ZrCl₂(η-C₅Me₅)₂-AlHCl₂·(THF)₂: Efficient hydroalumination of terminal alkynes and cross-coupling of the derived alanes

Philip Andrews, ^a Christopher M. Latham, ^a Marc Magre, ^a Darren Willcox ^a and Simon Woodward \ast^a

^a School of Chemistry, The University of Nottingham, University Park, Nottingham, United Kingdom. Fax: +44-(0)115-9513564; Tel: +44-(0)115-9513541; E-mail: simon.woodward@nottingham.ac.uk

List of Contents

General	S2
General Procedures	
Preparation of HAlCl ₂ •2THF	S2
$Cp*_2ZrCl_2$ catalysed hydroalumination-cross coupling of alkynes	S2
Cp ₂ TiCl ₂ catalysed hydroalumination-cross coupling of alkynes	S3
2 H{ 1 H} and 1 H NMR monitoring of the hydroalumination procedure	S3
Compound data	S4
Comparison of hydroaluminations conditions	S23
Spectra	S24
References	S94

General

All reactions were carried out in flame-dried or oven-dried glassware, under an argon atmosphere. THF was freshly distilled from sodium benzophenone-ketyl. Solid 1,4-Diazabicyclo[2.2.2]octane (DABCO) was freshly sublimed before use. Crystalline HAICl₂•2THF was stored in a glovebox or in standard Schlenk-ware and its purity determined by evolved H₂ volume on aqueous quench. Dichloroalane adducts were typically weighed out in the glovebox but could equally be promptly weighed in air on gram scales with less than 5% degradation (within 30 mins). Such 'in air' preparations demonstrated identical coupling efficiencies to those weighed under rigorously anaerobic conditions (observed maximum handling times in air: HAICl₂•2THF 30 min; HAICl₂•dioxane 45 min). Alkynes were distilled and aryl halides were dried with and stored over 4 Å molecular sieves. All other commercially available compounds used without further purification. Flash column chromatography was carried out using Davisil silica gel 60 (0.035-0.070 mm particle size), eluting with pentane. Thin layer chromatography was carried out using Merck F₂₅₄ aluminium-backed silica plates.

Proton (400 MHz) and carbon-13 (100.6 MHz) NMR spectra were recorded on a Bruker DPX400, AV400 or AV(III)400 instrument. Chemical shifts are quoted as parts per million and referenced to CHCl₃ (7.27 ppm for ¹H and 77.0 ppm for ¹³C). Carbon-13 NMR spectra were recorded with broadband proton decoupling. Infra-red spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer. Melting points were measured on a Gallenkamp melting point apparatus and are uncorrected. Mass spectrometry was carried out using either a Bruker MicroTOF or a Micromass AutoSpec instrument.

Preparation of HAICl₂•2THF^{S1}

A solution of AlCl₃ (22.0 g, 165 mmol, 3.0 equiv.) in Et₂O (80 mL) was added to a suspension (solution) of LiAlH₄ (2.08 g, 54.8 mmol, 1.0 equiv.) in Et₂O (80 mL) at ambient temperature. The mixture was stirred for 15 minutes before the solids are removed by cannula filtration. THF (36.0 mL, 440 mmol, 8.0 equiv.) was added dropwise *via* a syringe to the colourless filtrate (mild exothermic reaction) to yield a two layer system. The flask is placed into a -20 °C freezer overnight which induces complete crystallization. The solid is separated *via* cannula filtration, washed with pentane (3 x 30 mL) and dried under vacuum. Yield: 49.8 g (93 %). The compound has literature properties.

The dioxane adduct was similarly prepared from $AlCl_3$ (5.50 g, 41.3 mmol), $LiAlH_4$ (0.52 g, 13.7 mmol), 1,4-dioxane (4.30 mL, 50.1 mmol) to yield the title compound as a colourless solid (8.20 g, 88%).

General Procedure 1: Cp*₂ZrCl₂-catalysed hydroalumination-cross coupling

A flame-dried argon filled Radley's carousel reaction tube was charged with HAlCl₂•2THF (1.02 g, 4.20 mmol, 2.1 equiv.) and $Cp*_2ZrCl_2$ (60 mg, 0.14 mmol, 5.0 mol% based on alkyne). Under an inert atmosphere, THF (4 mL) and alkyne (2.80 mmol, 1.4 equiv.) were added, the reaction mixture stirred at reflux for 2-16 h (typically 4 h) and then removed from the heat. In a flame-dried, stirrer-equipped Schlenk tube under an inert atmosphere, X-Phos (38 mg, 0.08 mmol, 4.0 mol% based on ArX), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol, 1.5 mol% based on ArX) and DABCO (0.160 g, 1.40 mmol, 0.7 equiv.) were dissolved in THF (4 mL) and transferred to the hydroalumination mixture *via* cannula leading to the formation of a fine suspension. Aryl halide (2.00 mmol, 1.0 equiv.) was added, the layers were separated

and the aqueous phase was extracted with CH_2Cl_2 (3 x 5 mL). The combined organic extracts were evaporated under reduced pressure to give the crude product, which was purified by flash column chromatography (solid load). Alternatively, for acid sensitive substrates, the reaction was quenched with aqueous Rochelle's salt (saturated, 6 mL) and the extraction procedure same as above.

General Procedure 2: Cp₂TiCl₂-catalysed hydroalumination-cross coupling

A flame-dried argon filled Radley's carousel reaction tube was charged with $HAlCl_2 \cdot 2THF(1.02 \text{ g}, 4.20 \text{ mmol}, 2.1 \text{ equiv.})$ weighed as described above. Under an inert atmosphere, Cp_2TiCl_2 (36 mg, 0.14 mmol, 5.0 mol% based on alkyne), THF (4 mL) and alkyne (2.80 mmol, 1.4 equiv.) were added, the reaction mixture stirred at reflux for 2 h and then removed from the heat. In a flame-dried, stirrer-equipped Schlenk tube under an inert atmosphere, X-Phos (38 mg, 0.08 mmol, 4.0 mol% based on ArX), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol, 1.5 mol% based on ArX) and DABCO (0.160 g, 1.40 mmol, 0.7 equiv.) were dissolved in THF (4 mL) and transferred to the hydroalumination mixture *via* cannula laeding to a fine suspension. Aryl halide (2.00 mmol, 1.0 equiv.) was added and the reaction mixture was heated at reflux for 2 h. Aqueous HCl (2 M, 6 mL) was added, the layers were separated and the aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic extracts were evaporated under reduced pressure to give the crude product, which was purified by flash column chromatography (solid load).

General Procedure 3: $^2H\{^1H\}$ and 1H NMR monitoring of the hydroalumination procedure

Hydroaluminations were carried out as described above. The crude mixture of alanes (from alkyne (2.80 mmol) and HAlCl₂•2THF (4.20 mmol) in THF (4 mL) was quenched with D₂O (0.50 mL) at room temperature. The crude reaction mixture was apportioned into two equal parts. To the first part CDCl₃ (50 μ L, internal standard) was added and the ²H{¹H} spectrum acquired.

The ²H{¹H} spectra were run unlocked using the spectrometer lock channel. Samples were shimmed by means of gradient shimming using the ¹H NMR signal of the THF solvent. The 'zgig2h' pulse sequence of a Bruker AVANCE I type instrument was used and the ²H spectra acquired using power gated ¹H decoupling. Use of coupled ²H spectra was ineffective due to signal overlaps in the alkene region. The relative populations of (*E*)-**1**:(*Z*)-**1**:**2**:**3**:**4**:**5** (R = C₈H₁₇, Y = Cl) were determined by the integrals of the singlets at δ_D 4.97 (=C(1)D), 5.03 (=C(1)D'), 5.85 (=C(2)D), 1.95 (=CD), 0.93 (-CD₂H), 1.31 (-CHD-) respectively of the D-quenched products. No evidence for the formation of *n*-C₈H₁₇CD₂CH₃ (potentially from double C(2)-Al addition) was detected and its concentration was assumed minimal. The second part of the reaction mixture was evaporated to a crude oil. The alkyne conversion was determined by comparison of the ¹H NMR spectrum of the residual 1-decyne =CH integral at δ_H 1.95 to integral of the non-terminal alkene signal at δ_H 5.85 after correction for deuterium incorporation. Total deuterium incorporation in the 1-decene was determined by GC-MS, while the fraction at C(1)/C(2) was available from the ²H{1H} studies above.

Compound Data

(E)-stilbene (1) (Table 2, Run 2)^{S2}

Prepared by General Procedure 2, HAlCl₂•2THF (1.04 g, 4.28 mmol), Cp₂TiCl₂ (35 mg, 0.14 mmol), phenylacetylene (310 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (32 mg, 0.03 mmol), DABCO (156 mg, 1.39 mmol) and bromobenzene (210 μ L, 2.00 mmol) afforded **1** (339 mg, 94 %) as a white crystalline solid. *R*_F (pentane) 0.30.

¹**H NMR** (400 MHz, CDCl₃): δ_H 7.14 (s, 2H, CH=CH), 7.32-7.26 (m, 2H, Ar), 7.41-7.35 (m, 4H, Ar), 7.56-7.50 (m, 4H, Ar).

¹³C NMR (100.6 MHz, CDCl₃): δ_C 126.5 (Ar), 127.6 (Ar), 128.7 (2C, CH=CH), 137.3 (Ar). Data were consistent with literature values.

(E)-stilbene (1) (Table 2, Run 4)^{S3}

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), $Cp*_2ZrCl_2$ (59 mg, 0.14 mmol), phenylacetylene (310 µL, 2.80 mmol), X-Phos (39 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and bromobenzene (210 µL, 2.00 mmol) afforded **1** (338 mg, 94 %) as a white crystalline solid. Data as above.

(E)-1-phenyl-1-octene (2) (Table 3, Run 1)^{S3}

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), Cp*₂ZrCl₂ (64 mg, 0.15 mmol), 1-octyne (410 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (164 mg, 1.46 mmol) and bromobenzene (210 μ L, 2.00 mmol) afforded **2** (367 mg, 98 %) as a colourless oil; *R*_F (pentane) 0.70.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.97-0.87 (m, 3H, CH₃), 1.43-1.22 (m, 6H, 3 x CH₂), 1.55-1.44 (m, 2H, CH₂), 2.24 (q, 2H, *J* = 7.0 Hz, CHC*H*₂), 6.26 (dt, 1H, *J* = 16.0, 7.0 Hz, CH₂C*H*), 6.41 (d, 1H, *J* = 16.0 Hz, PhC*H*), 7.22 (t, 1H, *J* = 8.0 Hz, Ar), 7.32 (t, 2H, *J* = 8.0 Hz, Ar), 7.38 (d, 2H, *J* = 8.0 Hz, Ar). ¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 14.1 (CH₃), 22.6 (CH₂), 28.9 (CH₂), 29.4 (CH₂), 31.8 (CH₂), 33.1 (CH₂), 125.9 (Ar), 126.7 (Ar), 128.4 (Ar), 129.7 (ArCH), 131.2 (ArCH=CH), 138.0 (Ar). Data were consistent with literature values.

