Rhodium-catalyzed cysteine modification with diazo reagents

Rituparna Kundu, Zachary T. Ball*

Department of Chemistry, Rice University, MS 60, 6100 Main Street, Houston, Texas 77005 zb1@rice.edu

Supporting Information

Contents

General Considerations
Experimental
Synthesis of known compounds
Modification of CALP (10 μ M):S3
General Procedure for Trypsin Digestion of Modified CALP and MS/MS Analysis of Modified CALP Peptides:
General Procedure for Blocking Cysteine residue on CALP: ⁷
Control Reactions for Modification of CALP:
General Protocol for the Modification of Peptides (25 $\mu M)$:
General protocol for the Modification of Peptide AQPADRCGGLA using Biotin- Maleimide:
General Protocol for Stability Study of S-C Linkages in Human Plasma Serum:
Rh ₂ (OAc) ₄ Catalyzed Modification of CALP in a Mixture of Other Proteins:
Biotin-Maleimide Catalyzed Modification of CALP in a Mixture of Other Proteins: S6
Western Blot Analysis
Characterization for AQPADRXCGGLA (X= R, K, A) Peptides:
References

General Considerations.

Solvents and reagents were purchased from Fisher Scientific (unless mentioned otherwise) and used as received. Millipore ultra-purified water ($18 M\Omega$) was used in all cases.

Peptide synthesis. All peptides were manually synthesized using standard solid-phase Fmoc protocols.^{1,2} Rink amide MBHA resin (AAPPTEC) to afford C-terminal amides. The peptides were acetylated at the N-terminus prior to cleavage from the resin. The purification was accomplished by reverse-phase HPLC with gradients of water-acetonitrile containing 0.1% trifluoroacetic acid, and peptides were isolated by lyophilization. Analysis and purity assessment was attained by mass spectrometry and analytical HPLC.

HPLC. HPLC was performed on a Shimadzu CBM-20A instrument with Phenomenex Jupiter 4µ Proteo 90A (250×15 mm preparative) and Phenomenex Jupiter 4µ Proteo 90A (250×4.6 mm analytical) columns. Flow rates of 8 mL/min and 1 mL/min were used for preparative and analytical columns, respectively. Analytical and preparative HPLC were performed with gradient of acetonitrile in water. Both solvents contained 0.1% trifluoroacetic acid (TFA) unless otherwise noted. Data was collected using UV-vis absorption at 220 nm and 300 nm.

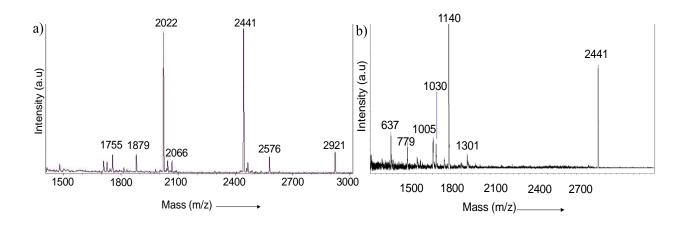
Mass Spectrometry.

MALDI-TOF MS and MS/MS analyses were performed on a Bruker Daltonics Autoflex MALDI-TOF/TOF mass spectrometer with α -cyano-4-hydroxycinnamic acid matrix (CHCA, Thermo Scientific, 10 mg/mL) for peptide samples and 2,4-dihydroxyacetophenone (DHAP, Fluka, 10 mg/mL) for protein samples. ESI-MS was performed on a Bruker Daltonics microTOF instrument. Data analysis was performed on mMass program.^{3,4}

Experimental

Synthesis of known compounds.

The protein CALP⁵ and biotin diazo⁶ reagent 1 was prepared and purified according to published procedures.


