Supporting Information

Rhodium-nickel bimetallic nanocatalysts: high performance of

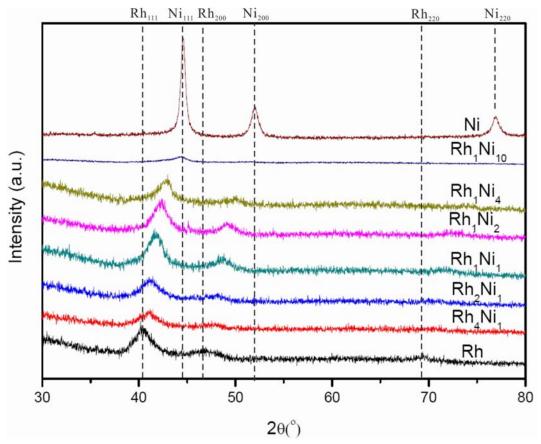
room-temperature hydrogenation

Haohong Duan¹, Dingsheng Wang¹, Yuan Kou² and Yadong Li^{1*}
¹Department of Chemistry and the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing, 100084 (P. R. China), ²Department of ..., Peking University, Beijing 1..., P. R. China

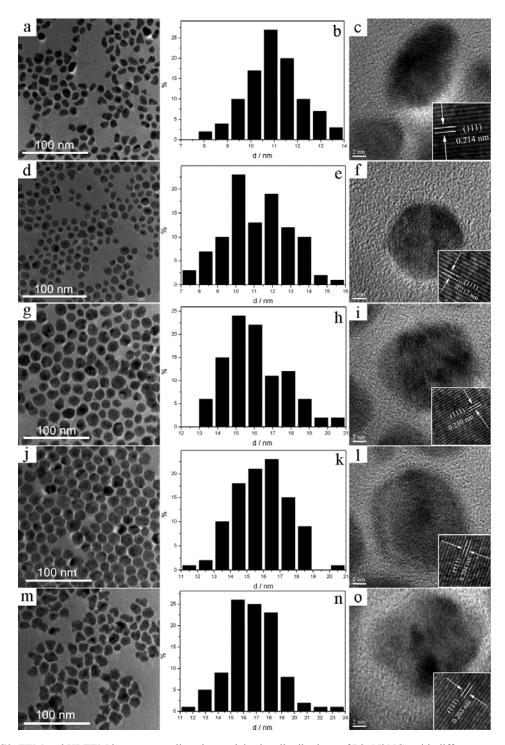
*E-mail: ydli@tsinghua.edu.cn

Experimental Details

Chemicals: RhCl₃·3H₂O and Ni(acac)₂ were purchased from Alfa Aesar. ODA, ethanol, cyclohexane, phenol, benzene, cyclohexanone, cyclohexanol, cyclohexene, cyclohexane, styrene, ethylenzene, Benzalacetone, benzylacetone, Nitrobenzene, Aniline, 4-Chloronitrobenzene, 4-Chloroaniline were of analytical grade from the Beijing Chemical Factory of China. All the reagents used in this work were used without further purification.


Synthesis: In a typical synthesis of $Rh_{0.67}Ni_{0.33}$ NCs, 2 mL of $RhCl_3 \cdot 3H_2O$ aqueous solution (0.05 mmol/mL) and 0.0128 g Ni(acac)₂ were mixed with 2 g of octadecylamine (ODA) and the resulting mixture was heated to 110 \square with strongly stirring to evaporate the water and form a transparent solution. The mixture was then injected into 6.6 g of ODA preheated at 250 °C with vigorous stirring. The solution turned black immediately with the formation of a precipitate. After reaction at 230 °C for 2 minutes, the precipitate was washed several times with ethanol, and then dispersed in a non-polar solvent such as cyclohexane. Rh_xNi_{1-x} with 0 < x <= 1 were prepared using the same procedure of $Rh_{0.67}Ni_{0.33}$ nanocrystals above except that the total molar amount of Rh and Ni was kept at 0.15 mmol.

In the synthesis of Ni NCs, 0.128 g Ni(acac)₂ were mixed with 8.6 g of ODA and the resulting mixture was heated to 230 \Box and kept at this temperature for 5 min. The precipitate was washed several times with ethanol, and then dispersed in a non-polar solvent such as cyclohexane.

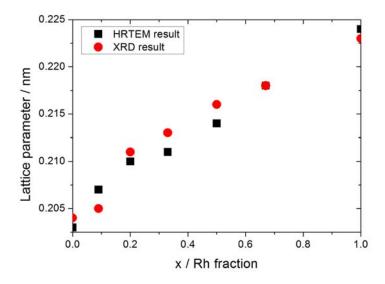

Characterization: Powder XRD patterns were recorded with a Bruker D8 ADVANCE X-ray powder diffractometer with Cu K α radiation (λ = 1.5406 Å). The particle size and morphology of as-synthesized samples were determined by using Hitachi model H-800 transmission electron microscope and a JEOL-2010F high-resolution transmission electron microscope.