(E)- $(Dec-1-en-1-yl)benzene (3) (Table 3, Run 2)^{S4}$

Prepared by General Procedure 1, HAlCl₂•2THF(1.02 g, 4.20 mmol), ZrCp*₂Cl₂ (68 mg, 0.14 mmol), Dec-1-yne (504 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 1-bromobenzene (210 μ L, 2.00 mmol) afforded **3** (416 mg, 96 %) as a colourless oil; **R**_F (pentane) 0.95.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.91 (t, 3H, J = 6.8 Hz, CH₂*Me*), 1.25-1.42 (m, 10H, CH₂), 1.44-1.53 (m, 2H, CH₂), 2.23 (qd, 2H, J = 6.8, 1.6 Hz, C=CH₂), 6.25 (dt, 1H, J = 15.8, 7.2 Hz, C=CHCH₂), 6.40 (d, 1H, J = 15.8 Hz, PhCH=CHCH₂), 7.18-7.24 (m, 1H, Ar), 7.27-7.34 (m, 2H, Ar), 7.36-7.39 (m, 2H, Ar).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 14.1 (Me), 22.7 (CH₂), 29.2 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 29.5 (CH₂), 31.9 (CH₂), 33.1 (CH₂), 125.9 (2 x Ar), 126.7 (C=CH), 128.5 (2 x Ar), 129.7 (Ar), 131.3 (CH=CH), 138.0 (*ipso*-C₀, Ar).

IR (CHCl₃): \tilde{v} 3082, 3062, 3005, 2958, 2928, 2856, 1947, 1876, 1804, 1651, 1598, 1577, 1494, 1466, 1378, 1308, 1072, 1028, 966, 912, 644, 606 cm⁻¹.

HRMS (EI+) *m/z*: Calcd. for C₁₆H₂₄ 216.1878, found 216.1879.

(E)-4-methyl-1-phenylpent-1-ene (4) (Table 3, Run 3)^{S5}

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), $Cp*_2ZrCl_2$ (61 mg, 0.14 mmol), 4-methyl-1-pentyne (330 µL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (158 mg, 1.41 mmol) and bromobenzene (210 µL, 2.00 mmol) afforded **4** (281 mg, 88 %) as a pale yellow oil; *R*_F (pentane) 0.70.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.95 (dd, 6H, J = 6.5, 1.5 Hz, 2 x CH₃), 1.74 (sept, 1H, J = 6.5 Hz, (CH₃)₂CH), 2.10 (t, 2H, J = 7.0 Hz, ^{*i*}PrCH₂), 6.27-6.15 (m, 1H, CH), 6.37 (d, 1H, J = 16.0 Hz, CH),7.42-7.13 (m, 5H, Ar).

¹³**C NMR** (100.6 MHz, CDCl₃): δ_{C} 22.4 (2 x CH₃), 28.6 (CH(CH₃)₂), 42.4 (CH₂), 125.9 (Ar), 126.8 (Ar), 128.4 (Ar), 129.6 (ArCH), 130.8 (ArCH=CH), 137.9 (Ar). Data were consistent with literature values.

(E)-3,3-dimethyl-1-phenylbut-1-ene (5) (Table 3, Run 4)^{S6}

Prepared by General Procedure 2, HAlCl₂•2THF (1.02 g, 4.20 mmol), Cp₂TiCl₂ (35 mg, 0.14 mmol), 3,3-dimethyl-1-butyne (350 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (32 mg, 0.03 mmol), DABCO (158 mg, 1.40 mmol) and bromobenzene (210 μ L, 2.00 mmol) afforded **5** (298 mg, 93 %) as a pale yellow oil.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.15 (s, 9H, 3 x CH₃), 6.28 (d, 1H, *J* = 16.0 Hz, CH), 6.34 (d, 1H, *J* = 16.0 Hz, CH), 7.21 (tt, 1H, *J* = 7.5, 1.5 Hz, Ar), 7.32 (t, 2H, *J* = 7.5 Hz, Ar), 7.39 (dd, 2H, *J* = 8.5, 1.5 Hz, Ar).

¹³C NMR (100.6 MHz, CDCl₃): δ_C 29.6 (3 x CH₃), 33.3 (*C*(CH₃)₃), 124.6 (Ar), 126.0 (Ar), 126.7 (ArCH), 128.5 (Ar), 138.1 (Ar), 141.8 (ArCH=CH). Data were consistent with literature values.

(E)-stilbene (1) (Table 3, Run 5)^{S3}

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), Cp*₂ZrCl₂ (64 mg, 0.15 mmol), phenylacetylene (310 μ L, 2.80 mmol), X-Phos (39 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (162 mg, 1.44 mmol) and iodobenzene (220 μ L, 2.00 mmol) afforded **1** (355 mg, 98 %) as a white crystalline solid. Data were consistent with literature values.

(E)-stilbene (1) (Table 3, Run 6) S^3

Prepared by General Procedure 1, HAlCl₂•2THF (1.03 g, 4.24 mmol), $Cp*_2ZrCl_2$ (61 mg, 0.14 mmol), phenylacetylene (310 µL, 2.80 mmol), X-Phos (39 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (164 mg, 1.47 mmol) and chlorobenzene (200 µL, 2.00 mmol) afforded **1** (146 mg, 40 %) as a white crystalline solid. Data were consistent with literature values.

(E)-stilbene (1) (Table 3, Run 7) S^3

Prepared by General Procedure 1, HAlCl₂•2THF(1.02 g, 4.20 mmol), $Cp*_2ZrCl_2$ (59 mg, 0.14 mmol), phenylacetylene (310 µL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (30 mg, 0.03 mmol), DABCO (162 mg, 1.44 mmol) and phenyl triflate (320 µL, 2.00 mmol) afforded **1** (310 mg, 86 %) as a white crystalline solid. Data were consistent with literature values.

(E)-(5-(benzyloxy)pent-1-en-1-yl)benzene (6) (Table 3, Run 8)^{S7}

Prepared by General Procedure 1, HAlCl₂•2THF(1.02 g, 4.20 mmol), Cp*₂ZrCl₂ (61 mg, 0.14 mmol), ((pent-4-yn-1-yloxy)methyl)benzene (487 mg, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and bromobenzene (210 μ L, 2 mmol) to afforded **6** (356.2 mg, 75%) as a colourless oil; *R*_F (pentane/Et₂O 1:1) 0.36.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.91 (m, 2H, BnOCH₂CH₂), 2.40 (ddt, 2H, *J* = 7.8, 7.1, 1.0 Hz, CH₂CH=CHAr), 3.60 (t, 2H, *J* = 6.4 Hz, BnOCH₂), 4.60 (s, 2H, PhCH₂O) 6.28 (dt, 1H, *J* = 15.8, 7.1 Hz, CH₂CH=CHAr), 6.45 (dt, 1H, *J* = 15.8, 1.0 Hz, CH=CHAr), 7.40 (m, 10H, Ar).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 29.0 (*BnOCH*₂*CH*₂), 29.5 (ArCHCH*C*H₂), 69.7 (BnO*C*H₂), 73.0 (O*C*H₂Ph), 125.7 (*C*²(Ph) and *C*⁶(Ph)), 126.1 (*C*⁴(Ph)), 127.9 (*C*²(Bn) and *C*⁴(Bn) and *C*⁶(Bn)), 128.2 (*C*³(Bn) and *C*⁵(Bn)), 128.3 (*C*³(Ph) and *C*⁵(Ph)), 128.9 (ArCHCH), 130.3 (ArCHCH), 137.8 (C1(Ph), 138.6 (*C*¹(Bn).

IR (CHCl₃): $\tilde{v} = 3065, 3009, 2940, 2862, 1495, 1453, 1100, 965, 909 cm⁻¹.$

HRMS (EI+) *m/z*: Calcd. for C₁₈H₂₀O 252.1514 found 252.1524

(E)-5-phenylpent-4-en-1-ol (7) (Table 3, Run 9)⁵⁸

Prepared by General Procedure 1, HAlCl₂•2THF(1.02 g, 4.20 mmol), Cp*₂ZrCl₂ (31 mg, 0.07 mmol), 5-pentynol (130 μ L, 1.4 mmol), X-Phos (19 mg, 0.04 mmol), Pd₂(dba)₃.CHCl₃ (15.5 mg, 0.015 mmol), DABCO (78.5 mg, 0.70 mmol), InCl₃ (31.0 mg, 0.14 mmol) and bromobenzene (110 μ L, 1.00 mmol) afforded **7** (99.1 mg, 61 %) as a yellow oil; *R*_F (pentane/Et₂O 1:1) 0.44.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.81 (m, 2H, HOCH₂CH₂), 2.35 (ddt, 2H, J = 7.8, 7.2, 1.5 Hz, CH₂CH=CHAr), 3.75 (t, 2H, J = 6.5 Hz, HOCH₂), 6.27 (dt, 1H, J = 15.8, 7.2 Hz, CH₂CH=CHAr), 6.45 (dt, 1H, J = 15.8, 1.5 Hz, CH=CHAr), 7.23 (m, 1H, C⁴HAr), 7.35 (m, 4H, C²H(Ar), C³H(Ar), C⁵H(Ar) and C⁶H(Ar)).

¹³**C NMR** (100.6 MHz, CDCl₃): δ_{C} 29.3 (ArCHCH*C*H₂), 32.3 (HOCH₂*C*H₂), 62.4 (HOCH₂), 125.9 (C^{2} (Ar) and C^{6} (Ar)), 126.9 (C^{4} (Ar)), 128.5 (C^{3} (Ph) and C^{5} (Ph)), 130.3 (ArCHCH), 130.0 (ArCHCH), 137.6 (C^{1} (Ar)).

IR (CHCl₃): $\tilde{v} = 3624, 2938, 2255, 1599, 1056, 966 \text{ cm}^{-1}$.

HRMS (EI+) *m/z*: Calcd. for C₁₁H₁₄O 162.1045, found 162.1045

(E)-1-(3,3-dimethylbut-1-en-1-yl)-3,5-dimethylbenzene (8) (Table 3, Run 10)

Prepared by General Procedure 2, HAlCl₂•2THF(1.02 g, 4.20 mmol), Cp₂TiCl₂ (34.9 mg, 0.14 mmol), *tert*-Butylacetylene (340 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 5-bromo-*m*-xylene (273 μ L, 2.00 mmol) afforded, **8** (327 mg, 87 %) as a colourless oil; **R**_F (pentane) 0.92.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.21 (s, 9H, 3 x CMe₃), 2.39 (s, 6H, 2 x ArMe), 6.34 (s, 2H, ArCH=CHtBu), 6.93 (s, 1H, *p*-Ar), 7.09 (s, 2H, 2 x *o*-Ar).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 21.3 (2 x Ar-CH₃), 29.7 (3 x C(CH₃)₃), 33.4 (CMe₃), 124.0 (2 x Ar), 124.7 (ArC=CH), 128.5 (Ar-CH), 137.9 (*ipso-C*, Ar), 138.0 (*ipso-C*, Ar), 141.5 (ArC=CH).

