## Contents

| 1. | Experimental Section                                             | 2   |
|----|------------------------------------------------------------------|-----|
| 2. | Mass spectra of monolayers S1, S3-S6, S10, S11, S <sub>mix</sub> | 3   |
| a) | Mass spectrum of S1                                              | 3   |
| b) | Mass spectrum of S3                                              | 5   |
| c) | Mass spectrum of S4                                              | . 6 |
| d) | Mass spectrum of <b>S5</b>                                       | . 7 |
| e) | Mass spectrum of <b>S6</b>                                       | 8   |
| f) | Mass spectrum of S10                                             | 9   |
| g) | Mass spectrum of S11                                             | 10  |
| h) | Mass spectrum of S <sub>mix</sub>                                | 11  |
| 3. | XPS analysis of monolayers S1-S6, S10, S11, S <sub>mix</sub>     | 12  |
| 4. | Detected ions on monolayers S1-S11 and S <sub>mix</sub>          | 14  |
| 5. | Limit of detection of DART-HRMS                                  | 15  |
| 6. | References                                                       | 15  |
| 7. | Acknowledgements                                                 | 15  |

#### 1. Experimental Section



*Figure S1.* Experimental set-up of DART-HRMS: DART outlet (at 45°); ceramic tube which guides the ions to the MS inlet; sample, immobilized on a glass slide; motorized rail moving the sample between DART outlet and MS inlet.

All chemicals and solvents were purchased from Sigma-Aldrich and used as received unless stated otherwise. The cyclooctyne derivative (**11**) was purchased from SynAffix, B.V., The Netherlands. The synthesis of **1** and surface chemistry reactions on  $Si_3N_4$  were described elsewhere.<sup>[1]</sup>

All modified Si<sub>3</sub>N<sub>4</sub> specimens were sized between 0.7 cm and 1.5 cm. The modified samples were immobilized together with a reference sample on a glass slide, using double-sided tape. The minimum distance between the specimens was at least 1 cm. Before analysis all samples were cleaned by exhaustive sonication in appropriate solvents for at least 15 min and afterwards dried under argon. Before analysis with DART-HRMS all samples were analyzed with XPS to confirm the successful formation of the monolayers. The XPS spectra of each monolayer are shown in Fig. S11 and S12. After XPS analysis, they were stored till analysis with DART-HRMS in a glove box (MBraun MB200G & MBraun MB20G) under an argon atmosphere with a content of H<sub>2</sub>O and O<sub>2</sub> each below 0.1 ppm. The DART-orbitrap MS system consisted of a DART ion source (model DART-SVP, IonSense, Saugus, USA) coupled to an Exactive high-resolution mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). The mass spectrometer was calibrated at the beginning of each day. XCALIBUR software (v. 2.1) was used for instrument control, data acquisition and data processing. The distance between mass inlet and the DART outlet was kept at ~1 cm. The samples were placed between them in such a way that one side of the specimen was as close as possible to ceramic transfer tube of the DART-MS interface. The DART outlet was pointed at an angle 45° to the surface and the height was adjusted to be as close as possible to the surface while still avoiding direct contact and, thus contamination of the outlet. The temperature was kept at 450 °C during all surface analyses.

DART settings in (+)-mode were: He as ionizing gas, fixed flow of  $\sim$ 3.5 L/min; gas beam temperature set at 450 °C; grid electrode voltage +350 V. MS: capillary voltage +80 V; tube lens voltage +185 V; skimmer voltage +42 V; capillary temperature: 275 °C. The resolution was set at "ultra high" and a scan rate of 1 Hz was used. The mass range was *m/z* 50–500.

DART settings in (–)-mode were: He as ionizing gas, fixed flow of ~3.5 L/min; gas beam temperature set at 450 °C; grid electrode voltage -350 V. MS: capillary voltage -50 V; tube lens voltage -100 V; skimmer voltage -20 V; capillary temperature: 275 °C. The resolution was set at "ultra high" and a scan rate of 1 Hz was used. The mass range was m/z 50-300.

