Formation of a pillar[5]arene-based [3]pseudorotaxane in solution and in the solid state

Lingyan Gao, Chengyou Han, Bo Zheng, Shengyi Dong and Feihe Huang*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China

Fax: +86-571-8795-1895; Tel: +86-571-8795-3189; Email address: fhuang@,zju.edu.cn.

Electronic Supplementary Information (10 pages)

1 Materials and methods S2
2 Syntheses of $\mathbf{3}$ and $\mathbf{4}$ S2
3 Stoichiometry and association constant determination for the complexation between 2 and 3 S6
4 The ${ }^{1} H$ NMR of a solution of $\mathbf{2}$ and $\mathbf{3}$ in different organic solvents S9
5 Variable-temperature ${ }^{1} H$ NMR spectra of a solution of 2 and $\mathbf{3}$ in toluene- d_{8} S10
6 X-ray crystal data of 4 S10
References S10

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. 1,4-Dipropoxybenzene $\mathbf{1}$ and 1,4-bis(4-bromobutoxy)benzene 2 were synthesized according to literature procedures. ${ }^{51}{ }^{1} \mathrm{H}$ NMR spectra were collected on a temperature-controlled 400 MHz or 500 MHz spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AVANCE DMX-500 spectrometer at 125 MHz . Low-resolution electrospray ionization (LRESI) mass spectra were obtained on a Bruker Esquire 3000 plus mass spectrometer (Bruker-Franzen Analytik GmbH Bremen, Germany) equipped with a ESI interface and an ion trap analyzer.

2. Syntheses of $\mathbf{3}$ and $\mathbf{4}$

A mixture of 1,4-dipropoxybenzene $(4.40 \mathrm{~g}, 26.3 \mathrm{mmol})$, 1,4-bis(4bromobutoxy)benzene ($1.00 \mathrm{~g}, 2.60 \mathrm{mmol}$), paraformaldehyde ($2.45 \mathrm{~g}, 79.0 \mathrm{mmol}$) and $\mathrm{FeCl}_{3}(0.800 \mathrm{~g}, 4.94 \mathrm{mmol})$ was stirred in dichloromethane under nitrogen atmosphere at room temperature for 8 h . The solution was evaporated under vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether/dichloromethane $=40 / 1, v / v)$ to afford 3 as a white solid ($1.00 \mathrm{~g}, 32 \%$) and [3]pseudorotaxane $4(100 \mathrm{mg})$. Melting point of 3: 127.7-129.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR of 3 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 295 \mathrm{~K}$) $\delta(\mathrm{ppm}): 6.82-6.81(8 \mathrm{H}, \mathrm{m}), 6.76(2 \mathrm{H}, \mathrm{s}), 3.89(4 \mathrm{H}, J=6.0$ $\mathrm{Hz}, \mathrm{t}), 3.86-3.73(26 \mathrm{H}, \mathrm{m}), 3.42(4 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{t}), 2.05-1.98(4 \mathrm{H}, \mathrm{m}), 1.92-1.86$ $(4 \mathrm{H}, \mathrm{m}), 1.83-1.71(16 \mathrm{H}, \mathrm{m}), 1.08-1.00(24 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR of 3 ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 295 K) δ (ppm): $149.88,149.84,149.74,128.54,128.39,128.31,128.29,128.01$, 115.04, 70.08, 70.04, 69.96, 69.93, 67.21, 33.67, 29.70, 29.51, 28.39, 23.08, 23.04, 10.92, 10.79. LRESIMS: $m / z 1234.4\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}(100 \%)$. HRESIMS: m / z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{67} \mathrm{H}_{92} \mathrm{Br}_{2} \mathrm{NaO}_{10}{ }^{+}$, 1237.4949; found 1237.4938; error -0.9 ppm. ${ }^{1} \mathrm{H}$ NMR of 4 ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 295 \mathrm{~K}, 8.00 \mathrm{mM}\right) \delta(\mathrm{ppm}): 6.89(16 \mathrm{H}, \mathrm{s}), 6.84(4 \mathrm{H}, \mathrm{s})$, $6.80(4 \mathrm{H}, \mathrm{s}), 3.89-3.77(60 \mathrm{H}, \mathrm{m}), 3.48-3.45(8 \mathrm{H}, \mathrm{t}), 2.04(8 \mathrm{H}, \mathrm{m}), 1.93(8 \mathrm{H}, \mathrm{m})$, $1.84-1.81(32 \mathrm{H}, \mathrm{m}), 1.07-1.03(48 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR of $4\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 295 \mathrm{~K}\right.$, $15.0 \mathrm{mM}) \delta(\mathrm{ppm}): 148.84,148.81,148.67,127.51,127.45,127.33,127.26,127.22$, $127.05,126.98,113.89,113.83,69.10,69.04,69.03,68.97,68.90,66.34,66.27,66.23$, 66.20, 32.67, 32.65, 27.39, 22.09, 22.06, 21.90, 9.91, 9.78.

Fig. $\boldsymbol{S 1}{ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , chloroform- $d, 22^{\circ} \mathrm{C}$) of $\mathbf{3}$.

Fig. $\mathbf{S 2}{ }^{13} \mathrm{C}$ NMR spectrum (125 MHz , chloroform- $d, 22^{\circ} \mathrm{C}$) of $\mathbf{3}$.

Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz , chloroform- $d, 22^{\circ} \mathrm{C}, 8.00 \mathrm{mM}$) of 4 .

Fig. $\mathbf{S 4}{ }^{13} \mathrm{C}$ NMR spectrum (125 MHz , chloroform- $d, 22^{\circ} \mathrm{C}, 15.0 \mathrm{mM}$) of $\mathbf{4}$.