IR (CHCl₃): \tilde{v} 3009, 2964, 2905, 2866, 2775, 1895, 1827, 1794, 1774, 1753, 1709, 1648, 1600, 1537, 1475, 1463, 1391, 1378, 1363, 1319, 1272, 1250, 1187, 1163, 1039, 971, 921, 897, 857, 827, 645 cm⁻¹.

HRMS (EI+) *m/z*: Calcd. for C₁₄H₂₀ 188.1565, found 188.1568.

(E)-1,3-dimethyl-5-(oct-1-en-1-yl)benzene (9) (Table 3, Run 11)

Prepared by General Procedure 1, HAlCl₂•2THF(1.02 g, 4.20 mmol), Cp*₂ZrCl₂ (61 mg, 0.14 mmol), 1-octyne (410 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and 5-bromo-*m*-xylene (368 mg, 2.00 mmol) afforded **9** (412 mg, 95 %) as a colourless oil; **R**_F (pentane) 0.44.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.93 (t, 3H, J = 6.8 Hz, CH₂CH₃), 1.34 (m, 6H, (CH₂)₃CH₃), 1.50 (m, 2H, CH₂(CH₂)₃CH₃), 2.21 (ddt, 2H, J = 7.6, 6.8, 1.2 Hz, CH₂CH=CH), 2.33 (s, 6H, 2x ArCH₃), 6.25 (dt, 1H, J = 16.0, 6.8 Hz, CH=CH-Ar), 6.37 (dt, 1H, J = 16.0, 1.2 Hz, CH=CH-Ar), 6.57 (s, 1H, p-CH_(Ar)), 7.00 (s, 2H, 2x o-CH_(Ar)).

¹³C NMR (100.6 MHz, CDCl₃): $δ_C$ 14.1 (CH₂CH₃), 21.3 (ArCH₃), 22.6 (CH₂Me), 28.9 (CH₂Bu), 29.4 (CH₂Pr), 31.8 (CH₂Et), 33.0 (CH=CHCH₂), 123.8 (C^2 (Ar) and C^6 (Ar)), 128.5 (ArCH=CH), 129.8 (C^4 (Ar)), 130.9 (ArCH=CH), 137.8 (C^1 (Ar)), 137.9 (C^3 CH₃ and C^5 CH₃).

IR (CHCl₃): $\tilde{v} = 3010, 2958, 2928, 2856, 1600, 1466, 1378, 966 cm⁻¹.$

HRMS (EI+) *m/z*: Calcd. for C₁₆H₂₄ 216.1878, found 216.1880.

(E)-1,3-dimethyl-5-styrylbenzene (10) (Table 3, Run 12)⁵⁹

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), Cp*₂ZrCl₂ (62 mg, 0.14 mmol), phenylacetylene (310 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (30 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 5-bromo-*m*-xylene (270 μ L, 2.00 mmol) afforded **10** (411 mg, 96 %) as a colourless oil; *R*_F (pentane) 0.20.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 2.41 (s, 6H, 2 x CH₃), 6.98 (s, 1H, PhCH=C*H*), 7.15 (s, 1H, Ar) overlapped by 7.14 (s, 1H, PhC*H*), 7.21 (s, 2H, Ar), 7.35-7.28 (m, 1H, Ar), 7.42 (t, 2H, *J* = 7.5 Hz, Ar), 7.57 (d, 2H, *J* = 7.0 Hz, Ar).

¹³C NMR (100.6 MHz, CDCl₃): $\delta_{\rm C}$ 21.3 (2 x CH₃), 124.4 (Ar), 126.4 (Ar), 127.4 (PhCH), 128.3 (Ar), 128.6 (Ar), 128.9 (Ar), 129.4 (PhCH=CH), 137.2 (Ar), 137.5 (Ar), 138.1 (CH₃C).

(E)-1-(3,3-dimethylbut-1-en-1-yl)naphthalene (11) (Table 3, Run 13)^{S10}

Prepared by General Procedure 2, HAlCl₂•2THF (1.02 g, 4.20 mmol), Cp₂TiCl₂ (34.9 mg, 0.14 mmol), *tert*-butylacetylene (340 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 1-bromo naphthalene (273 μ L, 2.00 mmol) afforded **11** (299 mg, 71 %) as a colourless oil; *R*_F (pentane) 0.93.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.49 (s, 9H, 3 x CMe₃), 6.54 (d, 1H, J = 16.0 Hz, ArC=CHCMe₃), 7.34 (d, 1H, J = 16.0 Hz, ArCH=CHCMe₃), 7.65-7.77 (m, 4H, Ar), 7.81 (d, 1H, J = 6.8 Hz, Ar), 7.97 (d, J = 8.4 Hz, 1H, Ar), 8.05-8.08 (m, 2H, Ar), 8.41 (dd, 1H, J = 8.4, 1.2 Hz, Ar).

¹³**C NMR** (100.6 MHz, CDCl₃): δ_{C} 30.0 (3 x C(CH₃)₃), 34.1 (CMe₃), 122.1 (C=CAr), 123.8 (Ar-CH), 124.2 (Ar-CH), 125.9 (Ar-CH), 125.9 (Ar-CH), 126.0 (Ar-CH), 126.1 (Ar-CH), 127.5 (Ar-CH), 128.1 (Ar-CH), 128.7 (Ar-CH), 131.7 (*ipso-C*, Ar), 133.9 (*ipso-C*, Ar), 136.2 (*ipso-C*, Ar), 145.5 (HC=CAr).

IR (CHCl₃): $\tilde{v} = 3363$, 3306, 3175, 3062, 3010, 2963, 2903, 2867, 2030, 1990, 1948, 1930, 1869, 1837, 1810, 1779, 1739, 1698, 1642, 1591, 1578, 1509, 1475, 1462, 1394, 1363, 1345, 1299, 1269, 1255, 1239, 1188, 1169, 1142, 1128, 1083, 1035, 1025, 1013, 973, 945, 925, 906, 877, 863, 839, 824, 640, 618 cm⁻¹.

HRMS (EI+) *m*/*z*: Calcd. for C₁₆H₁₈ 210.1409, found 210.1406.

The 2-regioisomer was formed from the analogous 2-bromonaphthalene derivative to give a comparable yield.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.28 (s, 9H, 3 x CMe₃), 6.50 (d, 1H, J = 16.0 Hz, ArC=CHCMe₃), 6.57 (d, 1H, J = 16.0 Hz, ArCH=CHCMe₃), 7.49-7.56 (m, 2H, Ar), 7.68-7.71 (m, 1H, Ar), 7.80 (s, 1H, Ar), 7.83-7.89 (m, 3H, Ar).

¹³**C** NMR (100.6 MHz, CDCl₃): δ_{C} 29.8 (3 x C(CH₃)₃), 33.6 (CMe₃), 123.8 (C=CAr), 124.9 (Ar-CH), 125.5 (Ar-CH), 125.5 (Ar-CH), 126.2 (Ar-CH), 127.8 (Ar-CH), 127.9 (Ar-CH), 128.1 (Ar-CH), 132.8 (*ipso-C*, Ar), 133.9 (*ipso-C*, Ar), 135.6 (*ipso-C*, Ar), 142.4 (HC=CAr).

HRMS (EI+) *m/z*: Calcd. for C₁₆H₁₈ 210.1409, found 210.1406.

For C₁₆H₁₈ (210.31): Calcd. C 91.3, H 8.63%; found C 90.9, H 8.73%.

(E)-1-(oct-1-en-1-yl)naphthalene (12) (Table 3, Run 14)^{S11}

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), ZrCp*₂Cl₂ (68 mg, 0.14 mmol), Oct-1-yne (410 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 1-bromonaphthalene (280 μ L, 2.00 mmol) afforded **12** (325 mg, 57 %) as a colourless oil; *R*_F (pentane) 0.84.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.19 (t, 3H, J = 6.4 Hz, CH₂*Me*), 1.54-1.68 (m, 6H, CH₂), 1.74-1.81 (m, 2H, CH₂), 2.55 (qd, 2H, J = 7.6, 1.2 Hz, CH₂), 6.46 (dt, 1H, J = 15.6, 6.8 Hz, CH₂CH=CAr), 7.36 (d, 1H, J = 15.2 Hz, CH₂C=CHAr), 7.62-7.73 (m, 3H, Ar), 7.79 (d, 1H, J = 7.2 Hz, Ar), 7.95 (d, 1H, J = 8.4 Hz, Ar), 8.04 (dd, 1H, J = 7.6, 2.4 Hz, Ar), 8.38 (dd, 1H, J = 8.0, 1.2 Hz, Ar).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 14.4 (CH₂CH₃), 23.0 (CH₂CH₂CH₂CH₂CH₃), 29.2 (CH₂CH₂CH₂CH₃), 29.7 (CH₂CH₂CH₂CH₃), 32.1 (CH₂CH₂CH₂CH₂CH₂CH₃), 33.7 (CH₂CH₂CH₂CH₂CH₂CH₃), 123.8 (C=CAr), 124.2 (Ar-CH), 125.8 (Ar-CH), 125.9 (Ar-CH), 125.9 (Ar-CH), 127.2 (Ar-CH), 127.4 (Ar-CH), 128.7 (Ar-CH), 131.5 (*ipso-C*, Ar), 133.9 (*ipso-C*, Ar), 134.7 (HC=CAr), 136 (*ipso-C*, Ar).

IR (CHCl₃ solution): $\tilde{v} = 3062, 3009, 2959, 2925, 2872, 2856, 2731, 2029, 1928, 1871, 1836, 1810, 1722, 1690, 1649, 1624, 1591, 1577, 1509, 1466, 1438, 1395, 1379, 1345, 1331, 1311, 1258, 1170, 1142, 1120, 1086, 1056, 1032, 1015, 967, 909, 887, 862, 838, 649, 617 cm⁻¹.$

HRMS (EI+) *m/z*: Calcd. for C₁₈H₂₂ 238.1722, found 238.1723.

(E)-2-(oct-1-en-1-yl)naphthalene (13) (Table 3, Run 15)^S3

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), ZrCp*₂Cl₂ (68.0 mg, 0.14 mmol), Oct-1-yne (410 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 2-bromonaphthalene (420 mg, 2.00 mmol) afforded **13** (435 mg, 91 %) as a colourless oil; *R*_F (pentane) 0.91.