DART settings in (+)-mode were additionally optimized for the simultaneous analysis of all six ions in monolayer  $S_{mix}$ : He as ionizing gas, fixed flow of ~3.5 L/min; gas beam temperature set at 450 °C; grid electrode voltage +350 V. MS: capillary voltage +25 V; tube lens voltage +50 V; skimmer voltage +18 V; capillary temperature: 275 °C. The resolution was set at "ultra high" and a scan rate of 1 Hz was used. The mass range was m/z 100–300.

Only ions with a mass accuracy of 1 mmu or less were accepted. In few cases, a mass shift higher than 1 mmu was observed. This was due to their low relative abundance and the presence of adjacent intense isobaric peaks. Under these conditions, a mass shift can occur due to phenomena described elsewhere.<sup>[2]</sup>

# 2. Mass spectra of monolayers S1, S3-S6, S10, S11, S<sub>mix</sub>

# a) Mass spectrum of S1



Figure S2. Negative mode DART-Orbitrap mass spectrum from m/z 68.990-69.003 of S1. Peak at m/z 68.99494 is [CF<sub>3</sub>].

# Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013



*Figure S3.* Negative mode DART-Orbitrap mass spectrum from m/z 99.002-99.014 of **S1**. Peak at m/z 99.00542 is [M-H]<sup>-</sup>, where M is CF<sub>3</sub>CH<sub>2</sub>OH.

## b) Mass spectrum of S3



*Figure S4.* Negative mode DART-Orbitrap mass spectrum from m/z 90-500 of **S3**. Peak at m/z 114.01845 is  $[M-H]^-$  and peak at m/z 229.04602 is  $[2M-H]^-$ , where M is 3 (N-hydroxysuccinimide, NHS).

## c) Mass spectrum of S4



*Figure S5.* Negative mode DART-Orbitrap mass spectrum from m/z 100-500 of **S4**. Peak at m/z 182.98602 is  $[M-H]^-$ , where M is 4 (pentafluorophenol, PFP).

# d) Mass spectrum of S5



*Figure S6.* Positive mode DART-Orbitrap mass spectrum of **S5**; a) from m/z 176.06-176.08; peak at m/z 176.06783 is [M+H]<sup>+</sup>, where M is 5 (4-(trifluoromethyl)benzylamine). b) from m/z 159.036-159.046; peak at m/z 159.04114 is [M+H–NH<sub>3</sub>]<sup>+</sup>, where M is 5 (4-(trifluoromethyl)benzylamine).

## e) Mass spectrum of S6



*Figure* S7. Positive mode DART-Orbitrap mass spectrum of S6: a) from (m/z 108.0-108.19); peak at m/z 108.08053 is [M+H]<sup>+</sup>, b) from m/z 88.2-93.6; peak at m/z 91.0544 is [M+H–NH3]<sup>+</sup>, where M is 6 (benzylamine).

# f) Mass spectrum of **S10**



*Figure S8.* Positive mode DART-Orbitrap mass spectrum of **S10** from (m/z 290.0-299.0); peak at m/z 294.19055 is [M+H]<sup>+</sup>, where M is **10** (2-aminomethyl-18-crown-6).



# g) Mass spectrum of S11

*Figure S9.* Negative mode DART-Orbitrap mass spectrum of **S11**, a) from m/z 149.09–149.10; peak at m/z 149.09615 is  $[M-H]^-$ . b) m/z 181.07-181.11; peak at m/z 181.08612 is  $[M+2O-3H]^-$ , where M is **12** (1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethanol).

