4, 127.4, 129.0, 131.25, 131.29, 136.5, 137.1, 149.0, 153.3, 156.4, 166.5 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 317.1057, found 317.1054.

(E)-3-(3,5-Dichloro-2-(pyridin-2-ylmethoxy)phenyl)- N, N-dimethylacrylamide (3k)

1,3-Dichloro-4-(pyridin-2-ylmethoxy)benzene (127 mg, 0.5 mmol), N, N-dimethylacrylamide ($75 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), Ac-Ile-OH (17.3 mg, 0.1 mmol) or Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and KHCO_{3} ($100 \mathrm{mg}, 1.0 \mathrm{mmol}$) in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 50\% EtOAc in petroleum ether afforded a white solid ($126 \mathrm{mg}, 72 \%$ yield) or ($47 \mathrm{mg}, 27 \%$ yield). M.p.: $108-110{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.03$ (s, 3H), 3.09 (s, 3H), $5.09(\mathrm{~s}, 2 \mathrm{H})$, 6.98 (d, J = $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.83(\mathrm{~m}$,

3H), $8.56(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=36.0,37.5,75.9$, 121.9, 122.3, 123.2, 126.8, 129.9, 130.2, 130.8, 132.4, 135.3, 137.3, 149.0, 152.1, 156.1, 166.1 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$351.0667, found 351.0669 .

(E)-N,N-Dimethyl-3-(3-nitro-2-(pyridin-2-ylmethoxy)phenyl)acrylamide (31)

2-(Pyridin-2-ylmethoxy)nitrobenzene ($115 \mathrm{mg}, 0.5 \mathrm{mmol}$), N, N-dimethylacrylamide ($75 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Ac-Ile-OH ($17.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) or Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH $(2 \mathrm{~mL})$ at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 50% EtOAc in petroleum ether afforded a white solid (98 mg , 60% yield) or ($50 \mathrm{mg}, 31 \%$ yield). M.p.: $110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=3.04(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.64(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.86(\mathrm{~m}, 4 \mathrm{H}), 8.56(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=36.1,37.4,77.5,122.5,123.4,124.9,125.9,132.6,133.4$, 135.3, 137.5, 145.2, 148.88, 148.93, 150.3, 155.6, 166.1 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$328.1297, found 328.1296.

(E)-Butyl 3-(4,5-dimethyl-2-(pyridin-2-ylmethoxy)phenyl)acrylate (3m)

1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene ($106.0 \mathrm{mg}, 0.5 \mathrm{mmol}$), butyl acrylate ($96.0 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 10% EtOAc in petroleum ether afforded colorless oil ($146 \mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.72(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}$,

3H), 2.22 (s, 3H), 4.18 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.26$ (s, 2H), 6.49 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.73 (s, 1H), 7.24-7.26 (m, 1H), 7.31 (s, 1H), $7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.73(\mathrm{~m}$, $1 \mathrm{H}), 8.06(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=13.9,18.9,19.4,20.5,30.9,64.3,71.0,114.3,117.7,121.2,121.3,122.8$, 129.4, 129.6, 137.3, 139.8, 140.9, 149.1, 155.2, 157.2, 167.9 ppm. HRMS (ESI ${ }^{+}$: calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 340.1913$, found 340.1914 .

(E)-tert-Butyl 3-(4,5-dimethyl-2-(pyridin-2-ylmethoxy)phenyl)acrylate (3n)

1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene (106 mg, 0.5 mmol), tert-butyl acrylate ($96 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH (21.7 mg , 0.1 mmol), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 10\% EtOAc in petroleum ether afforded a white solid (128 mg , 75% yield). M.p.: $70-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=1.53$ (s, 9H), 2.19 (s, 3H), 2.22 (s, 3H), 5.26 (s, 2H), $6.41(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=$ 7.2 Hz, 1H), 7.72-7.74 (m, 1H), 8.00 (d, J = $16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.58 (d, J = $4.4 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.9,20.5,28.4,71.0,80.2,114.3,119.5$, 121.3, 122.8, 129.4, 137.3, 138.7, 140.6, 149.0, 155.1, 157.3, 167.1 ppm. HRMS (ESI^{+}): calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 340.1913$, found 340.1909.