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.19 (t, 3H, J = 6.4 Hz, CH₂Me), 1.54-1.64 (m, 6H, CH₂), 1.72-1.76 (m, 2H, CH₂), 2.48 (qd, 2H, J = 6.8, 1.2 Hz, CH₂), 6.57 (dt, 1H, J = 15.8, 6.8 Hz, CH₂CH=CAr), 6.76 (d, 1H, J = 15.8 Hz, CH₂C=CHAr), 7.60-7.68 (m, 2H, Ar), 7.80 (dd, 1H, J = 8.4, 1.6 Hz, Ar), 7.88 (br s, 1H, Ar), 7.95-8.01 (m, 3H, Ar).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 14.4 (CH₂CH₃), 23.0 (CH₂CH₂CH₂CH₂CH₃), 29.3 (CH₂CH₂CH₂CH₃), 29.7 (CH₂CH₂CH₂CH₃), 32.1 (CH₂CH₂CH₂CH₂CH₂CH₃), 33.5 (CH₂CH₂CH₂CH₂CH₂CH₃), 123.8 (C=CAr), 125.6 (Ar-CH), 126.3 (Ar-CH), 127.9 (Ar-CH), 128.1 (Ar-CH), 128.3 (Ar-CH), 130.1 (Ar-CH), 131.8 (HC=CAr), 133.0 (*ipso-C*, Ar), 134.0 (*ipso-C*, Ar), 135.7 (*ipso-C*, Ar).

IR (CHCl₃): \tilde{v} 3170, 3060, 3009, 2961, 2855, 1950, 1920, 1834, 1804, 1779, 1693, 1652, 1627, 1598, 1574, 1508, 1466, 1437, 1379, 1367, 1312, 1269, 1240, 1176, 1155, 1144, 1126, 1061, 1018, 964, 909, 894, 859, 821, 642, 624 cm⁻¹.

HRMS (EI+) *m*/*z*: Calcd. for C₁₈H₂₂ 238.1722, found 238.1723.

(E)-1-(3,3-dimethylbut-1-en-1-yl)-3-methoxybenzene (14) (Table 3, Run 16)

Prepared by General Procedure 2, HAlCl₂•2THF (1.02 g, 4.20 mmol), Cp₂TiCl₂ (34.9 mg, 0.14 mmol), *tert*-Butylacetylene (340 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 3-bromoanisole (251 μ L, 2.00 mmol) afforded **14** (272 mg, 71 %) as a lime-yellow oil; *R*_F (pentane:Et₂O, 40:1) 0.41.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.21 (s, 9H, 3 x CMe₃), 3.88 (s, 3H, OMe), 6.35 (d, 1H, J = 16.0 Hz, C=CHAr); overlapped by 6.35 (d, 1H, J = 16.0 Hz, CH=CAr), 6.83 (ddd, 1H, J = 8.4, 2.8, 0.8 Hz, Ar), 6.99 (t, 1H, J = 1.6 Hz, Ar), 7.04 (d, 1H, J = 7.6 Hz, Ar), 7.28 (t, 1H, J = 8.0 Hz, Ar).

¹³**C NMR** (100.6 MHz, CDCl₃): δ_{C} 29.7 (3 x C(CH₃)₃), 33.4 (CMe₃), 55.2 (OCH₃), 111.4 (Ar-CH), 112.5 (Ar-CH), 118.8 (Ar-CH), 124.6 (C=CAr), 129.5 (Ar-CH), 139.6 (*ipso-C*, Ar), 142.2 (C=CAr), 159.9 (*ipso-C*, Ar).

IR (CHCl₃): \tilde{v} 3184, 3102, 3009, 2962, 2906, 2867, 2837, 2743, 1800, 1751, 1648, 1598, 1579, 1528, 1489, 1476, 1465, 1431, 1391, 1364, 1324, 1289, 1272, 1247, 1157, 1115, 1082, 1051, 995, 972, 950, 909, 882, 867, 832, 651, 607 cm⁻¹.

HRMS (EI+) *m*/*z*: Calcd. for C₁₃H₁₈O 190.1358, found 190.1352.

(E)-1-(3,3-dimethylbut-1-en-1-yl)-4-(trifluoromethyl)benzene (15) (Table 3, Run 17)^{S12}

Prepared by General Procedure 2, HAlCl₂•2THF (1.02 g, 4.20 mmol), Cp₂TiCl₂ (34.9 mg, 0.14 mmol), *tert*-Butylacetylene (340 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 4-bromo-1-(trifluoromethyl) benzene (280 μ L, 2.00 mmol) afforded **15** (329 mg, 72 %) as a colourless oil; **R**_F (pentane) 0.95.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.24 (s, 9H, 3 x CMe₃), 6.44 (d, 1H, J = 16.0 Hz, C=CHAr); *overlapped by* 6.44 (d, 1H, J = 16.0 Hz, CH=CAr), 7.52 (d, 2H, J = 8.0 Hz, Ar), 7.63 (d, 2H, J = 8.0 Hz, Ar).

¹³**C** NMR (100.6 MHz, CDCl₃): δ_C 29.4 (3 x C(CH₃)₃), 33.6 (CMe₃), 123.7 (C=CAr), 124.5 (q, *J* = 271.5 Hz, 1 C, *C*F₃), 125.4 (q, *J* = 3.8 Hz, 2 C, HCCCF₃, Ar-CH), 126.2 (2 C, Ar-CH), 128.7 (q, *J* = 32.2 Hz, *ipso*-CCF₃, Ar), 141.7 (*ipso*-C, Ar), 144.6 (C=CAr).

¹⁹**F NMR** (376.5 MHz, CDCl₃): $\delta_{\rm F}$ -62.3.

IR (CHCl₃): \tilde{v} 3190, 3138, 3100, 2967, 2907, 2868, 2777, 2744, 1917, 1837, 1818, 1796, 1745, 1698, 1679, 1648, 1616, 1578, 1515, 1476, 1464, 1413, 1393, 1364, 1316, 1284, 1264, 1132, 1068, 1016, 973, 953, 923, 909, 866, 821, 644 cm⁻¹.

HRMS (EI+) *m/z*: Calcd. for C₁₃H₁₅F₃ 228.1126, found 228.1133.

(E)-1-(oct-1-en-1-yl)-4-(trifluoromethyl)benzene (16) (Table 3, Run 18)^{S13}

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), Cp*₂ZrCl₂ (61 mg, 0.14 mmol), 1-octyne (410 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and 4-(trifluoromethyl)bromobenzene (280 μ L, 2.00 mmol) afforded **16** (484.1 mg, 94%) as a colourless oil; *R*_F (pentane) 0.52.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.93 (t, 3H, J = 6.8 Hz, CH₂CH₃), 1.34 (m, 6H, (CH₂)₃Me), 1.51 (m, 2H, CH₂(CH₂)₃Me), 2.27 (ddt, 2H, J = 7.1, 6.8, 1.2 Hz, CH₂CH=CHAr), 6.35 (dt, 1H, J = 16.0, 7.1 Hz, CH₂CH=CHAr), 6.42, (m, 1H, CHCHAr), 7.44 (d, 2H, J = 8.4 Hz, Ar), 7.55 (d, 2H, J = 8.4 Hz, Ar).

¹³**C NMR** (100.6 MHz, CDCl₃): δ_{C} 14.1 (CH₂*C*H₃), 22.6 (*C*H₂Me), 28.9 (CH₂Bu), 29.3 (*C*H₂Pr), 31.7 (*C*H₂Et), 33.0 (ArCH=CH*C*H₂), 118.6 (*C*³(Ar) and *C*⁵(Ar)), 123.5 (q, *J* = 272.0 Hz, *C*F₃), 129.4 (*C*²(Ar) and *C*⁶(Ar)), 129.5 (ArCHCH), 130.5 (*C*⁴(Ar)), 131.6 (ArCHCH), 139.4 (*C*¹(Ar)).

¹⁹**F NMR** (376.5 MHz, CDCl₃): δ_F -69.3.

IR (CHCl₃): $\tilde{v} = 2958, 2929, 2857, 1615, 1329, 1166, 1124, 968 cm⁻¹.$

HRMS (EI+) *m/z*: Calcd. for C₁₅H₁₉F₃ 256.1439 found 256.1441.

(E)-1-nitro-3-(oct-1-en-1-yl)benzene (17) (Table 3, Run 19)^{S14}

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), $Cp*_2ZrCl_2$ (61 mg, 0.14 mmol), 1-octyne (410 µL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and 3-nitrobromobenzene (404 mg, 2.00 mmol) afforded **17** (215 mg, 55 %) as a light brown oil; *R*_F (pentane/Et₂O 49:1) 0.36.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.92 (t, 3H, J = 7.2 Hz, CH₂CH₃), 1.34 (m, 6H, (CH₂)₃Me), 1.51 (m, 2H, CH₂(CH₂)₃Me), 2.27 (ddt, 2H, J = 7.2, 6.0, 2.0 Hz, CH₂CH=CHAr), 6.38 (dt, 1H, J = 16.0, 6.0 Hz, CH₂CH=CHAr), 6.44, (d, 1H, J = 16.0 Hz, CH=CHAr), 7.46 (t, 1H, J =8.0 Hz, C⁵H(Ar)), 7.63 (dt, 1H, J = 7.2, 1.2 Hz, C⁴H(Ar)), 8.04 (qd, 1H, J = 2.0, 1.2 Hz, C⁶H(Ar)), 8.20 (t, 1H, J = 2.0 Hz, C²H(Ar)).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 14.1 (CH₃), 22.6 (CH₂Me), 28.9 (CH₂Et), 29.0 (CH₂Pr), 31.7 (CH₂Bu), 33.0 (ArCHCHCH₂), 120.5 (C^{2} (Ar)), 121.4 (C^{6} (Ar)), 127.6 (C^{5} (Ar)), 129.3 (ArCHCH), 131.8 (C^{4} (Ar)), 134.7 (ArCHCH), 139.7 (C^{3} (Ar), 147.2 (C^{l} (Ar)).

IR (CHCl₃): $\tilde{v} = 2958, 2929, 2857, 1529, 1352, 964 \text{ cm}^{-1}$.

HRMS (EI+) *m/z*: Calcd. for C₁₄H₁₉NO₂ 233.1416, found 233.1407.

(E)-methyl 4-(oct-1-en-1-yl)benzoate (18) (Table 3, Run 20)^{S14}

Prepared by General Procedure 1, HAlCl₂•2THF(1.02 g, 4.20 mmol), $Cp*_2ZrCl_2$ (61 mg, 0.14 mmol), 1-octyne (410 µL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and methyl-4-bromobenzoate (430 mg, 2.00 mmol) afforded **18** (417.8 mg, 85 %) as a yellow oil; *R*_F (pentane/Et₂O 10:1) 0.44.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.92 (t, 3H, J = 7.0 Hz, CH₂CH₃), 1.33 (m, 6H, (CH₂)₃Me), 1.48 (m, 2H, CH₂(CH₂)₃Me), 2.26 (ddt, 2H, J = 7.6, 5.5, 2.0 Hz, CH₂CH=CHAr), 3.92 (s, 3H, ArCO₂CH₃) 6.37 (dt, 1H, J = 15.7, 5.5 Hz, CH₂CH=CHAr), 6.44, (d, 1H, J = 15.7 Hz,

CH=CHAr), 7.41 (d, 2H, J = 8.4 Hz, $C^{2}H(Ar)$ and $C^{6}H(Ar)$), 7.98 (d, 2H, J = 8.4 Hz, $C^{3}H(Ar)$ and $C^{5}H(Ar)$).