Modification of CALP (10 µM):

To a 250 μ L microcentrifuge tube, 68.7 μ L of millipore water was added, along with 10 μ L aqueous solution of tert-butyl hydroxylamine hydrochloride (100 mM, pH 6.2). To this 10 μ L of CALP (100 μ M) was added, followed by the addition of 1 μ L aqueous solution of Rh₂(OAc)₄ (1 mM). The reaction mixture was vortexed briefly and 1.7 μ L t-butanol solution of the biotin-diazo 1 (60 mM) was added in the end. The reaction mixture was centrifuged and then incubated on a laboratory low speed shaker at 4 °C for 5 h. The reaction mixture was quenched using 20 μ L of MeCN and then analyzed using MALDI-TOF.

The rhodium catalyst can be removed along with other small molecules like biotin diazo by desalting the reaction mixture using a μ C18 ZipTip[®] pipet tip.

General Procedure for Trypsin Digestion of Modified CALP and MS/MS Analysis of Modified CALP Peptides:

100 µL of the CALP (20 µM) modification reaction mixture was centrifuged and then heated at 65 °C in a water bath for 30 min. This was diluted with 100 µL aqueous solution of NH₄HCO₃ (80 mM, pH 7.8) followed by the addition of 1.1 µL of trypsin solution (Promega, 100 µg reconstituted in 100 µL of 50 mM acetic acid). The digest was incubated at 37 °C for 6 h. The crude digest was desalted using µC18 ZipTip[®] pipet tip and then analyzed by MALDI-TOF. After analyzing the digestion data using mMass program, MS/MS was performed on the singly modified peptide fragment m/z = 2441 using MALDI-TOF.

Figure S1. a) Modified CALP trypsin digest. Native peptide fragment containing C44, expected m/z = 1879; singly-modified, expected m/z = 2441. (m/z = 2022 corresponds to native peptide fragment V6-K24 + K⁺ adduct) b) MS/MS sequencing of singly modified fragment, m/z = 2441 (Detailed analysis shown in communication).

General Procedure for Blocking Cysteine residue on CALP:7

In a 2 mL centrifuge tube, 3 mg of lyophilized CALP was taken and dissolved in 1.5 ml Na_2SO_3 buffer* and incubated at 25 °C for 1 h keeping the tube open. The blocked protein solution is then desalted by dialyzing it in PDZ buffer* (pH 7.4).

*Na₂SO₃ buffer recipe- 0.05 M Na₂SO₃, 0.2 mM cysteine, 6 M guanidine hydrochloride, 0.1 M Tris chloride (pH 8.4).

PDZ buffer recipe – 5% glycerol, 25 mM Na₃PO₄, 150 mM NaCl, 0.02% NaN₃, 0.1 mM TCEP (pH 7.4).

Control Reactions for Modification of CALP:

- a) In absence of $Rh_2(OAc)_4$: To a 250 µL microcentrifuge tube, 69.7 µL of millipore water was added, along with 10 µL aqueous solution of tert-butyl hydroxylamine hydrochloride (100 mM, pH 6.2). To this 10 µL of CALP (100 µM) was added. The reaction mixture was vortexed briefly and 1.7 µL t-butanol solution of the biotin-diazo 1 (60 mM) was added in the end. The reaction mixture was centrifuged and then incubated on a laboratory low speed shaker at 4 °C for 5 h. The reaction mixture was quenched using 20 µL of MeCN and then analyzed using MALDI-TOF.
- b) In absence of diazo 1: To a 250 μ L microcentrifuge tube, 70.4 μ L of millipore water was added, along with 10 μ L aqueous solution of tert-butyl hydroxylamine hydrochloride (100 mM, pH 6.2). To this 10 μ L of CALP (100 μ M) was added, followed by the addition of 1 μ L aqueous solution of Rh₂(OAc)₄ (1 mM). The reaction mixture was centrifuged and then incubated on a laboratory low speed shaker at 4 °C for 5 h. The reaction mixture was quenched using 20 μ L of MeCN and then analyzed using MALDI-TOF.

