Formation of a pillar[5]arene-based [3]pseudorotaxane in solution and in the solid state

Lingyan Gao, Chengyou Han, Bo Zheng, Shengyi Dong and Feihe Huang*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China

Fax: +86-571-8795-1895; Tel: +86-571-8795-3189; Email address: <u>fhuang@zju.edu.cn</u>.

Electronic Supplementary Information (10 pages)

1	Materials and methods	S2
2	Syntheses of 3 and 4	S2
3	Stoichiometry and association constant determination for the complexation	
	between 2 and 3	S6
4	The ^{1}H NMR of a solution of 2 and 3 in different organic solvents	S9
5	Variable-temperature ${}^{1}H$ NMR spectra of a solution of ${f 2}$ and ${f 3}$ in toluene- ${f d}_{8}$	S10
6	X-ray crystal data of 4	S10
	References	S10

1. Materials and methods

All reagents were commercially available and used as supplied without further purification. 1,4-Dipropoxybenzene **1** and 1,4-bis(4-bromobutoxy)benzene **2** were synthesized according to literature procedures. ^{S1} H NMR spectra were collected on a temperature-controlled 400 MHz or 500 MHz spectrometer. ¹³C NMR spectra were recorded on a Bruker AVANCE DMX-500 spectrometer at 125 MHz. Low-resolution electrospray ionization (LRESI) mass spectra were obtained on a Bruker Esquire 3000 plus mass spectrometer (Bruker-Franzen Analytik GmbH Bremen, Germany) equipped with a ESI interface and an ion trap analyzer.

2. Syntheses of 3 and 4

mixture of 1,4-dipropoxybenzene (4.40 g, 26.3 mmol), 1,4-bis(4bromobutoxy)benzene (1.00 g, 2.60 mmol), paraformaldehyde (2.45 g, 79.0 mmol) and FeCl₃ (0.800 g, 4.94 mmol) was stirred in dichloromethane under nitrogen atmosphere at room temperature for 8 h. The solution was evaporated under vacuo and the residue was purified by flash column chromatography on silica gel (petroleum ether/dichloromethane = 40/1, v/v) to afford 3 as a white solid (1.00 g, 32%) and [3] pseudorotaxane 4 (100 mg). Melting point of 3: 127.7–129.6 °C. ¹H NMR of 3 (400 MHz, CDCl₃, 295 K) δ (ppm): 6.82–6.81 (8H, m), 6.76 (2H, s), 3.89 (4H, J = 6.0 Hz, t), 3.86-3.73 (26H, m), 3.42 (4H, J = 6.5 Hz, t), 2.05-1.98 (4H, m), 1.92-1.86(4H, m), 1.83–1.71 (16H, m), 1.08–1.00 (24H, m). ¹³C NMR of **3** (125 MHz, CDCl₃, 295 K) δ (ppm): 149.88, 149.84, 149.74, 128.54, 128.39, 128.31, 128.29, 128.01, 115.04, 70.08, 70.04, 69.96, 69.93, 67.21, 33.67, 29.70, 29.51, 28.39, 23.08, 23.04, 10.92, 10.79. LRESIMS: m/z 1234.4 [M + H₂O + H]⁺ (100%). HRESIMS: m/z calcd for $[M + Na]^+ C_{67}H_{92}Br_2NaO_{10}^+$, 1237.4949; found 1237.4938; error -0.9 ppm. ¹H NMR of 4 (400 MHz, CDCl₃, 295 K, 8.00 mM) δ (ppm): 6.89 (16H, s), 6.84 (4H, s), 6.80 (4H, s), 3.89–3.77 (60H, m), 3.48–3.45 (8H, t), 2.04 (8H, m), 1.93 (8H, m), 1.84–1.81 (32H, m), 1.07–1.03 (48H, m). ¹³C NMR of **4** (125 MHz, CDCl₃, 295 K, 15.0 mM) δ (ppm): 148.84, 148.81, 148.67, 127.51, 127.45, 127.33, 127.26, 127.22, 127.05, 126.98, 113.89, 113.83, 69.10, 69.04, 69.03, 68.97, 68.90, 66.34, 66.27, 66.23, 66.20, 32.67, 32.65, 27.39, 22.09, 22.06, 21.90, 9.91, 9.78.

Fig. S1 ¹H NMR spectrum (400 MHz, chloroform-d, 22 °C) of 3.

Fig. S3 ¹H NMR spectrum (400 MHz, chloroform-d, 22 °C, 8.00 mM) of 4.

Fig. S4 ¹³C NMR spectrum (125 MHz, chloroform-d, 22 °C, 15.0 mM) of 4.