¹³**C NMR** (100.6 MHz, CDCl₃): δ_{C} 14.1 (*C*H₃), 22.6 (*C*H₂Me), 28.9 (*C*H₂Et), 29.1 (*C*H₂Pr), 31.7 (*C*H₂Bu), 33.2 (ArCHCHCH₂), 51.9 (CO₂*C*H₃), 125.7 (*C*²(Ar) and *C*⁶(Ar)), 128.2 (*C*⁴(Ar)), 128.9 (ArCHCH), 129.9 (*C*³(Ar) and *C*⁵(Ar)), 134.3 (ArCHCH), 142.5 (*C*¹(Ar)), 167.0 (C=O).

IR (CHCl₃): $\tilde{v} = 3008, 2955, 2929, 2857, 1715, 1606, 1436, 1328, 1112, 969 cm⁻¹.$

HRMS (EI+) *m/z*: Calcd. for C₁₆H₂₂O₂ 246.1020, found 246.1621.

(E)-1-methyl-4-(oct-1-en-1-yl)benzene (19) (Table 3, Run 21)^{S15}

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), $Cp*_2ZrCl_2$ (61 mg, 0.14 mmol), 1-octyne (410 µL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and from 4-bromotoluene (342 mg, 2.00 mmol) afforded **19** (375.3 mg, 87 %) as a colourless oil; R_F (pentane) 0.50.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.93 (t, 3H, J = 7.0 Hz, CH₂CH₃), 1.33 (m, 6H, (CH₂)₃Me), 1.42 (m, 2H, CH₂(CH₂)₃Me), 2.20 (ddt, 2H, J = 7.6, 7.1, 1.1 Hz, CH₂CH=CHAr), 2.35 (s, 3H, ArCH₃) 6.20 (dt, 1H, J = 15.0, 7.0 Hz, CH₂CH=CHAr), 6.35, (d, 1H, J = 15.0 Hz, CH=CHAr), 7.13 (d, 2H, J = 8.0 Hz, C²H(Ar) and C⁶H(Ar)), 7.25 (d, 2H, $J = 8.0, C^{3}H(Ar)$ and C⁵H(Ar)).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 14.1 (*C*H₃), 21.1 (Ar*C*H₃), 22.6 (*C*H₂Me), 28.9 (*C*H₂Bu), 29.4 (*C*H₂Pr), 31.7 (*C*H₂Et), 33.0 (ArCHCHCH₂), 125.8 (*C*³(Ar) and *C*⁵(Ar)), 129.1 (*C*²(Ar) and *C*⁶(Ar)), 129.5 (ArCHCH), 130.2 (ArCHCH), 136.4 (*C*⁴(Ar), 135.1 (*C*¹Ar).

IR (CHCl₃): $\tilde{v} = 3009, 2958, 2928, 2857, 2735, 1702, 1512, 1019 \text{ cm}^{-1}$.

HRMS (EI+) *m/z*: Calcd. for C₁₅H₂₂ 202.1722, found 202.1726.

(E)-1-(3,3-dimethylbut-1-en-1-yl)-2-methylbenzene (20) (Table 3, Run 22)^{S16}

Prepared by General Procedure 2, HAlCl₂•2THF(1.02 g, 4.20 mmol), Cp₂TiCl₂ (34.9 mg, 0.14 mmol), *tert*-butylacetylene (340 μ L, 2.80 mmol), X-Phos (38.0 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 2-bromo-1-methylbenzene (240 μ L, 2.00 mmol) afforded **20** (282 mg, 81 %) as a colourless oil; **R**_F (pentane) 0.94.

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.37 (s, 3H, ArCH₃), 2.55 (s, 9H, 3 x CMe₃), 6.35 (d, 1H, J = 16.0 Hz, C=CHAr), 6.74 (d, 1H, J = 16.0 Hz, CH=CAr), 7.29-7.38 (m, 3H, Ar), 7.63 (d, 1H, J = 7.2 Hz, Ar).

¹³C NMR (100.6 MHz, CDCl₃): $δ_C$ 20.0 (ArCH₃), 29.9 (3 x C(CH₃)₃), 33.8 (CMe₃), 122.7 (C=CAr), 125.7 (Ar-CH), 126.2 (Ar-CH), 126.9 (Ar-CH), 130.3 (Ar-CH), 135.2 (*ipso-C*, Ar), 137.4 (*ipso-C*, Ar), 143.5 (HC=CAr).

IR (CHCl₃): \tilde{v} 3188, 3139, 3094, 3064, 3046, 3009, 2961, 2905, 2866, 2775, 2741, 2708, 2668, 1948, 1914, 1841, 1808, 1693, 1644, 1619, 1601, 1572, 1483, 1475, 1462, 1391, 1381, 1363, 1314, 1290, 1277, 1264, 1186, 1159, 1103, 1049, 1034, 972, 945, 923, 870, 852, 841, 641, 615 cm⁻¹.

HRMS (EI+) *m/z*: Calcd. for C₁₃H₁₈ 174.1409, found 174.1404.

(E)-1-methyl-2-(oct-1-en-1-yl)benzene (21) (Table 3, Run 23)^{S14}

Prepared by General Procedure 1, HAlCl₂•2THF(1.02 g, 4.20 mmol), $Cp*_2ZrCl_2$ (61 mg, 0.14 mmol), 1-octyne (410 µL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and 2-bromotoluene (240 µL, 2.00 mmol) afforded **21** (370.9 mg, 92 %) a colourless oil; *R*_F (pentane) 0.54.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.91 (t, 3H, J = 6.7 Hz, CH₂CH₃), 1.35 (m, 6H, (CH₂)₃Me), 1.55 (m, 2H, CH₂(CH₂)₃Me), 2.25 (ddt, 2H, J = 7.5, 7.0, 1.3 Hz, CH₂CH=CHAr), 2.35 (s, 3H, ArCH₃) 6.12 (dt, 1H, J = 15.6, 7.0 Hz, CH₂CH=CHAr), 6.60 (dt, 1H, J = 15.6, 1.3 Hz, CH=CHAr), 7.14 (m, 3H, C⁴H(Ar) and C⁵H(Ar) and C⁶H(Ar)), 7.43 (m, 1H, C³H(Ar)).

¹³**C** NMR (100.6 MHz, CDCl₃): $\delta_{\rm C}$ 14.1 (CH₃), 19.8 (ArCH₃), 22.6 (CH₂Me), 28.7 (CH₂Bu), 29.4 (CH₂Pr), 31.7 (CH₂Et), 33.3 (ArCHCHCH₂), 125.4 (C⁴(Ar)), 125.9 (C⁵(Ar), 126.7 (ArCHCH), 127.5 (C³(Ar)), 130.1 (C⁶(Ar)), 132.6 (ArCHCH), 134.8 (C²Ar), 137.1 (C¹(Ar)).

IR (CHCl₃): $\tilde{v} = 3009, 2958, 2928, 2857, 2735, 1702, 1512, 1019 cm⁻¹.$

HRMS (EI+) *m/z*: Calcd. for C₁₅H₂₂ 202.1722, found 202.1726.

(E)-1-(3,3-dimethylbut-1-en-1-yl)-3-methylbenzene (22) (Table 3, Run 24)^{S17}

Prepared by General Procedure 2, HAlCl₂•2THF (1.02 g, 4.20 mmol), Cp₂TiCl₂ (34.9 mg, 0.14 mmol), *tert*-Butylacetylene (340 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 3-bromo-1-methylbenzene (242 μ L, 2.00 mmol) afforded **22** (228 mg, 65 %) as a colourless oil; **R**_F (pentane) 0.85.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.29 (s, 9H, 3 x CMe₃), 2.49 (s, 3H, ArCH₃), 6.42 (d, 1H, J = 16.0 Hz, C=CHAr); *overlapped by* 6.42 (d, 1H, J = 16.0 Hz, CH=CAr), 7.14-7.17 (m, 1H, Ar), 7.32-7.35 (m, 3H, Ar).

¹³C NMR (100.6 MHz, CDCl₃): δ_C 21.5 (s, 3 H, ArCH₃), 29.8 (s, 9 H, 3 x CMe₃), 33.4 (CMe₃), 123.4 (C=CAr), 124.8 (Ar-CH), 126.9 (Ar-CH), 127.7 (Ar-CH), 128.5 (Ar-CH), 138.0 (*ipso-C*, Ar), 138.1 (*ipso-C*, Ar), 141.7 (HC=CAr).

IR (CHCl₃): $\tilde{v} = 3235$, 3186, 3098, 3009, 2962, 2905, 2866, 2774, 2737, 2710, 1938, 1870, 1808, 1783, 1747, 1648, 1602, 1583, 1522, 1488, 1475, 1463, 1390, 1380, 1363, 1311, 1270, 1240, 1189, 1167, 1091, 1041, 1025, 972, 944, 905, 882, 842, 642, 621, 612 cm⁻¹.

HRMS (EI+) *m/z*: Calcd. for C₁₃H₁₈ 174.1409, found 174.1410.

(E)-1-methyl-3-(oct-1-en-1-yl)benzene (23) (Table 3, Run 25)

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), $Cp*_2ZrCl_2$ (61 mg, 0.14 mmol), 1-octyne (410 µL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and 3-bromotoluene (240 µL, 2.00 mmol) afforded **23** (384 mg, 95 %) as a colourless oil; **R**_F (pentane) 0.47.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.93 (t, 3H, J = 6.7 Hz, CH₂CH₃), 1.33 (m, 6H, (CH₂)₃Me), 1.55 (m, 2H, CH₂(CH₂)₃Me), 2.22 (ddt, 2H, J = 7.6, 7.0, 1.0 Hz, CH₂CH=CHAr), 2.36 (s, 3H, ArCH₃) 6.24 (dt, 1H, J = 15.8, 6.7 Hz, CH₂CH=CHAr), 6.37, (dt, 1H, J = 15.8, 1.0 Hz, CH=CHAr), 7.03 (d, 1H, J = 8.1 Hz, C⁴H(Ar), 7.17 (m, 1H, C⁵H(Ar)), 7.19 (s, 1H, (C²H(Ar)), 7.22 (d, 1H, J = 7.6 Hz(C⁶H(Ar)).

¹³**C NMR** (100.6 MHz, CDCl₃): $\delta_{\rm C}$ 14.1 (*C*H₃), 21.4 (Ar*C*H₃), 22.6 (*C*H₂Me), 28.9 (*C*H₂Bu), 29.3 (*C*H₂Pr), 31.7 (*C*H₂Et) 33.1 (ArCHCHCH₂), 123.1 (*C*⁴(Ar)), 126.6 (*C*⁶(Ar)), 127.7 (*C*⁵(Ar), 128.4 (ArCHCH), 129.7 (ArCHCH), 131.0 (*C*²(Ar)), 137.9 (*C*¹Ar), 137.9 (*C*³(Ar) ppm;

IR (CHCl₃): $\tilde{v} = 3009, 2958, 2928, 2857, 2735, 1702, 1512, 1019 \text{ cm}^{-1}$.