Fig. S5 LRESI mass spectrum of 3. Main peak: $m / z 1234.4\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$(100%).

Fig. S6 LRESI mass spectrum of a solution of $\mathbf{3}$ and 2. Main peak: $m / z 1421.1\left[M+2 \mathrm{H}_{3} \mathrm{O}\right]^{2+}$ (100\%).
3. Stoichiometry and association constant determination for the complexation between $\mathbf{3}$ and 2

2

3

Fig. S7 Partial ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz , chloroform- d, $22{ }^{\circ} \mathrm{C}$): (a) $4.00 \mathrm{mM} \mathrm{2;} \mathrm{(b)} 1.00$ mM 3 and 3.00 mM 2 ; (c) 2.67 mM 3 and 1.33 mM 2 ; (d) 2.00 mM 3 and $2.00 \mathrm{mM} \mathrm{2;} \mathrm{(e)}$ 1.33 mM 3 and 2.67 mM 2 ; (d) 3.00 mM 3 and 1.00 mM 2.

Fig. S8 Job plot showing the 1:2 stoichiometry of the complexation between 2 and $\mathbf{3}$ in chloroform- d using the proton NMR data for H_{a}. Delta is the chemical shift change of H_{a}. [2] $]_{0}$ $+[3]_{0}=4.00 \mathrm{mM} .[2]_{0}$ and $[3]_{0}$ are initial concentrations of 2 and 3.

Fig. S9 Partial ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz , chloroform- $d, 22^{\circ} \mathrm{C}$) of 2 at the concentration of 1.50 mM upon addition of 3: (a) 0 mM ; (b) 0.880 mM ; (c) 1.73 mM ; (d) 2.55 mM ; (e) 3.33 mM; (f) 5.18 mM ; (g) 6.86 mM ; (h) 8.41 mM ; (i) 11.2 mM ; (j) 13.5 mM ; (k) 17.4 mM ; (l) 20.0 mM .

Treatment of chemical shifts of H_{a} on $\mathbf{2}$ by Benesi-Hildebrand method ${ }^{\mathrm{S2}}$

Fig. S10 Benesi-Hildebrand plot for the complexation of host 3 with guest 2. Δ_{0}, the difference in δ values for H_{a} of $\mathbf{2}$ in the uncomplexed and fully complexed species, was determined as the y -intercept of a plot of $\Delta=\delta-\delta_{\mathrm{u}}$ versus $1 /[2]_{0}$ in the high initial concentration range of 2. $\Delta_{0}=1 / 24.4=0.0401 \mathrm{ppm}$.

Fig. S11 Scatchard plot for the complexation of host $\mathbf{3}$ with guest $\mathbf{2}$ in chloroform- d at $22^{\circ} \mathrm{C}$. $p=$ fraction of alkyl chains unit on 2 bound. Error bars in $p: \pm 0.03$ absolute; error bars in $p /[3]: \pm 0.06$ relative.

4. The ${ }^{1} H$ NMR of a solution of $\mathbf{2}$ and $\mathbf{3}$ in different organic solvents

Fig. S12 Partial ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz , acetone- $d_{6}, 22^{\circ} \mathrm{C}$): (a) 4.00 mM 2; (b) 4.00 mM 3; (c) 4.00 mM 3 and 2.00 mM 2.

Fig. S13 Partial ${ }^{1} \mathrm{H}$ NMR spectra [500 MHz, methanol- $d_{4} /$ chloroform- $\left.d(1: 1, v / v), 22{ }^{\circ} \mathrm{C}\right]$: (a) 4.00 mM 3 ; (b) 4.00 mM 2 ; (c) 4.00 mM 3 and 2.00 mM 2.
5. Variable-temperature ${ }^{1} H$ NMR spectra of a solution of $\mathbf{2}$ and $\mathbf{3}$ in toluene- d_{8}

Fig. S14 Partial variable-temperature ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz , toluene- d_{8}) of a solution of 4.00 mM 3 and 2.00 mM 2.

6. X-ray crystal data of $\mathbf{4}$

Crystal data of 4: colorless, $\mathrm{C}_{74} \mathrm{H}_{102} \mathrm{Br}_{3} \mathrm{O}_{11}$, FW 1407.29, monoclinic, space group $C 2 / c, a=32.807(3), b=20.7165(10), c=27.943(3) \AA, \alpha=90.00^{\circ}, \beta=130.180(17)^{\circ}$, $\gamma=90.00^{\circ}, V=14510(2) \AA^{3}, Z=8, D_{\mathrm{c}}=1.288 \mathrm{~g} \mathrm{~cm}^{-3}, T=140(2) \mathrm{K}, \mu=1.724 \mathrm{~mm}^{-1}$, 28619 measured reflections, 13256 independent reflections, 931 parameters, 472 restraints, $F(000)=5912, R_{1}=0.1805, w R_{2}=0.2659$ (all data), $R_{1}=0.0843, w R_{2}=$ $0.2048[I>2 \sigma(I)]$, max. residual density $0.569 \mathrm{e} \cdot \AA^{-3}$, and goodness-of-fit $\left(F^{2}\right)=$ 1.004. CCDC-900315.

References:

S1. (a) S. A. Caldarelli, J.-F. Duckert, S. Wein, M. Calas, C. Périgaud, H. Vial and S. Peyrottes, ChemMedChem, 2010, 5, 1102-1109; (b) R. Castro, K. R. Nixon, J. D. Evanseck and A. E. Kaifer, J. Org. Chem., 1996, 61, 7298-7303.
S2. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc., 1949, 71, 2703-2707.