(E)-4,5-Dimethyl-1-(pyridin-2-ylmethoxy)-2-styrylbenzene (3o)

1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene ($106 \mathrm{mg}, 0.5 \mathrm{mmol}$), styrene (78 mg , $0.75 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH $(2 \mathrm{~mL})$ at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$.

Purification via silica gel column chromatography using 10\% EtOAc in petroleum ether afforded a white solid ($131 \mathrm{mg}, 83 \%$ yield). M.p.: $70-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=2.24$ (s, 6H), 5.29 (s, 2H), 6.74 (s, 1H), 7.11 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22-7.26 (m, 2H), 7.34 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.73(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.1$, 20.2, 71.2, 114.5, 121.3, 122.7, 123.5, 124.2, 126.5, 127.3, 127.8, 128.3, 128.7, 129.3, 137.2, 137.5, 138.3, 149.0, 153.9, 157.7 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} 316.1701$, found 316.1704.

(E)-4,5-Dimethyl-1-(pyridin-2-ylmethoxy)-2-(4-methylstyryl)benzene (3p)

1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene ($106 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-methylstyrene ($89 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1$ mmol), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 10% EtOAc in petroleum ether afforded a white solid ($147 \mathrm{mg}, 89 \%$ yield). M.p.: $116-118{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=2.23$ (s, 3H), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H})$, $6.74(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=6.4 \mathrm{~Hz}$, 1H), 7.39-7.44 (m, 3H), 7.48 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (t, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.1$, 20.2, 21.3, 71.2, 114.5, 121.3, 122.5, 122.7, 124.4, 126.5, 127.7, 128.3, 129.3, 129.4, 135.5, 137.1, 137.2, 149.0, 153.8, 157.8 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}$ $\left[^{[}+\mathrm{H}\right]^{+}$330.1858, found 330.1856.

(E)-4,5-Dimethyl-1-(pyridin-2-ylmethoxy)-2-(4-chlorostyryl)benzene (3q)

1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene ($106 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-chlorostyrene ($104 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 10% EtOAc in petroleum ether afforded a white solid ($152 \mathrm{mg}, 87 \%$ yield). M.p.: $124-126{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.23$ (s, 6H), 5.28 (s, 2H), 6.73 ($\mathrm{s}, 1 \mathrm{H}$), 7.05 (d, $J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.1,20.2,71.3,114.5,121.3,122.8,123.8,124.2$, 127.0, 127.7, 127.8, 128.9, 129.4, 132.8, 136.8, 137.2, 137.8, 149.2, 154.0, 157.7 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$350.1312, found 350.1312.

(E)-4,5-Dimethyl-1-(pyridin-2-ylmethoxy)-2-(4-fluorostyryl)benzene (3r)

1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene ($106 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-fluorostyrene ($92 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 10% EtOAc in petroleum ether afforded a white solid ($130 \mathrm{mg}, 78 \%$ yield). M.p.: $114-116{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.23$ (s, 6H), 5.28 ($\mathrm{s}, 2 \mathrm{H}$), 6.73 ($\mathrm{s}, 1 \mathrm{H}$), 7.02-7.11 (m, 3H), 7.23 (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.1,20.2,71.3,114.5,115.5,115.7,121.3,122.7,123.32,123.34,124.0,127.1$, 127.7, 127.9, 128.0, 129.4, 134.45, 134.49, 137.1, 137.5, 149.1, 153.9, 157.7, 161.0, 163.5 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+} 334.1607$, found 334.1606.