HRMS (EI+) *m/z*: Calcd. for C₁₅H₂₂ 202.1722, found 202.1718.

(E)-1,3,5-trimethyl-2-(oct-1-en-1-yl)benzene (24) (Table 3, Run 26)

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), ZrCp*₂Cl₂ (68 mg, 0.14 mmol), Oct-1-yne (410 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 1-bromomesitylene (310 μ L, 2.00 mmol) afforded **24** (467 mg, 99 %) as a colourless oil; **R**_F (pentane) 0.75.

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.20 (t, 3H, *J* = 6.8 Hz, CH₂Me), 1.55-1.69 (m, 6H, CH₂), 1.74-1.79 (m, 2H, CH₂), 2.47-2.51 (m, 2H, CH₂), 2.52 (s, 3H, Ar*Me*); *overlapped by* 2.54 (s, 6H, 2 x Ar*Me*), 5.91 (dt, 1H, *J* = 16.0, 6.8 Hz, CH₂CH=CAr), 6.55 (d, 1H, *J* = 16.0 Hz, CH₂C=CHAr), 7.11 (s, 2H, Ar).

¹³C NMR (100.6 MHz, CDCl₃): δ_C 14.4 (CH₂CH₃), 21.1 (3 x ArCH₃), 23.0 (CH₂CH₂CH₂CH₃), 29.2 (CH₂CH₂CH₂CH₃), 29.8 (CH₂CH₂CH₂CH₂CH₃), 32.1 (CH₂CH₂CH₂CH₂CH₂CH₃), 33.7 (CH₂CH₂CH₂CH₂CH₂CH₃), 127.5 (C=CAr), 128.6 (2 x Ar-CH), 135.0 (*ipso-C*, Ar), 135.6 (*ipso-C*, Ar), 135.8 (HC=CAr), 136.0 (2 x *ipso-C*, Ar).

IR (CHCl₃): \tilde{v} 3008, 2924, 2857, 2735, 1733, 1657, 1610, 1568, 1479, 1466, 1378, 1305, 1176, 1110, 1031, 1017, 973, 952, 908, 888, 855, 643 cm⁻¹.

HRMS (EI+) *m/z*: Calcd. for C₁₇H₂₆ 230.2035, found 230.2027.

(E)-4-(oct-1-en-1-yl)benzonitrile (25) (Table 3, Run 27)^{S18}

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), $ZrCp*_2Cl_2$ (68 mg, 0.14 mmol), 1-octyne (410 µL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 1-bromo-4-cyanobenzene (364 mg, 2.00 mmol) afforded **25** (405 mg, 95 %) as a colourless oil; *R*_F (pentane) 0.07.

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.90 (t, 3H, J = 6.8 Hz, CH₂Me), 1.20-1.38 (m, 6H, CH₂), 1.44-1.50 (m, 2H, CH₂), 2.20-2.25 (m, 2H, CH₂), 6.37 (app t, 1H, J = 4 Hz, CH₂CH=CAr); *overlapped by* 6.32-6.42 (m, 1H, CH₂C=CHAr), 7.38-7.40 (m, 2H, Ar), 7.52-7.55 (m, 2H, Ar).

¹³**C NMR** (100.6 MHz, CDCl₃): δ_{C} 14.1 (CH₂CH₃), 22.6 (CH₂CH₂CH₂CH₂CH₃), 28.9 (CH₂CH₂CH₂CH₃), 29.0 (CH₂CH₂CH₂CH₃), 31.7 (CH₂CH₂CH₂CH₂CH₂CH₃), 33.1 (CH₂CH₂CH₂CH₂CH₂CH₃), 109.9 (C=N), 119.1 (*ipso-C*, Ar-CN), 126.4 (C=CAr), 128.4 (Ar-CH), 132.2 (Ar-CH), 135.5 (HC=CAr), 142.3 (*ipso-C*, Ar).

IR (CHCl₃): $\tilde{\nu}$ 3118, 3086, 3009, 2959, 2932, 2857, 2228, 2175, 1916, 1795, 1710, 1688, 1650, 1605, 1503, 1466, 1412, 1379, 1367, 1344, 1308, 1240, 1176, 1106, 1053, 1017, 968, 953, 909, 855, 648 cm⁻¹.

HRMS (EI+) *m/z*: Calcd. for C₁₅H₁₉N 213.1517, found 213.1515.

(E)-3-(oct-1-en-1-yl)benzonitrile (26) (Table 3, Run 28)

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), $Cp*_2ZrCl_2$ (61 mg, 0.14 mmol), 1-octyne (410 µL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and 3-bromobenzonitrile (364 mg, 2.00 mmol) afforeded **26** (398.1 mg, 94 %) as a yellow oil; **R**_F (pentane/Et₂O 19:1) 0.14.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.92 (t, 3H, J = 7.2 Hz, CH₂CH₃), 1.33 (m, 6H, (CH₂)₃Me), 1.50 (m, 2H, CH₂(CH₂)₃Me), 2.24 (ddt, 2H, J = 6.8, 6.0, 1.2 Hz, CH₂CH=CHAr), 6.32 (dt, 1H, J = 16.0, 6.0 Hz, CH₂CH=CHAr), 6.36, (dt, 1H, J = 16.0, 1.2 Hz, CH=CHAr), 7.40 (t, 1H, J = 8.0 Hz, C⁵H(Ar)), 7.47 (dt, 1H, J = 8.0, 1.6 Hz, C⁴H(Ar)), 7.55 (dt, 1H, J = 8.0, 1.6 Hz, C⁶H(Ar)), 7.62 (s, 1H, C²H(Ar)).

¹³**C NMR** (100.6 MHz, CDCl₃): δ_{C} 14.1 (CH₃), 22.6 (CH₂Me), 28.9 (CH₂Et), 29.0 (CH₂Pr), 31.7 (CH₂Bu), 33.0 (ArCHCHCH₂), 112.6 (C^{l} (Ar)), 118.9 (ArCN), 127.7 (C^{5} (Ar)), 129.2 (C^{4} (Ar)), 129.4 (ArCHCH), 130.0 (C^{2} (Ar)), 130.1 (C^{6} (Ar)), 134.3 (ArCHCH), 139.2 (C^{3} (Ar)).

IR (CHCl₃): \tilde{v} 3009, 2958, 2929, 2857, 2232, 1651, 1598, 1466, 964 cm⁻¹.

HRMS (EI+) *m/z*: Calcd. For C₁₅H₁₉N 213.1517, found 213.1517.

(1E,3E)-deca-1,3-dien-1-ylbenzene (27) (Table 3, Run 29)^{S19}

Prepared by General Procedure 1, HAlCl₂•2THF(1.02 g, 4.20 mmol), Cp*₂ZrCl₂ (61 mg, 0.14 mmol), 1-octyne (410 μL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol), InCl₃ (69.0 mg, 0.28 mmol) and β-bromostyrene (260 μL, 2.00 mmol) afforded **27** (271 mg, 63 %) as a yellow oil; *R*_F (pentane) 0.46.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.91 (t, 3H, J = 6.7 Hz, CH₂CH₃), 1.31 (m, 6H, (CH₂)₃Me), 1.45 (m, 2H, CH₂(CH₂)₃Me), 2.17 (ddt, 2H, J = 7.8, 6.8, 1.0 Hz, CH₂CH=CHAr), 5.86 (dt, 1H, J = 15.6, 6.8 Hz, CH=CHCH₂), 6.25 (dd, 1H, J = 15.6, 11.1 Hz, CH₂CH=CH), 6.46 (d, 1H, J = 15.6 Hz, CH=CHAr), 6.78 (dd, 1H, J = 15.5, 11.1 Hz, ArCH=CH) 7.28 (m, 5H, Ar).

¹³**C** NMR (100.6 MHz, CDCl₃): δ_{C} 14.1 (*C*H₃), 22.6 (*C*H₂Me), 29.4 (*C*H₂Pr), 29.7 (*C*H₂Bu), 31.7 (*C*H₂Et), 33.1 (CH=CHCH₂), 125.4 (*C*²(Ar) and *C*⁶(Ar)), 126.1 (*C*⁴(Ar)), 128.2 (*C*³(Ar) and *C*⁵(Ar)), 129.9 (ArCH=CH), 130.4 (ArCH=CH), 131.9 (ArCH=CHCH=CH), 131.3 (ArCH=CHCH=CH), 137.7 (*C*¹(Ar)).

IR (CHCl₃): $\tilde{v} = 2957, 2930, 2958, 1676, 1451, 1167, 970 \text{ cm}^{-1}$;

HRMS (EI+) *m/z*: Calcd. for C₁₆H₂₂ 214.1722, found 214.1720

(E)-(2-(cyclohex-1-en-1-yl)vinyl)benzene (28) (Table 3, Run 30)^{S20}

Prepared by General Procedure 1, HAlCl₂•2THF (510 mg, 2.10 mmol), $Cp*_2ZrCl_2$ (30 mg, 0.07 mmol), 1-ethynylcyclohexene (164 µL, 1.4 mmol), X-Phos (19 mg, 0.04 mmol), Pd₂(dba)₃.CHCl₃ (15 mg, 0.015 mmol), DABCO (79 mg, 0.70 mmol), and bromobenzene (100 µL, 1.0 mmol) and quenched with Rochelle's salt (3 mL of saturated aqueous solution) afforded **28** (125 mg, 68%) as a colourless oil; *R*_F (pentane) 0.25.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 1.65 – 1.71 (m, 2H, Cy), 1.74 – 1.80 (m, 2H, Cy), 2.22 – 2.24 (m, 2H, Cy), 2.33-2.39 (m, 2H, Cy), 5.94 (t, 1H, *J* = 4.4 Hz, C*H*,Cyclohexenyl), 6.49 (d, 1H, *J* = 16.4 Hz, C*H*=CHPh), 6.82 (d, 1H, *J* = 16.4 Hz, CH=CHPh), 7.22 (tt, 1H, *J* = 7.2, 1.6 Hz, C⁴*H*(Ar)), 7.33 (tt, 2H, *J* = 7.6, 1.6 Hz, C²*H*(Ar), C⁶*H*(Ar)), 7.44 (dt, 2H, J = 7.2, 1.6 Hz, C³*H*(Ar) and C⁵*H*(Ar)).

¹³**C NMR** (100.6 MHz, CDCl₃): δ_{C} 22.5 (CH₂(*C*y)), 22.6 (CH₂(*C*y)), 24.6 (CH₂(*C*y)), 26.2 (*C*H₂(Cy)), 124.6 (*C*HC_q), 126.1 (C²H(Ar) and C⁶H(Ar)), 126.8 (C⁴H(Ar)), 128.5 (C³H(Ar) and C⁵H(Ar)), 130.8 (CyCH=CHAr), 132.6 (CyCH=CHAr), 135.8 (C_q(Cy)), 138.0 (C_{ipso}(Ar)).