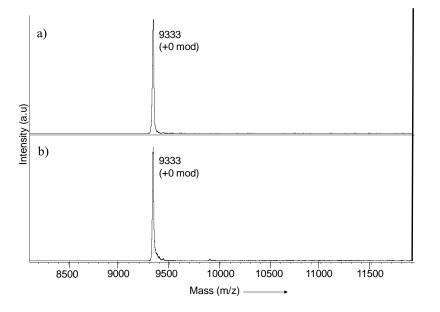
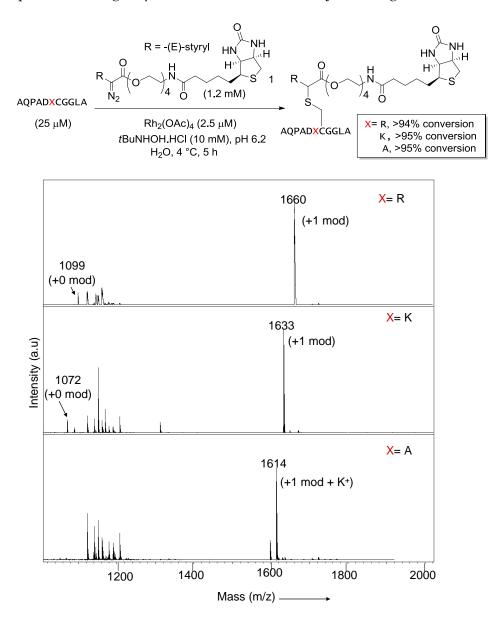



Figure S2. a) Control reaction in absence of the catalyst Rh₂(OAc)₄.b) Control reaction in absence of diazo reagent 1.

General Protocol for the Modification of Peptides (25 μ M) :

To a 250 μ L microcentrifuge tube, 85.3 μ L of millipore water was added, along with 10 μ L aqueous solution of tert-butyl hydroxylamine hydrochloride (100 mM, pH 6.2). To this 2.5 μ L of peptide (1 mM) was added, followed by the addition of 0.25 μ L aqueous solution of Rh₂(OAc)₄ (1 mM). The reaction mixture was vortexed briefly and 2 μ L t-butanol solution of the biotin-diazo 1 (60 mM) was added in the end. The reaction mixture was centrifuged and then incubated on a laboratory low speed shaker at 4 °C for 5 h. The reaction mixture was quenched using 20 μ L of MeCN and then analyzed using MALDI-TOF.

Figure S6. Modification of peptides AQPADXCGGLA (X= R, K, A), catalyzed by Rh₂(OAc)₄ using diazo **1**.

General protocol for the Modification of Peptide AQPADRCGGLA using Biotin-Maleimide:

To a 500 μ L centrifuge tube, 314 μ L of millipore water was added, along with 36.4 μ L of buffer*. To this 9.1 μ L of AQPADRCGGLA (1 mM) was added, followed by the addition of 4.55 μ L of biotin-maleimide (Sigma Aldrich, 1 mM solution in DMF). The reaction mixture was centrifuged and then incubated on a laboratory low speed shaker at 4 °C for 5 h. The reaction mixture was analyzed using MALDI-TOF. This was lyophilized and used in the stability study in human plasma serum.

*Buffer recipe - 100 mM Na₃PO₄, 5 mM EDTA, pH 7.5.

General Protocol for Stability Study of S-C Linkages in Human Plasma Serum:

To a 500 μ L centrifuge tube containing the lyophilized modified peptide, 200 μ L of human plasma serum (Fischer Scientific) was added. along with $\mathbf{2}$ μL of phenylmethanesulfonylfluoride (100 mM solution in isopropanol). The reaction mixture was centrifuged and then incubated at 37 °C. At different time intervals, 10 µL aliquots of the reaction mixture were taken out and guenched with 60 µL of MeCN. This was centrifuged and the solution was analyzed using MALDI-TOF.