(E)-4,5-Dimethyl-1-(pyridin-2-ylmethoxy)-2-(3-chlorostyryl)benzene (3s)

1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene ($106 \mathrm{mg}, 0.5 \mathrm{mmol}$), 3-chlorostyrene (276 mg, 2.0 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 10% EtOAc in petroleum ether afforded a white solid ($126 \mathrm{mg}, 72 \%$ yield). M.p.: $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=2.23$ (s, 6H), 5.28 (s, 2H), 6.73 (s, 1H), 7.04 (d, J = 16.4 Hz, 1H), 7.18-7.26 (m, 3H), 7.36-7.38 (m, 2H), 7.51-7.55 (m, 3H), 7.72 (t, J = 7.6 Hz, $1 \mathrm{H}), 8.61(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.1,20.3,71.4$, 114.6, 121.3, 122.8, 123.7, 124.8, 125.1, 126.3, 126.8, 127.1, 127.9, 129.4, 129.9, 134.7, 137.2, 138.0, 140.2, 149.2, 154.1, 157.6 ppm. HRMS (ESI ${ }^{+}$: calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$350.1312, found 350.1307.

(E)-4,5-Dimethyl-1-(pyridin-2-ylmethoxy)-2-(3,4-dimethoxystyryl)benzene (3t)

1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene (106 mg, 0.5 mmol), 3,4-dimethoxystyrene ($123 \mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol}$), Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol}$) in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 10% EtOAc in petroleum ether afforded a white solid (141 mg , 75% yield). M.p.: $58-60{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.22$ (s, 6 H), 3.90 (s, 3H) 3.93 (s, 3H), 5.28 (s, 2H), 6.72 (s, 1H), 6.85 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.09$ (m, 3H), 7.22 (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38-7.42 (m, 2H), 7.57 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (t, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.1$, 20.2, 55.9, 56.1, 71.3, 108.9, 111.4, 114.5, 119.7, 121.3, 121.7, 122.7, 124.4, 127.6, 128.1, 129.4, 131.5, 137.1, 148.7, 149.1, 149.2, 153.8, 157.8 ppm. HRMS (ESI'): calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$376.1913, found 376.1914.

$\left(3 u+3 u^{\prime}\right)$
1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene ($106 \mathrm{mg}, 0.5 \mathrm{mmol}$), n-decene (105 $\mathrm{mg}, 0.75 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH $(2 \mathrm{~mL})$ at $90^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 10% EtOAc in petroleum ether afforded a mixture as colorless oil ($132 \mathrm{mg}, 75 \%$ yield). The two products could not be isolated by silica gel column chromatography, but a single ortho-alkyl phenol 3ua could be obtained by catalytic hydrogenation of the mixture ($\mathbf{3} \mathbf{u}+\mathbf{3} \mathbf{u}^{\prime}, 1: 1.5$).

2-Decyl-4,5-dimethylphenol (3ua)

To a stirred solution of the mixture ($\mathbf{3} \mathbf{u}+\mathbf{3} \mathbf{u}^{\mathbf{\prime}}, 0.3 \mathrm{mmol}$) and absolute EtOH (6.0 mL) was added $\mathrm{Pd} / \mathrm{C}(100 \mathrm{mg}, 10 \% \mathrm{Pd})$. After being stirred under an atmosphere of H_{2} (balloon) for overnight, the mixture was filtered over a pad of celite with EtOAc (20 mL) and concentrated under reduce pressure. The residue was purified by flash chromatography over silica gel to give desired product 3ua as colorless oil (71 mg , 90% Yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.32(\mathrm{~m}$, 14H), 1.56-1.61 (m, 2H), 2.16 (s, 3H), 2.17 (s, 3H), 2.50 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.47 (br. s., 1H), $6.56(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.3,18.9$, $19.45,19.48,22.8,29.5,29.7,29.8,29.9,30.0,30.3,32.1,116.8,125.7,128.6,131.4$, 135.2, 151.4 ppm. HRMS (ESI ${ }^{+}$: calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$285.2194, found 285.2196.

$\left(3 v+3 v^{\prime}\right)$
1,2-Dimethyl-4-(pyridin-2-ylmethoxy)benzene (106 mg, 0.5 mmol), n-dodecene (126
$\mathrm{mg}, 0.75 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(100 \mathrm{mg}, 1.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 10% EtOAc in petroleum ether afforded a mixture as colorless oil ($125 \mathrm{mg}, 66 \%$ yield). The two products could not be isolated by silica gel column chromatography, but a single ortho-alkyl phenol 3va could be obtained by catalytic hydrogenation of the mixture ($\mathbf{3 v}+\mathbf{3} \mathbf{v}{ }^{\prime}, 1: 2.5$).