IR (CHCl₃): \tilde{v} 3010, 2930, 2861, 1632, 1616, 1494, 1447, 962 cm⁻¹

HRMS (EI+) *m*/*z*: Calcd. for C₁₄H₁₆ 184.1252, found 184.1254.

(E)-3-(oct-1-en-1-yl)pyridine (29) (Table 3, Run 31)^{S21}

Prepared by General Procedure 1, HAlCl₂•2THF (1.43 g, 5.88 mmol), ZrCp*₂Cl₂ (68 mg, 0.14 mmol), oct-1-yne (410 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (166 mg, 1.48 mmol) and 3-bromopyridine (192 μ L, 2.00 mmol) afforded **29** (167 mg, 63 %) as a colourless oil; **R**_F (1:1 pentane/Et₂O) 0.18.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.88 (t, 3H, J = 6.8 Hz, CH₂Me), 1.25-1.35 (m, 6H, CH₂), 1.44-1.49 (m, 2H, CH₂), 2.21 (q, 2H, J = 6.8 Hz, CH₂), 6.27 (dt, 1H, J = 15.8, 6.4 Hz, CH₂CH=CAr); *overlapped by* 6.33 (d, 1H, J = 15.8 Hz, CH₂C=CHAr), 7.17 (dd, 1H, J = 7.6, 4.8 Hz, Ar), 7.61 (dt, 1H, J = 8.0, 1.6 Hz, Ar), 8.41 (br s, 1H, Ar), 8.55 (br s, 1H, Ar).

¹³**C NMR** (100.6 MHz, CDCl₃): δ_{C} 14.1 (CH₂CH₃), 22.6 (CH₂CH₂CH₂CH₂CH₃), 28.9 (CH₂CH₂CH₂CH₃), 29.1 (CH₂CH₂CH₂CH₃), 31.7 (CH₂CH₂CH₂CH₂CH₂CH₃), 33.1 (CH₂CH₂CH₂CH₂CH₂CH₃), 123.3 (C=CAr), 126.2 (Ar-CH), 132.3 (Ar-CH), 133.4 (*ipso-C*, Ar), 133.7 (Ar-CH), 147.8 (Ar-CH), 147.9 (HC=CAr).

IR (CHCl₃): \tilde{v} 3139, 3086, 3054, 3008, 2959, 2929, 2872, 2857, 2732, 1959, 1923, 1901, 1864, 1796, 1713, 1652, 1587, 1571, 1481, 1467, 1416, 1379, 1344, 1330, 1312, 1247, 1185, 1124, 1099, 1044, 1025, 966, 909, 890, 835, 660, 645, 615 cm⁻¹.

HRMS (EI+) *m/z*: Calcd. for C₁₃H₁₉N 189.1517, found 189.1515.

(E)-6-(oct-1-en-1-yl)quinolone (30) (Table 3, Run 32)

Prepared by General Procedure 1, HAlCl₂•2THF (766 mg, 3.15 mmol), Cp*₂ZrCl₂ (45 mg, 0.11 mmol), 1-octyne (310 μ L, 2.10 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol), InCl₃ (46.4 mg, 0.21 mmol) and 6-bromoquinoline (130 μ L, 1.0 mmol) and quenched with Rochelle's salt (3 mL of saturated aqueous solution) afforded **30** (226.4 mg, 94 %) as a yellow oil; **R**_F (pentane/Et₂O 1:1) 0.25.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.94 (t, 3H, J = 6.5 Hz, CH₂CH₃), 1.38 (m, 6H, (CH₂)₃Me), 1.55 (2 H, m, CH₂(CH₂)₃Me), 2.31 (ddt, 2H, J = 7.8, 7.0, 1.2 Hz, CH₂CH=CHAr), 6.45 (dt, 1H, J = 15.8, 7.0 Hz, ArCH=CH), 6.58 (d, 1H, J = 15.8 Hz, ArCH=CH), 7.42 (dd, 1H, J = 8.3, 4.0 Hz, C³H) 7.58 (d, 1H, J = 1.7 Hz C⁵H), 7.87 (d, 1H, J = 8.8 Hz, C⁷H) 8.10 (d, 1H, J = 8.8 Hz, C⁸H), 8.18 (d, 1H, J = 8.3 Hz, C⁴H), 8.85 (dd, 1H, J = 4.0, 1.7 Hz, C²H).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 14.1 (CH₃), 22.6 (CH₂Me), 31.3 (CH₂Bu), 31.7 (CH₂Pr), 33.1 (CH₂Et), 35.3 (ArCHCHCH₂), 124.3 (C³(Ar), 124.6 (C⁶(Ar)), 128.0 (C⁸(Ar), 128.5 (C⁵(Ar)), 129.0 (C⁹(Ar)), 129.3 (ArCH=CH), 132.5 (ArCH=CH), 135.5 (C⁴(Ar)), 136.2 (C⁷(Ar), 147.7 (C¹⁰(Ar), 149.6 (C²(Ar))).

IR (CHCl₃): \tilde{v} 3011, 2959, 2929, 2857, 1500, 962 cm⁻¹.

HRMS (EI+) *m/z*: Calcd. for C₁₇H₂₁N 239.1674, found 239.1675.

(E)-2-(oct-1-en-1-yl)thiophene (31) (Table 3, Run 33)^{S22}

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), $Cp*_2ZrCl_2$ (61 mg, 0.14 mmol), 1-octyne (410 µL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and 2-bromothiophene (190 µL, 2.00 mmol) afforded **31** (280.5 mg, 72 %) as a colourless oil; $R_F = 0.56$ (Pentane).

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.92 (t, 3H, J = 7.2 Hz, CH₂CH₃), 1.33 (m, 6H, (CH₂)₃Me), 1.48 (m, 2H, CH₂(CH₂)₃Me), 2.19 (ddt, 2H, J = 7.5, 7.0, 1.5 Hz, CH₂CH=CHAr), 6.10 (dt, 1H, J = 15.8, 7.0 Hz, CH₂CH=CHAr), 6.53 (ddt, 1H, J = 15.8, 1.5, 1.0 Hz, CH=CHAr), 6.89 (d, 1H, J = 3.0 Hz C³H(Ar), 6.96 (dd, 1H, J = 3.0, 5.0 Hz C⁴H(Ar)) 7.11 (dt, 1H, J = 5.0, 1.0 Hz, C⁵H(Ar)).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 14.1 (CH₃), 22.6 (CH₂Me), 28.7 (CH₂Bu), 29.4 (CH₂Pr), 31.7 (CH₂Et), 33.3 (ArCHCHCH₂), 122.8 (ArCHCH), 123.0 (C⁵(Ar)), 124.1 (C³(Ar)), 127.2 (C⁴(Ar)), 131.3 (ArCHCH), 143.3 (C²(Ar)).

IR (CHCl₃): $\tilde{v} = 3074$, 3009, 2958, 2929, 2857, 1466, 955 cm⁻¹;

HRMS (EI+) *m/z*: Calcd. for C₁₂H₁₈S 194.1129, found 194.1123.

(E)-3-(oct-1-en-1-yl)thiophene (32) (Table 3, Run 34)

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), Cp*₂ZrCl₂ (61 mg, 0.14 mmol), 1-octyne (410 μ L, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and 3-bromothiophene (190 μ L, 2 mmol) afforded **32** (350.8 mg, 90 %) as a colourless oil; *R*_F (pentane) 0.48.

¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.92 (t, 3H, J = 7.0 Hz, CH₂CH₃), 1.32 (m, 6H, (CH₂)₃Me), 1.47 (m, 2H, CH₂(CH₂)₃Me), 2.19 (ddt, 2H, J = 7.0, 6.0, 1.5 Hz, CH₂CH=CHAr), 6.10 (dt, 1H, J = 15.0, 7.0 Hz, CH₂CH=CHAr), 6.41 (dq, 1H, J = 15.8, 2.0, 1.5 Hz, CH=CHAr), 7.07 (dd, 1H, J = 3.0, 1.5 Hz C²H(Ar), 7.21 (dd, 1H, J = 1.5, 0.6 Hz C⁴H(Ar)) 7.27 (m, 1H, C⁵H(Ar)).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 14.1 (*C*H₃), 22.6 (*C*H₂Me), 28.9 (*C*H₂Bu), 29.3 (*C*H₂Pr), 31.7 (*C*H₂Et), 32.9 (ArCHCHCH₂), 120.2 (*C*⁴(Ar)), 123.9 (*C*⁵(Ar)), 124.9 (*C*²(Ar)), 125.7 (ArCHCH), 131.2 (ArCHCH), 143.3 (*C*³(Ar).

IR (CHCl₃): $\tilde{v} = 3009, 2958, 2928, 2856, 1495, 963 \text{ cm}^{-1}$.

HRMS (EI+) *m/z*: Calcd. for C₁₂H₁₈S 194.1129 found 194.1131.

(E)-2-(oct-1-en-1-yl)furan (33) (Table 3, Run 35)

Prepared by General Procedure 1, HAlCl₂•2THF (1.02 g, 4.20 mmol), $Cp*_2ZrCl_2$ (61 mg, 0.14 mmol), 1-octyne (410 µL, 2.80 mmol), X-Phos (38 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (31 mg, 0.03 mmol), DABCO (157 mg, 1.40 mmol) and 2-bromofuran (180 µL, 2 mmol) to afforded **33** (291.6 mg, 78 %) as a yellow oil; *R*_F (pentane) 0.48.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.95 (t, 3H, J = 6.8 Hz, CH₂CH₃), 1.35 (m, 6H, (CH₂)₃Me), 1.48 (quin, 2H, J = 8.6, 7.0 Hz, CH₂(CH₂)₃Me), 2.21 (q, 2H, J = 8.6, 7.0, CH₂CH=CHAr), 6.10 (d, 1H, J = 3.2 Hz, C³(Ar) 6.22 (m, 2H, CH₂CH=CHAr), 6.39 (dd, 1H, J = 3.2, 2.0 Hz, C⁴H(Ar), 7.29 (d, 1H, J = 2.0 Hz C⁵H(Ar)).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 14.1 (*C*H₃), 22.6 (*C*H₂Me), 28.9 (*C*H₂Bu), 29.3 (*C*H₂Pr), 31.8 (*C*H₂Et), 33.8 (ArCHCHCH₂), 105.8 (*C*³(Ar)), 111.1 (*C*⁴(Ar)), 118.4 (ArCHCH), 130.3 (ArCHCH), 141.3 (*C*⁵(Ar)), 153.3 (*C*²(Ar)).

IR (CHCl₃): $\tilde{v} = 2957, 2930, 2858, 1722, 1677, 1466, 1016 cm⁻¹.$

HRMS (EI+) *m*/*z*: Calcd. for C₁₂H₁₈O 178.1358, found 178.1358.