Fig. S5 LRESI mass spectrum of 3. Main peak: m/z 1234.4 [M + H₂O + H]⁺ (100%).

Fig. S6 LRESI mass spectrum of a solution of 3 and 2. Main peak: m/z 1421.1 [M + 2H₃O]²⁺ (100%).

3. Stoichiometry and association constant determination for the complexation between 3 and 2

Fig. S7 Partial ¹H NMR spectra (500 MHz, chloroform-*d*, 22 °C): (a) 4.00 mM **2**; (b) 1.00 mM **3** and 3.00 mM **2**; (c) 2.67 mM **3** and 1.33 mM **2**; (d) 2.00 mM **3** and 2.00 mM **2**; (e) 1.33 mM **3** and 2.67 mM **2**; (d) 3.00 mM **3** and 1.00 mM **2**.

Fig. S8 Job plot showing the 1:2 stoichiometry of the complexation between **2** and **3** in chloroform-d using the proton NMR data for H_a. Delta is the chemical shift change of H_a. [2]₀ + [3]₀ = 4.00 mM. [2]₀ and [3]₀ are initial concentrations of **2** and **3**.

Fig. S9 Partial ¹H NMR spectra (500 MHz, chloroform-d, 22 °C) of 2 at the concentration of 1.50 mM upon addition of 3: (a) 0 mM; (b) 0.880 mM; (c) 1.73 mM; (d) 2.55 mM; (e) 3.33 mM; (f) 5.18 mM; (g) 6.86 mM; (h) 8.41 mM; (i) 11.2 mM; (j) 13.5 mM; (k) 17.4 mM; (l) 20.0 mM.

Treatment of chemical shifts of H_a on 2 by Benesi-Hildebrand method^{S2}

Fig. S10 Benesi-Hildebrand plot for the complexation of host 3 with guest 2. Δ_0 , the difference in δ values for H_a of 2 in the uncomplexed and fully complexed species, was determined as the y-intercept of a plot of $\Delta = \delta - \delta_u$ versus $1/[2]_0$ in the high initial concentration range of 2. $\Delta_0 = 1/24.4 = 0.0401$ ppm.

Fig. S11 Scatchard plot for the complexation of host 3 with guest 2 in chloroform-d at 22 °C. $p = \text{fraction of alkyl chains unit on 2 bound. Error bars in } p: \pm 0.03 \text{ absolute; error bars in } p/[3]: \pm 0.06 \text{ relative.}$

4. The ¹H NMR of a solution of 2 and 3 in different organic solvents

Fig. S12 Partial ¹H NMR spectra (500 MHz, acetone- d_6 , 22 °C): (a) 4.00 mM 2; (b) 4.00 mM 3; (c) 4.00 mM 3 and 2.00 mM 2.

Fig. S13 Partial ¹H NMR spectra [500 MHz, methanol- d_4 /chloroform-d (1:1, v/v), 22 °C]: (a) 4.00 mM **3**; (b) 4.00 mM **2**; (c) 4.00 mM **3** and 2.00 mM **2**.

Fig. S14 Partial variable-temperature 1 H NMR spectra (500 MHz, toluene- d_{8}) of a solution of 4.00 mM **3** and 2.00 mM **2**.

6. X-ray crystal data of 4

Crystal data of **4**: colorless, $C_{74}H_{102}Br_3O_{11}$, FW 1407.29, monoclinic, space group C2/c, a = 32.807(3), b = 20.7165(10), c = 27.943(3) Å, $\alpha = 90.00^{\circ}$, $\beta = 130.180(17)^{\circ}$, $\gamma = 90.00^{\circ}$, V = 14510(2) Å³, Z = 8, $D_c = 1.288$ g cm⁻³, T = 140(2) K, $\mu = 1.724$ mm⁻¹, 28619 measured reflections, 13256 independent reflections, 931 parameters, 472 restraints, F(000) = 5912, $R_1 = 0.1805$, $wR_2 = 0.2659$ (all data), $R_1 = 0.0843$, $wR_2 = 0.2048$ [$I > 2\sigma(I)$], max. residual density 0.569 e•Å⁻³, and goodness-of-fit (F^2) = 1.004. CCDC-900315.

References:

- S1. (a) S. A. Caldarelli, J.-F. Duckert, S. Wein, M. Calas, C. Périgaud, H. Vial and S. Peyrottes, *ChemMedChem*, 2010, **5**, 1102–1109; (b) R. Castro, K. R. Nixon, J. D. Evanseck and A. E. Kaifer, *J. Org. Chem.*, 1996, **61**, 7298–7303.
- S2. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc., 1949, 71, 2703–2707.