2-Dodecyl-4,5-dimethylphenol (3va)

To a stirred solution of the mixture ($\mathbf{3} \mathbf{v}+\mathbf{3} \mathbf{v}^{\mathbf{\prime}}, 0.3 \mathrm{mmol}$) and absolute EtOH (6.0 mL) was added $\mathrm{Pd} / \mathrm{C}(100 \mathrm{mg}, 10 \% \mathrm{Pd})$. After being stirred under an atmosphere of H_{2} (balloon) for overnight, the mixture was filtered over a pad of celite with EtOAc (20 mL) and concentrated under reduce pressure. The residue was purified by flash chromatography over silica gel to give desired product 3va as colorless oil (75 mg , 86% Yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.32(\mathrm{~m}$, 18 H), 1.54-1.59 (m, 2H), 2.16 ($\mathrm{s}, 3 \mathrm{H}$), 2.17 (s, 3H), 2.50 (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.48 (br. s., 1H), $6.56(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.3,18.9$, 19.45, 19.48, 22.8, 27.9, 29.5, 29.71, 29.77, 29.80, 29.83, 30.0, 30.3, 32.1, 116.7, 125.7, 128.6, 131.4, 135.2, 151.4 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$ 313.2507 , found 313.2510.

(2E,2'E)-3,3'-(2-(Pyridin-2-ylmethoxy)-1,3-phenylene)bis(N, N-dimethylacrylami de) (4a)

Pyridin-2-ylmethoxybenzene ($93 \mathrm{mg}, 0.5 \mathrm{mmol}$), N, N-dimethylacrylamide (248 mg , $2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(200 \mathrm{mg}, 2.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$.

Purification via silica gel column chromatography using 50\% acetone in petroleum ether afforded a slight yellow solid ($139 \mathrm{mg}, 73 \%$ yield). M.p.: $38-40{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.01$ (s, 6H), 3.05 (s, 6H), 4.95 (s, 2H), 7.02 (d, $J=15.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.73-7.79 (m, 2H), 7.86 (d, $J=15.6 \mathrm{~Hz}, 2 \mathrm{H}$), 8.54 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=36.0,37.4,76.8,120.3,122.2,123.1,125.1,130.0,130.1$, 137.0, 137.2, 149.2, 156.3, 156.4, 166.7 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$ [$\mathrm{M}+\mathrm{H}]^{+}$380.1974, found 380.1967.

(2E,2'E)-3,3'-(5-Methyl-2-(pyridin-2-ylmethoxy)-1,3-phenylene)bis(N,N-dimethyl acrylamide) (4b)

4-(Pyridin-2-ylmethoxy)toluene ($100 \mathrm{mg}, 0.5 \mathrm{mmol}$), N, N-dimethylacrylamide (248 $\mathrm{mg}, 2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Boc}-V a l-\mathrm{OH}(21.7 \mathrm{mg}, 0.1 \mathrm{mmol})$, and $\mathrm{KHCO}_{3}(200 \mathrm{mg}, 2.0 \mathrm{mmol})$ in t-AmylOH $(2 \mathrm{~mL})$ at $90{ }^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 50% acetone in petroleum ether afforded a white solid ($142 \mathrm{mg}, 72 \%$ yield). M.p.: $152-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=2.37$ (s, 3H), $3.02(\mathrm{~s}, 6 \mathrm{H}), 3.08(\mathrm{~s}, 6 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H})$, 6.99 (d, J = 15.6 Hz, 2H), 7.30-7.31 (m, 1H), 7.35 (s, 2H), 7.83-7.87 (m, 4H), 8.53 (d, $\mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.0,36.0,37.4,76.5,120.0$, 122.4, 123.2, 129.6, 130.4, 134.5, 137.0, 137.7, 148.7, 154.2, 156.2, 166.8 ppm. HRMS (ESI'): calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$394.2131, found 394.2130.