#### h) Mass spectrum of $S_{mix}$



*Figure S10.* Positive mode DART-Orbitrap mass spectrum of  $S_{mix}$ . A) Chronograms of mixed monolayer  $S_{mix}$ . from top to bottom: TIC; EIC of *m/z* 142.0418 for  $[M+H]^{\dagger}$  of **8**; EIC of *m/z* 125.0153, for  $[M+H-NH_3]^{\dagger}$  of **8**; EIC of *m/z* 126.0714 for  $[M+H]^{\dagger}$  of **7**; EIC of *m/z* 109.0449 for  $[M+H-NH_3]^{\dagger}$  of **7**; EIC of *m/z* 185.9915 for  $[M+H]^{\dagger}$  of **9**; EIC of *m/z* 168.9649 for  $[M+H-NH_3]^{\dagger}$  of **9**. B) mass spectrum of  $S_{mix}$  from *m/z* 108.0-143.0. from left to the right: *m/z* 109.0449 for  $[M+H-NH_3]^{\dagger}$  of **7**; *m/z* 125.0153 for  $[M+H-NH_3]^{\dagger}$  of **8**; *m/z* 126.0714 for  $[M+H]^{\dagger}$  of **7**; and of *m/z* 142.0418 for  $[M+H]^{\dagger}$  of **8**. C) mass spectrum of  $S_{mix}$  from *m/z* 168.9650 for  $[M+H-NH_3]^{\dagger}$  of **9** and *m/z* 185.9916 for  $[M+H]^{\dagger}$  of **9**.





Figure S11. XPS high resolution C 1s spectra for a) S1; b) S2; c) S3; f) S4; and d), e) XPS high resolution spectra of N1s and O1s for S3.



Figure S12. XPS high resolution C 1s spectra for a) S5; b) S6; c) S10; d) S11; and e) S<sub>mix.</sub> f) XPS wide scan of S<sub>mix.</sub>