Rh₂(OAc)₄ Catalyzed Modification of CALP in a Mixture of Other Proteins:

To a 250 μ L microcentrifuge tube, 67.95 μ L of millipore water was added, along with 10 μ L aqueous solution of tert-butyl hydroxylamine hydrochloride (100 mM, pH 6.2). To this 15 μ L of CALP (100 μ M) was added, followed by the addition of 3 μ L of BioRad polypeptide standard[†]. The reaction mixture was vortexed briefly and 1.5 μ L aqueous solution of Rh₂(OAc)₄ (1 mM) was added to it. Finally 2.55 μ L of biotin-diazo 1 (60 mM solution in t-butanol) was added. The reaction mixture was centrifuged and then incubated on a laboratory low speed shaker at 4 °C for 5 h. The reaction mixture was quenched using 20 μ L of MeCN and then analyzed using Western blot.

[†] 3 μ L of Biorad polypeptide standard contains 13.5 μ g of the proteins aprotinin, α lactalbumin, myoglobin and triose-phosphate isomerase (TIM).

Biotin-Maleimide Catalyzed Modification of CALP in a Mixture of Other Proteins:

To a 250 μ L microcentrifuge tube, 89 μ L of buffer* was added, along with 3 μ L of CALP (500 μ M) and 3 μ L of BioRad polypeptide standard[†]. The reaction mixture was vortexed briefly and 5 μ L of biotin-maleimide (Sigma Aldrich, 5 mM solution in DMF) was added to it. The reaction mixture was centrifuged and then incubated on a laboratory low speed shaker at 4 °C for 5 h. The reaction mixture was quenched using 20 μ L of MeCN and then analyzed using Western blot.

*Buffer recipe – 100 mM Na₃PO₄, 5 mM EDTA, pH 7.5.

[†] 3 μ L of Biorad polypeptide standard contains 13.5 μ g of the proteins aprotinin, α -lactalbumin, myoglobin and triose-phosphate isomerase (TIM).

Western Blot Analysis. A crude reaction sample (0.50 μ L) was analyzed directly by SDS-PAGE (10% Tris-Tricine gel, Invitrogen). Proteins were then transferred to a nitrocellulose membrane (GE Healthcare), which was subsequently blocked in 8% milk (8% milk in 100 mL TBS-T*) for 2 h. The membrane was incubated with avidin-horseradish peroxidase conjugate (blotting grade, Bio-Rad) solution (1% in TBS-T) for 1 h, followed by washing with TBS-T (3 × 5 min) and TBS (1×15 min). Blots were developed with chemiluminescent

substrate (RapidStep ECL Reagent, Calbiochem) and images recorded with a Fujifilm LAS-4000 instrument. An estimate of the extent of biotinylation was obtained by comparison to control lanes of authentic HRP-biotin standard (Invitrogen) and quantified using Multi Gauge Version 3.0.

*TBS recipe: 2.4 g tris base, 29.22 g NaCl, was dissolved in 900 mL water, and adjusted to pH 7.5 and then the volume was made up to 1 L.

TBS-T recipe: 1 mL of Tween 20 in 500 mL of TBS solution.

Characterization for AQPADRXCGGLA (X= R, K, A) Peptides:

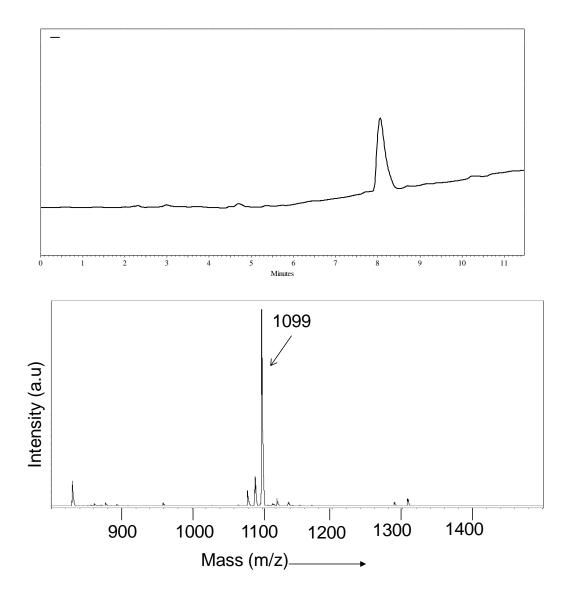


Figure S3. HPLC trace and MALDI-MS of peptide AQPADRCGGLA

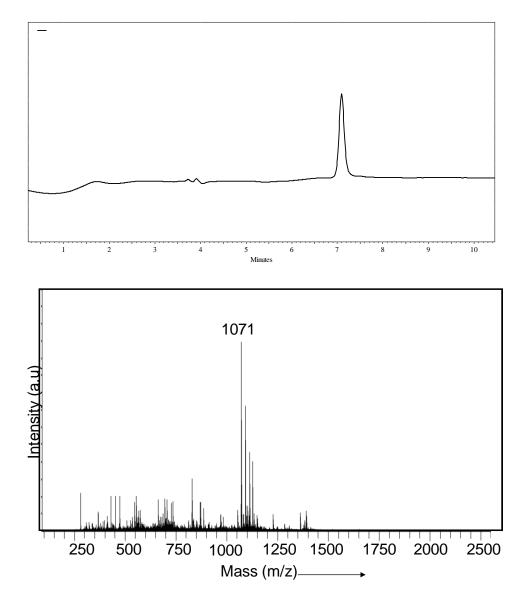


Figure S4. HPLC trace and ESI-MS of peptide AQPADKCGGLA

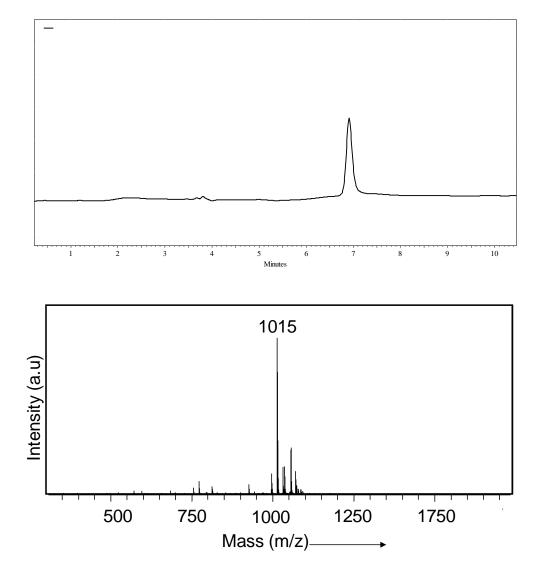


Figure S5. HPLC trace and ESI-MS of peptide AQPADACGGLA

References

(1) Wellings, D. A.; Atherton, E. *In Solid-Phase Peptide Synthesis* 1997, 289, 44.

(2) Wellings, D. A.; Atherton, E. In Methods Enzymol 1997, 289, 44.

(3) Strohalm, M.; Hassman, M.; Košata, B.; Kodíček, M. *Rapid Commun. Mass Spectrom.* 2008, *22*, 905.

(4) Strohalm, M.; Kavan, D.; Novák, P.; Volný, M.; Havlíček, V. r. *Anal. Chem.* 2010, *82*, 4648.

(5) Amacher, J. F.; Cushing, P. R.; Weiner, J. A.; Madden, D. R. Acta Crystallographica Section F 2011, 67, 600.

(6) Chen, Z.; Popp, B. V.; Bovet, C. L.; Ball, Z. T. *ACS Chem. Biol.* 2011, *6*, 920.

(7) Crankshaw, M. W.; Grant, G. A. *Curr. Protoc. Protein Sci. / editorial board, John E. Coligan [et al.]* 2001, *Chapter 15*, 15.01.09.