(2E,2'E)-3,3'-(5-tert-Butyl-2-(pyridin-2-ylmethoxy)-1,3-phenylene)bis(N, N-dimet hylacrylamide) (4c)
tert-Butyl-4-(pyridin-2-ylmethoxy)benzene (121 mg, 0.5 mmol), N, N-dimethylacrylamide ($248 \mathrm{mg}, 2.5 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(200 \mathrm{mg}, 2.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 50% acetone in petroleum ether afforded a white solid (164 mg , 75% yield). M.p.: $162-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.35$ (s, 9 H), 3.02 (s, 6H), 3.06 (s, 6H), 4.97 (s, 2H), 7.03 (d, J = $15.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28 (t, J = $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.53(\mathrm{~s}, 2 \mathrm{H}), 7.80-7.87(\mathrm{~m}, 4 \mathrm{H}), 8.56(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=31.4,34.6,36.0,37.4,76.0,120.0,122.2,123.1,127.5,129.2,137.6$, 137.7, 147.7, 148.8, 154.1, 156.4, 166.9 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$436.2600, found 436.2603.

(2E,2'E)-3,3'-(5-Methoxy-2-(pyridin-2-ylmethoxy)-1,3-phenylene)bis(N,N-dimeth ylacrylamide) (4d)

4-(Pyridin-2-ylmethoxy)anisole ($108 \mathrm{mg}, 0.5 \mathrm{mmol}$), N, N-dimethylacrylamide (248 $\mathrm{mg}, 2.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Boc}-\mathrm{Val}-\mathrm{OH}(21.7 \mathrm{mg}, 0.1 \mathrm{mmol})$, and $\mathrm{KHCO}_{3}(200 \mathrm{mg}, 2.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 20 h under 1 atm O_{2}. Purification via silica gel column chromatography using 50% acetone in petroleum ether afforded a slight yellow solid ($143 \mathrm{mg}, 70 \%$ yield). M.p.: $167-170{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=3.02$ (s, 3H), 3.07 (s, 6H), 3.85 (s, 6H), 4.97 (s, 2H), 6.99 (d, J = $15.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.06 (s, 2H), 7.30 (t, J = $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.81-7.89 (m, 4H), $8.55(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=36.0,37.4,55.9,76.5$, 114.7, 120.5, 122.5, 123.2, 130.7, 136.9, 137.9, 148.5, 150.2, 156.2, 166.7 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 410.2080$, found 410.2075.

(2E,2'E)-Di-Butyl 3,3'-(5-methoxy-2-(pyridin-2-ylmethoxy)-1,3-phenylene)

diacrylate (4e)

4-(Pyridin-2-ylmethoxy)anisole (108 mg, 0.5 mmol), n-butyl acrylate ($320 \mathrm{mg}, 2.5$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(200 \mathrm{mg}, 2.0 \mathrm{mmol})$ in t-AmylOH $(2 \mathrm{~mL})$ at $90{ }^{\circ} \mathrm{C}$ for 12 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 10\% EtOAc in petroleum ether afforded a slight yellow solid ($187 \mathrm{mg}, 80 \%$ yield). M.p.: $60-62{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=0.90$ (t, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$), 1.33-1.43 (m, 4H), 1.60-1.67 (m, 4H), 3.83 (s, 3H), 4.14 (t, $J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 6.41$ (d, $J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ (s, 2H), 7.26-7.27 (m, 1H), 7.67 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (m, 1H), 7.90 (d, $J=16.0 \mathrm{~Hz}$, $2 \mathrm{H}), 8.57(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=13.9,19.3,30.8$, 55.8, 64.6, 78.2, 114.4, 120.7, 122.2, 123.2, 130.0, 137.4, 138.5, 149.1, 150.7, 156.1, 156.3, 166.8 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$468.2386, found 468.2384 .