# 4. Detected ions on monolayers S1-S11 and $S_{mix}$

Table S1. Detected ions on monolayers S1-S11 and  $S_{\mbox{\scriptsize mix}}$ 

| Compound                                                      | Selected<br>fragments                          | Mono-<br>layer <sup>[a]</sup> | Observed<br><i>m/z</i> on<br>surface <sup>[b]</sup> | Calculated<br><i>m/z<sup>[c]</sup></i> |
|---------------------------------------------------------------|------------------------------------------------|-------------------------------|-----------------------------------------------------|----------------------------------------|
| 1                                                             | [M+H]⁺                                         | n.d.                          | n.d. <sup>[a]</sup>                                 | 267.1566                               |
| $C_{13}H_{21}F_{3}O_{2}$                                      | [C₂H₃OF₃−H] <sup>−</sup><br>[CF₃] <sup>−</sup> | S1                            | 99.0054                                             | 99.0058                                |
|                                                               |                                                | S1                            | 68.9949                                             | 68.9946                                |
| <b>2</b><br>C <sub>11</sub> H <sub>20</sub> O <sub>2</sub>    | [M-H] <sup>-</sup>                             | n.d.                          | n.d.                                                | 183.1385                               |
| 3                                                             | [M–H] <sup>–</sup>                             | S3: S5                        | 114 0184                                            | 114 0185                               |
| $C_4H_5NO_3$                                                  | [2M-H] <sup>-</sup>                            | S3                            | 229.0460                                            | 229.0455                               |
| <b>4</b><br>C <sub>6</sub> HF₅O                               | [M−H] <sup>-</sup>                             | S4                            | 182.9860                                            | 182.9863                               |
| 5                                                             | [M+H] <sup>+</sup>                             | <b>S</b> 5                    | 176 0678                                            | 176 0681                               |
| CoHoEoN                                                       | [M+H_NH <sub>2</sub> ] <sup>+</sup>            | S5                            | 159 0414                                            | 159 0416                               |
| 081181 311                                                    | [M+O=3H] <sup>-</sup>                          | <b>S</b> 5                    | 188 0307                                            | 188 0317                               |
|                                                               | [M+2O=NH,=3H] <sup>-</sup>                     | 65<br>65                      | 189.0150                                            | 180.0317                               |
|                                                               | [0, 1, 20, 10, 13, 31, 1]                      | 55<br>65                      | 161 0212                                            | 161 0208                               |
|                                                               | $[C_7^{13}C_1H_4F_3O_2]^{-1}$                  | S5                            | 190.0180                                            | 190.0191                               |
| 6                                                             | [M+H] <sup>+</sup>                             | S6                            | 108 0805                                            | 108 0802                               |
| C₂H₀N                                                         | [M+H–NH₃] <sup>+</sup>                         | S6                            | 91.0544                                             | 91.0542                                |
|                                                               | ,                                              |                               |                                                     |                                        |
| <b>10</b><br>C <sub>13</sub> H <sub>28</sub> N O <sub>6</sub> | [M+H] <sup>+</sup>                             | S10                           | 294.1906                                            | 294.1911                               |
| 12                                                            | [M_H] <sup>_</sup>                             | S11                           | 140.0061                                            | 140 0060                               |
|                                                               | [₩=1]<br>[M+2O=H] <sup>-</sup>                 | S11<br>S11                    | 149.0901                                            | 149.0900                               |
| 0101140                                                       |                                                | 511                           | 101.0001                                            | 101.0009                               |
| 7                                                             | [M+H]⁺                                         | S <sub>mix</sub> : S7         | 126.0714                                            | 126.0714                               |
| C <sub>7</sub> H <sub>8</sub> FN                              | [M+HNH <sub>3</sub> ] <sup>+</sup>             | S <sub>mix</sub> ; S7         | 109.0449                                            | 109.0448                               |
|                                                               | . 3                                            |                               |                                                     |                                        |
| 8                                                             | $[M+H]^+$                                      | S <sub>mix</sub> ; S8         | 142.0418                                            | 142.0418                               |
| C <sub>7</sub> H <sub>8</sub> CIN                             | $[M+H-NH_3]^+$                                 | S <sub>mix</sub> ; S8         | 125.0153                                            | 125.0153                               |
| 9                                                             | [M+H]⁺                                         | S <sub>mix</sub> ; S9         | 185.9915                                            | 185.9913                               |
| C <sub>7</sub> H <sub>8</sub> BrN                             | [M+H–NH <sub>3</sub> ] <sup>+</sup>            | S <sub>mix</sub> ; S9         | 168.9649                                            | 168.9647                               |
|                                                               |                                                |                               |                                                     |                                        |

[a] n.d. – not detected; [b] for description of **S1-S11 and S**<sub>mix</sub> see scheme 1; [c] calculated with XCALIBUR software (v. 2.1)

## 5. Limit of detection of DART-HRMS

As the reaction of pure amine with **S4** proceeded with 67% yield (**S1** = 100%; surface density for **S1** ~4 × 10<sup>14</sup> molecules/cm<sup>2</sup>),<sup>[1]</sup> the reaction with a mixture of three amines, having similar reactivity, should lead to a ~22% final surface density for each amide. Thus, for **S**<sub>mix</sub>, the density of **7**, **8** or **9** separately would be ~9 × 10<sup>13</sup> molecules/cm<sup>2</sup>. As the absolute intensity of each ion was ~20 times higher than the lowest detectable signal (~50), the limit of detection of DART-HRMS is ~5 × 10<sup>12</sup> molecules/cm<sup>2</sup>, i.e. in the pmol range.

#### 6. References

- [1] R. K. Manova, S. P. Pujari, C. A. G. M. Weijers, H. Zuilhof, T. A. van Beek, *Langmuir* 2012, 28, 8651-8663.
- [2] A. Kaufmann, S. Walker, Rapid Commun. Mass Spectrom. 2012, 26, 1081-1090.

#### 7. Acknowledgements

This work is co-financed by the INTERREG IV A Germany-Netherlands program through EU funding from the European Regional Development Fund, the MWEBWV Ministry of North-Rhine Westphalia, the Dutch Ministry of Economic Affairs, Province of Gelderland, and the program management Euregio Rhein-Waal.