(E)-3-(oct-1-en-1-yl)-1-tosyl-1H-indole (34) (Table 4, Run 36)

Prepared by General Procedure 1, HAlCl₂•2THF (766 mg, 3.15 mmol), Cp*₂ZrCl₂ (45 mg, 0.11 mmol), 1-octyne (310 μ L, 2.10 mmol), X-Phos (19 mg, 0.08 mmol), Pd₂(dba)₃.CHCl₃ (15.5 mg, 0.015 mmol), DABCO (117 mg, 1.05 mmol), InCl₃ (46.4 mg, 0.21 mmol) and *N*-tosyl-3-bromoindole (350.2 mg, 1.00 mmol) and quenching with Rochelle's salt (3 mL of saturated aqueous solution) afforded **34** (219.9 mg, 77 %) as a yellow oil; **R**_F (pentane/Et₂O 6:1) 0.51.

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 0.94 (t, 3H, J = 6.7 Hz, CH₂CH₃), 1.43 (m, 6H, (CH₂)₃Me), 1.50 (m, 2H, CH₂(CH₂)₃Me), 2.25 (ddt, 2H, J = 7.6, 7.3, 1.5 Hz, CH₂CH=CHAr), 2.35 (s, 3H, ArCH₃), 6.30 (dt, 1H, J = 16.0, 7.3 Hz, ArCH=CH), 6.45 (d, 1H, J = 16.0 Hz, ArCH=CH), 7.2 (d, 2H, J = 8.5 Hz, C²H(tol) and C⁶H(tol)) 7.30 (2H, m, C⁵H(indole) and C⁶H(indole)), 7.53 (s, 1H, C²H(indole) 7.70 (d, 1H, J = 7.3 Hz, C⁴H(indole)), 7.80 (d, 2H, J = 8.5 Hz, C³H(tol) and C⁵H(tol)), 8.02 (d, 1H, J = 7.3 Hz, C⁷H(indole)).

¹³C NMR (100.6 MHz, CDCl₃): δ_{C} 14.1 (*C*H₃), 21.5 (*C*H₃(tosyl)), 22.6 (*C*H₂Me), 28.9 (*C*H₂Bu), 29.4 (*C*H₂Pr), 31.7 (*C*H₂Et), 33.5 (ArCHCH*C*H₂), 113.7 (*C*7(indole), 120.0 (*C*⁴(indole)), 120.3 (*C*⁵(indole)), 122.6 (*C*³(indole), 123.3 (Ar*C*H=CH), 124.7 (*C*²(indole), 126.8 (*C*⁶(indole), 126.9 (*C*³(tosyl)) and *C*⁵(tosyl)), 129.3 (*C*⁹(indole)), 129.8 (*C*²(tosyl) and *C*⁶(tosyl)), 132.9 (ArCH=CH), 125.2 (*C*⁴(tosyl), 135.5 (*C*⁸(indole), 144.0 (*C*¹(tosyl)).

IR (CHCl₃): \tilde{v} 3133, 3011, 2958, 2928, 2856, 1644, 1446, 1373, 1188, 976 cm⁻¹.

HRMS (EI+) *m/z*: Calcd. for C₂₃H₂₇NO₂S 381.1762, found 381.1721.

Comparison of hydroaluminations conditions

Hydroalumination using $HAlCl_2 \cdot (THF)_2$ under the present conditions was compared to DIBAL-H, under literature conditions. The subsequent cross-coupling was conducted with an identical catalyst (Pd-X-phos) to allow valid comparison of the cross-coupled yields, which are shown in Table S1.

Table S1. Comparison of the Hydroalumination/Cross-coupling procedures.

 $R \longrightarrow \frac{1) \text{ Conditions A or B}}{2) \text{ ArBr, } Pd_2(dba)_3 \bullet CHCl_3, X-Phos, \\ DABCO, additive, THF, 2 h, 80 °C \\ R \longrightarrow R^{-1}$

Hydroalumination conditions A: alkyne (1.0 equiv.) HAlCl₂.2THF (1.5 equiv.), Cp $^{*}_{2}$ ZrCl₂ (5 mol%), THF, 16 h, 80 °C; hydroalumination conditions B: alkyne (1 equiv.), HAlBuⁱ₂ (1.0 equiv.), hexanes, 6 h, 50 °C.

Entry	Hydroalumination conditions	R	Ar in ArBr	Additive	Yield/% ^a
1	А	Ph	Ph	-	94 ^a
2	В	Ph	Ph	-	34 ^a
3	В	Ph	Ph	ZnCl ₂ (1.0 equi.v)	13 ^a
4	А	$C_{6}H_{13}$	$3,5-Me_2Ph$	-	95
5	В	$C_{6}H_{13}$	$3,5-Me_2Ph$	-	82
6	В	$C_{6}H_{13}$	$3,5-Me_2Ph$	$ZnCl_2$ (1.0 equiv.)	40
7	А	C ₆ H ₁₃	3-(CN)Ph	-	94
8	В	$C_{6}H_{13}$	3-(CN)Ph	-	88
9	В	$C_{6}H_{13}$	3-(CN)Ph	$ZnCl_2$ (1.0 equiv.)	35
10	А	C ₆ H ₁₃	6-quinoyl	$InCl_3$ (10 mol%)	94
11	В	$C_{6}H_{13}$	6-quinoyl	$InCl_3$ (10 mol%)	78

a) All yields isolated except for Runs 1-3 which were determined by GC using a factorFour column with tridecane as internal standard.

(E)-stilbene, 1

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

(E)-1-phenyl-1-octene, 2,

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

(E)-(Dec-1-en-1-yl)benzene, 3

(E)-4-methyl-1-phenylpent-1-ene, 4

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

(E)-3,3-dimethyl-1-phenylbut-1-ene, 5

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

(E)-(5-(benzyloxy)pent-1-en-1-yl)benzene, 6

(E)-5-phenylpent-4-en-1-ol, 7

(E)-1-(3,3-dimethylbut-1-en-1-yl)-3,5-dimethylbenzene, 8

(E)-1,3-dimethyl-5-(oct-1-en-1-yl)benzene, 9

(E)-1-(3,3-dimethylbut-1-en-1-yl)naphthalene, 11

(E)-1-(oct-1-en-1-yl)naphthalene, 12

(E)-2-(oct-1-en-1-yl)naphthalene, 13

(E)-1-(3,3-dimethylbut-1-en-1-yl)-3-methoxybenzene, 14

(E)-1-(oct-1-en-1-yl)-4-(trifluoromethyl)benzene, 16

(E)-1-nitro-3-(oct-1-en-1-yl)benzene, 17

(E)-1-methyl-4-(oct-1-en-1-yl)benzene, 19

(E)-1-(3,3-dimethylbut-1-en-1-yl)-2-methylbenzene, 20

(E)-1-methyl-2-(oct-1-en-1-yl)benzene, 21

(E)-1-(3,3-dimethylbut-1-en-1-yl)-3-methylbenzene, 22

(E)-1-methyl-3-(oct-1-en-1-yl)benzene, 23

(E)-1,3,5-trimethyl-2-(oct-1-en-1-yl)benzene, 24

(E)-4-(oct-1-en-1-yl)benzonitrile, 25

(E)-3-(oct-1-en-1-yl)benzonitrile, 26

(1E,3E)-deca-1,3-dien-1-ylbenzene, 27

(E)-(2-(cyclohex-1-en-1-yl)vinyl)benzene, 28

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

(E)-3-(oct-1-en-1-yl)pyridine, 29

2.231 2.213 2.198 2.194 2.180 1.491 1.491 1.457

7.624 7.600 7.604 7.600 7.293 7.187 7.175 7.168 7.156

6.352 -6.312 -6.302 -6.288 -6.273 -6.249

(E)-6-(oct-1-en-1-yl)quinolone, 30

(E)-2-(oct-1-en-1-yl)thiophene, 31

(E)-3-(oct-1-en-1-yl)thiophene, 32

(E)-2-(oct-1-en-1-yl)furan, 33

References

- S1. D. L. Schmidt, E. E., Flagg, Inorg. Chem. 1967, 6, 1262.
- S2. Tobisu, M.; Yamakawa, K.; Shimasaki, T.; Chatani, N. Chem. Commun. 2011, 47, 2946.
- S3. Cahiez, G.; Gager, O.; Lecomte, F. Org. Lett. 2008, 10, 5255.
- S4. N. Miyaura, T. Ishiyama, M. Ishikawa, A. Suzuki, *Tetrahedron Lett.* 1986, 27, 52, 6369.
- S5. Lauer, A. M.; Mahmud, F.; Wu, J. J. Am. Chem. Soc. 2011, 133, 9119.
- S6. Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128, 15076.
- S7. I. Uchida, Y. Itoh, T. Namiki, M. Nishikawa, M. Hashimoto, *Tetrahedron Lett.* 1986, 27, 18, 2015.
- S8. G. Lui, S. S. Stahl, J. Am. Chem. Soc, 2007, 129, 19, 6328.
- S9. V. Polshetiwar, P. Heseman, J. J. E. Moreau, *Tetrahedron*, 2007, 63, 29, 6784.
- S10. A. R. Katritzky, D. Cheng and J. Li, J. Org. Chem. 1998, 63, 10, 343.
- S11. K. Tamao, K. Kobayashi, I. Yoshihiko, Tetrahedron Lett. 1989, 30, 44, 6051.
- S12. F. Berthiol, H. Doucet, M. Santelli, Tetrahedron Lett. 2003, 44, 6, 1221.
- S13. B. H. Lipshutz, B. Frieman, *Tetrahedron*, 2004, 60, 6, 1309.
- S14. Y. Fall, F. Berthiol, H. Doucet, M. Santelli, Synthesis, 2007, 11, 1683.
- S15. B. Huang, W. Hao, M-Z. Cai, P. Wang, J. Organomet. Chem. 2011, 696, 13, 2685.
- S16. A. T. Lindhardt, T. M. Gogsig, T. Skrydstrup J. Org. Chem. 2009, 74, 1, 135.
- S17. J. Mulzer, M. Zippel, Tetrahedron Lett. 1980, 21, 751.
- S18. A. Mori, M. Suguro, *Synlett*, **2001**, *6*, 845.
- S19. M. G. Organ, J. T. Cooper, L. R. Rogers, F. Soleymanzadeh, T. Payl, J. Org. Chem. 2000, 65, 23, 7959.
- S20. SX C-M. Ting, Y-L. Hsu, R-S. Liu, Chem. Commun. 2012, 48, 52, 6577.
- S21. G. R. Peh, E. A. B. Kantchev, J-C. Er, J. Y. Ying, Chem. Eur. J. 2010, 16, 13, 4010.
- S22. E. Schulz, P. Kinderli, A. Perrard, M. Lemaire, *Applied Catalysis, A: General*, **1996**, 144, 1-2, 293.