(E)-Butyl 3-(3-((E)-3-(dimethylamino)-3-oxoprop-1-enyl)-5-methoxy-

2-(pyridin-2-ylmethoxy)phenyl)acrylate (4f)

4-(Pyridin-2-ylmethoxy)anisole ($108 \mathrm{mg}, 0.5 \mathrm{mmol}$), N, N-dimethylacrylamide (50 mg , $0.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol})$, Boc-Val-OH ($21.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{KHCO}_{3}(200 \mathrm{mg}, 2.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90{ }^{\circ} \mathrm{C}$ for 10 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Subsequently, butyl acrylate ($96.0 \mathrm{mg}, 0.75 \mathrm{mmol}$) was added for another 10 h under $1 \mathrm{~atm} \mathrm{O}_{2}$. Purification via silica gel column chromatography using 50\% EtOAc in petroleum ether afforded a white solid ($105 \mathrm{mg}, 48 \%$ yield). M.p.: $64-66{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=0.87(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.64(\mathrm{~m}, 2 \mathrm{H})$, 3.00 (s, 3H), 3.05 (s, 3H), 3.81 (s, 3H), 4.12 (t, J = $6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.89 (s, 2H), 6.38 (d, $\mathrm{J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.00-7.08 (m, 3H), $7.21(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.90$ $(\mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
13.9, 19.3, 29.8, 36.1, 37.5, 55.9, 64.6, 77.8, 112.9, 116.4, 120.5, 120.7, 122.2, 123.1, 129.9, 130.9, 136.9, 137.1, 138.8, 149.4, 150.6, 156.2, 156.4, 166.7, 166.9 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$439.2233, found 439.2232.

(E)-3,3'-Bis(4-chlorostyryl)-2,2'-bis(pyridin-2-ylmethoxy)-1,1'-binaphthyl (4g)

2,2'-Bis(pyridin-2-ylmethoxy)-1,1'-binaphthyl ($234 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-chlorostyrene ($345 \mathrm{mg}, 2.5 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ (11.2 mg, 0.05 mmol), Boc-Val-OH ($21.7 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, and $\mathrm{KHCO}_{3}(200 \mathrm{mg}, 2.0 \mathrm{mmol})$ in t-AmylOH (2 mL) at $90^{\circ} \mathrm{C}$ for 12 h under 1 atm O_{2}. Purification via silica gel column chromatography using 15% EtOAc in petroleum ether afforded a white solid ($204 \mathrm{mg}, 55 \%$ yield). M.p.: $110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=4.70(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.79 (d, J = 7.6 Hz, 2H), 7.01 (t, J = 6.4 Hz, 2H), 7.19-7.30 (m, 10H), 7.38-7.41 (m, 8H), 7.49 (d, J = $16.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.86 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.18 (s, 2H), 8.30 (d, J = 4.8 $\mathrm{Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=76.3,121.4,122.4,124.6,125.6$, 125.8, 125.9, 126.4, 126.9, 128.0, 128.2, 129.0, 129.7, 131.1, 133.5, 133.8, 136.1, 136.7, 136.8, 148.3, 153.8, 157.2 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{48} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 741.2076$, found 741,2071.

VI. Deprotection of ortho-alkenylated phenols and characterization

General procedure for deprotection by catalytic hydrogenation

Method A ($\left.\mathrm{H}_{2}, 1 \mathrm{~atm}\right)$: To a stirred solution of ortho-alkenyl phenol ethers (0.3 mmol) in absolute EtOH (6.0 mL) was added Pd/C ($100 \mathrm{mg}, 10 \% \mathrm{Pd}$). After being stirred under an atmosphere of H_{2} (balloon) for overnight, the mixture was filtered over a pad
of celite with EtOAc (20 mL) and concentrated under reduced pressure. The residue was purified by flash chromatography over silica gel to give corresponding phenols.

Method B ($\mathrm{H}_{2}, 15 \mathrm{~atm}$): To a stirred solution of ortho-alkenyl phenol ethers (0.3 mmol) in absolute EtOH (6.0 mL) was added Pd/C ($10 \mathrm{mg}, 10 \% \mathrm{Pd}$). After being stirred under $15 \mathrm{~atm} \mathrm{H}_{2}$ for overnight, the mixture was filtered over a pad of celite with EtOAc (20 mL) and concentrated under reduce pressure. The residue was purified by flash chromatography over silica gel to give the corresponding phenols.