Catalytic measurements: The substrate and Rh_xNi_{1-x} NCs solution (synthesized as described above) were placed in an autoclave. In a typical experiment, H_2 (40 bar) was introduced into the autoclave after the reactor was purged 3 times with H_2 . The mixture was stirred at 800 rpm at room temperature (25 °C) for the required time.

Supplementary Figures

Fig. S1. The powder X-ray diffraction (XRD) patterns of the as-obtained Rh, $RhxNi_{1-x}$, and Ni nanocrystals.

Fig. S2. TEM and HRTEM images as well as the particle size distributions of Rh–Ni NCs with different compositions: (a, b, c) Rh_{0.45}Ni_{0.55}; (d, e, f) Rh_{0.33}Ni_{0.67}; (g, h, i) Rh_{0.2}Ni_{0.8}; (j, k, l) Rh_{0.12}Ni_{0.88}; (m, n, o) Rh_{0.1}Ni_{0.9}.



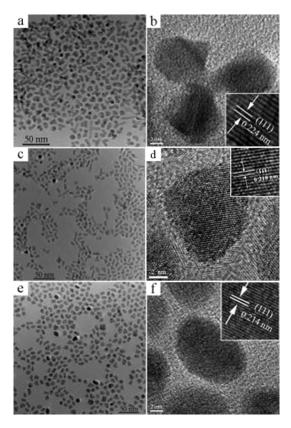


Fig. S3. The variation of lattice parameter of Rh_xNi_{1-x} with composition.

Fig. S4. (a) Representative TEM image of as-obtained Ni NCs. (b) HRTEM image of an individual Ni NC. (Inset, enlarged HRTEM image)

Fig. S5. Representative TEM and HRTEM images of (a, b) Rh, (c, d) $Rh_{0.67}Ni_{0.33}$ and (e, f) $Rh_{0.5}Ni_{0.5}$. (Inset, enlarged HRTEM images)

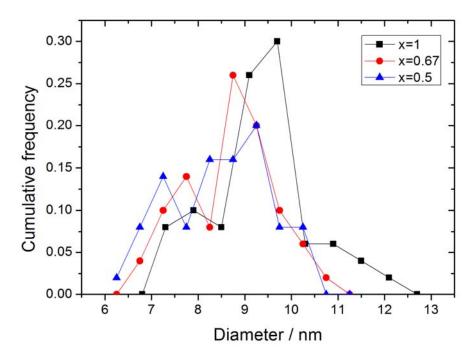


Fig. S6. Size distribution for Rh (black), $Rh_{0.67}Ni_{0.33}$ (red) and $Rh_{0.5}Ni_{0.5}$ (blue).

Table. S1 Hydrogenation of alkenes, nitroarenes and arenes in the presence of $Rh_{0.67}Ni_{0.33}$ NCs ^a

Entry	Substrate	Product	(EL 3	Conv ^b .[%]	Selectivity ^b	TOF ^c
			t[h]			[h ⁻¹]
1	Cyclohexene	Cyclohexane	1	>99	>99	3253
2	Styrene	Ethylenzene	0.25	>99	>99	13012
3	Benzalacetone	Benzylacetone	0.5	>99	>99	6506
4	Nitrobenzene	Aniline	16	>99	>99	203
5	4-Chloronitrobenzene	4-Chloroaniline	24	>99	96.6	136
5		Aniline			3.4	
6	Phenol	Cyclohexanone	24	86.5	63.9	117
		Cyclohexanol			36.1	
7	benzene	Cyclohexane	24	21.7	>99	29.5

^aReaction conditions: 0.5 mmol of substrate and 0.03 mol% of $Rh_{0.67}Ni_{0.33}$ nanocatalyst (based on ICP analysis of Rh metal) in 3 mL ethyl acetate at room temperature (25 °C) under 1 atm of H_2 . ^bDetermined by GC-MS. ^cTOF measured in [mol product][mol metal]⁻¹·h⁻¹.

Table. S2 Hydrogenation performance using Rh0.67Ni0.33 NCs nanocatalyst under different hydrogen pressure^a

Entry	Substrate	Pressure (Mpa)	t [h]	Conv. ^b [%]	Selectivity ^b [%]	
					В	С
1		0.1	1	>99	>99	N.D.
2		4	1	>99	91.8	8.2
3		0.1	0.5	>99	>99	N.D.
4		4	0.5	>99	83.7	16.3
5	NO ₂	0.1	24	>99	>99	N.D.
6		4	24	>99	96.2	3.8

 $^{^{}a}0.5$ mmol substrates and 0.03 mol% catalyst (based on ICP analysis of Rh metal) in 3 mL ethyl acetate at room temperature (25 \square) under H₂ (1 atm). b Determine by GC-MS.

Table. S3 Recycling of $Rh_{0.67}Ni_{0.33}$ nanocatalyst in the hydrogenation of styrene^a

Cycle	t [h]	Conv. ^b [%]	
1	0.5	100	
2	0.5	98.8	
3	0.5	98.2	
4	0.5	97.6	
5	0.5	97.4	

 $[^]a0.5$ mmol styrene and 0.03 mol% catalyst (based on ICP analysis of Rh metal) in 3 mL ethyl acetate at room temperature (25 \square) under H₂ (1 atm). b Determine by GC-MS.