3-(2-Hydroxy-4,5-dimethylphenyl)-N,N-dimethylpropanamide (3ca)

The product 3ca was synthesized according to Method A (60 mg, 90\% yield) or Method B ($61 \mathrm{mg}, 92 \%$ yield) as a white solid. M.p.: 122-124 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.15$ (s, 3H), 2.17 (s, 3H), 2.66-2.69 (m, 2H), 2.86-2.89 (m, 2H), 2.93 (s, 3H), 2.95 (s, 3H), 6.73 (s, 1H), 6.80 (s, 1H), 9.40 (br. s., 1H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=18.8,19.6,24.3,35.7,36.0,37.2,119.3,125.6,127.9,131.7$, 136.3, 153.4, 174.0 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$244.1313, found 244.1317.

3-(3-tert-Butyl-2-hydroxyphenyl)-N,N-dimethylpropanamide (3ea)

The product 3ea was synthesized according to Method A as colorless oil (63 mg , 83% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.42$ (s, 9H), $2.70(\mathrm{t}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.92-2.95 (m, 8H), 6.75 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $9.79(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.7,29.9,35.1,35.8$, 36.1, 37.2, 119.4, 125.2, 128.6, 129.5, 138.6, 154.6, 174.2 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$272.1626, found 272.1625.

3,3'-(2-Hydroxy-1,3-phenylene)bis(N, N-dimethylpropanamide) (4aa)

The product 4aa was synthesized according to Method A as a white solid (75 mg, 85% yield). M.p.: $148-150{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.66(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 4H), 2.93-2.99 (m, 16H), 6.73 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.87$ (s, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.2,34.9,35.8,37.4,119.9,128.9,129.2$, 153.8, 173.8 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$315.1685, found 315.1683.

General procedure for deprotection by $\mathbf{M g}$ in methanol

To a stirred solution of (E)-3-(4,5-dimethyl-2-(pyridin-2-ylmethoxy)phenyl)- N, N-di methylacrylamide ($\mathbf{3 c}$, 0.3 mmol) in $\mathrm{MeOH}(10 \mathrm{~mL}$) was added Mg turnings (50.4 mg , 2.1 mmol) at $0^{\circ} \mathrm{C}$. The suspension then warmed to room temperature and stirred for 24 h . The mixture was filtered over a pad of celite with EtOAc (20 mL). The filtrate was successively washed with aqueous saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO} 4\right)$ and then concentrated under reduced pressure. The residue was purified by flash chromatography to give the corresponding product 3ca as a white solid ($47 \mathrm{mg}, 70 \%$). M.p.: $122-124{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 2.15 (s, 3H), 2.17 (s, 3H), 2.66-2.69 (m, 2H), 2.86-2.89 (m, 2H), 2.93 (s, 3H), 2.95 (s, 3H), 6.73 (s, 1H), $6.80(\mathrm{~s}, 1 \mathrm{H}), 9.40$ (br. s., 1 H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=18.8,19.6,24.3,35.7,36.0,37.2,119.3,125.6,127.9,131.7,136.3,153.4,174.0$ ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$244.1313, found 244.1317.

General procedure for deprotection by $\mathbf{B B r}_{3}$

To a solution of ortho-alkenyl phenol ethers (2 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at -40 ${ }^{\circ} \mathrm{C}$ was slowly added BBr_{3} (3 mL , 4.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 12 \mathrm{mmol}$) under a
nitrogen atmosphere. The solution was stirred for 15 min at the same temperature and then allowed to worm to room temperature and further stirred 40 h . The reaction was quenched with excess amount of $\mathrm{H}_{2} \mathrm{O}$. Then the mixture was neutralized by NaHCO_{3}. Subsequently, the mixture was worked up by an appropriate method to give the desired products.

(E)-3-(2-Hydroxy-4,5-dimethylphenyl)-N,N-dimethylacrylamide (3cb)

The crude product was precipitated after neutralization by NaHCO_{3}, and was purified by flash chromatography to give the corresponding product 3cb as a white solid (341 $\mathrm{mg}, 78 \%$ yield). M.p.: $>250{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=2.13(\mathrm{~s}, 3 \mathrm{H})$, 2.14 (s, 3H), 2.92 (s, 3H), 3.13 (s, 3H), 6.67 (s, 1H), 7.03 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (s, $1 \mathrm{H}), 7.67(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.62(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): δ $=18.3,19.5,35.3,36.8,115.8,117.1,119.2,126.7,128.7,136.6,139.1,154.2,166.2$ ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$242.1157, found 242.1153.

(E)-2-(4-Chlorostyryl)-4,5-dimethylphenol (3qb)

After the neutralization, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to dryness. The residue was purified by column chromatography to give the desired products as a white solid (319 $\mathrm{mg}, 62 \%$ Yield). M.p.: $118-120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.29(\mathrm{~s}, 3 \mathrm{H})$, 2.32 (s, 3H), 4.70 (br. s, 1H), 7.04 (s, 1H), 7.22 (d, $J=15.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.35 (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=19.2,20.2,118.9,122.3,128.85,128.89,129.00,129.5,131.07,131.10,133.0$, 139.1, 144.4, 150.2 ppm. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}[\mathrm{M}+\mathrm{Na}]^{+}$281.0709,
found 281.0714.

References:

1 I. M. Pastor, P. Västilä and H. Adolfsson, Chem. Eur. J., 2003, 9, 4031.

2 B.-F. Shi, N. Maugel, Y.-H. Zhang and J.-Q. Yu, Angew. Chem. Int. Ed., 2008, 47, 4882.

3 H. K. Chenault, J. Dahmer, and G. M. Whitesides, J. Am. Chem. Soc., 1989, 111, 6354.

VII. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

$\stackrel{\rightharpoonup}{8}$
$\stackrel{\rightharpoonup}{8}$

$\sim \infty$
$\stackrel{\infty}{\infty}$
$\stackrel{\infty}{\sim}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

$\begin{aligned} & \text { f } \\ & \stackrel{\sim}{\circ} \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{o} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { ñ } \\ & \text { ïn } \end{aligned}$	T

8
∞
i

1	1	,		1	1			1	1	1		1			1			
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

$\stackrel{n}{\stackrel{n}{8}}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

132	130	128	$\begin{array}{l}126 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$	124	122

$\begin{array}{lllllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \begin{array}{c}90 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

Electronic Supplementary Material（ESI）for Chemical Communications This journal is © The Royal Society of Chemistry 2012

ず	$\stackrel{\sim}{*}$	ふ						
¢	\％	\cdots						
1		｜						

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

$\stackrel{\circ}{\stackrel{\circ}{1}}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

$\begin{array}{ll}n & n \\ \underset{\sim}{\sim} & \text { n } \\ \underset{1}{n} & \text { in }\end{array}$

	1							1	1			,	+				
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

170	1								1	7		10	1			10	
170	160	150	140	130	120	110	100	90		70	60	50	40	30	20	10	0

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

| ∞ |
| :--- | :--- |
| $\stackrel{\infty}{\circ}$ |
| $\stackrel{5}{\circ}$ |
| 1 |

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

1							1		1		1	+	,			
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

											1	10	60	50	10	1	10		+
190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \mathrm{f} 1 \end{array}$		80	70	60	50	40	30	20	10	0

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

[^0]

8
$\stackrel{a}{3}$
$\stackrel{y}{1}$
テ~

\approx へに								
\|								

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

3j

製

N.
तो
Ni

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

T	1	+	1		1	1	1	1	1	1	1	1				
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

৷ नa

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

$4 g$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012
$\stackrel{\text { g }}{\substack{\text { an } \\ i}}$

$\stackrel{\text { ※̃ }}{1}$

3ea

3ea

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

4aa

$\begin{array}{lllllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

in

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

3qb

		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \underset{\sim}{1} \end{aligned}$		$\begin{aligned} & \circ 8 \\ & \frac{m}{m} \frac{m}{v} \end{aligned}$			
	ram	mans		araman	SNarl\|	Mom	
$\stackrel{\top}{135}$	134	133	132	${ }^{131}(\mathrm{ppm}) 130$	129	128	127

3qb

160	1											
160	150	140	130	120	110	100	90	80 $\mathrm{fl}(\mathrm{ppm})$	70	60	50	40

[^0]:

