# Highly Regioselective Opening of Zirconacyclopentadienes by Remote Coordination: Concise Synthesis of the Furan Core of the Leupyrrins 

Thomas Debnar, ${ }^{\dagger}$ Sandra Dreisigacker ${ }^{\dagger}$ and Dirk Menche** ${ }^{*}$<br>$\dagger$ Universität Heidelberg, Institut für Organische Chemie, INF 270, D-69120 Heidelberg, Germany and<br>$\ddagger$ Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.<br>E-mail: dirk.menche@uni-bonn.de

## Contents

I. Experimental Details and Characterization Data. ..... S2-26
II. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. ..... S28-80
III. Computational Details. ..... S81-95

General Remarks: Optical rotations were determined on a Perkin-Elmer 241 instrument. UV spectra were recorded on a Shimadzu UV-2102 PC scanning spectrometer. IR spectra were measured with a Nicolet 20DXB FT-IR spectrometer. NMR spectra were recorded in $\mathrm{CDCl}_{3}$ on a Bruker AM 300, AM 400 and DMX-600 spectrometer. EI and DCI mass spectra (reactant gas ammonia) were obtained on a Finnigan MAT 95 spectrometer, high resolution data were aquired using peak matching ( $\mathrm{M} / \mathrm{DM}=10000$ ). Analytical TLC (TLC aluminium sheets silica gel Si $60 \mathrm{~F}_{254}$ (Merck), solvent: mixtures of ethylacetate/ $n$-haxane, detection: UV absorption at 254 nm , dark blue spots on staining with cerium(IV)sulfate- phosphomolybdic acid in sulfuric acid followed by charring.

## I. EXPERIMENTAL DETAILS AND CHARACTERIZATION DATA

## 1-Methoxy-4-((pent-4-yn-2-yloxy)methyl)benzene (S1)

<br>Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$<br>Exact Mass: 204,1150<br>Molecular Weight: 204,2649

To a suspension of 380 mg ( $9.51 \mathrm{mmol}, 1.60 \mathrm{eq}$.) of $60 \%$ sodium hydride dispersion in mineral oil in THF $(15.0 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was slowly added pent-4-yn-2-ol ( $500 \mathrm{mg}, 5.94 \mathrm{mmol}$, 1.00 eq.). The resulting heterogeneous mixture was stirred at room temperature for 3 h whereupon 1.10 g ( $2.97 \mathrm{mmol}, 0.50$ eq.) of tetrabutylammonium iodide and 1.86 g ( $11.9 \mathrm{mmol}, 2.0$ eq.) of $p$-methoxybenzyl chloride were successively added. After stirring at room temperature for 16 h , the mixture was quenched by addition of water ( 20.0 ml ) followed by dilution with diethyl ether( 50.0 ml$)$. The resulting clear layers were separated, the aqueous portion was extracted with diethyl ether ( $3 \times 20.0 \mathrm{ml}$ ) and the combined organic extracts were washed with brine ( 20.0 ml ), dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated in vacuo. Purification by flash chromatography ( $70.0 \mathrm{~g} \mathrm{SiO}_{2}, n$-hexane/ethyl acetate 20:1) afforded the protected alcohol S1 (948 mg, $4.64 \mathrm{mmol}, 78 \%$ ) as a colourless oil. $\mathrm{R}_{\mathrm{f}}=0.42(n-$ hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.32(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.03$ $(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, \mathrm{J}=16.8,7.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{ddd}, \mathrm{J}=16.5,4.8,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{tq}, \mathrm{J}=6.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 7.30$ (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) $\delta \mathrm{ppm}$ 19.53, 26.02, 55.29, 69.91, 70.35, 72.81, 81.29, $113.79,129.23,130.57,159.16$; MS (ESI) $m / z: 227.1[M+N a]^{+}$. The spectroscopic data were in agreement with those previously reported. ${ }^{1}$

## tert-Butyldimethyl(pent-4-yn-2-yloxy)silane (S2)



Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{OSi}$
Exact Mass: 198,1440
Molecular Weight: 198,3773

[^0]To a solution of pent-4-yn-2-ol ( $1.00 \mathrm{~g}, 11.9 \mathrm{mmol}, 1.00$ eq.) in DMF ( 30.0 ml ) at $0^{\circ} \mathrm{C}$ was added tert-butyldimethylsilyl chloride ( $2.69 \mathrm{~g}, 17.8 \mathrm{mmol}, 1.50 \mathrm{eq}$ ), then imidazole ( 1.21 g , $17.8 \mathrm{mmol}, 1.50 \mathrm{eq})$. The resulting solution was stirred at room temperature for 12 h . Then 30.0 ml of water were added and the suspension was extracted with diethyl ether ( 3 x 30.0 ml ). The combined organic layers were washed with water ( 50.0 ml ), dried over anhydrous $\mathrm{MgSO}_{4}$ and the solvent was removed under reduced pressure. Purification by flash chromatography ( $50.0 \mathrm{~g} \mathrm{SiO}_{2}$, $n$-hexane/ethyl acetate $20: 1$ ) afforded $2.24 \mathrm{~g}(11.3 \mathrm{mmol}$, $95 \%$ ) of $\mathbf{S} \mathbf{2}$ as a colourless liquid. $\mathrm{R}_{\mathrm{f}}=0.52$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$-NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.98$ $(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{ddd}, J=16.5,7.3,2.6,1 \mathrm{H}), 2.34(\mathrm{ddd}, J=16.5,5.5,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.95(\mathrm{tq}, J=6.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-4.76,-4.68,18.13$, 23.24, 25.82, 29.37, 67.51, 69.68, 81.94; MS (EI+) $m / z(\%): 198.1\left(M^{+}, 0.03\right), 159.1$ (16). The spectroscopic data were in agreement with those previously reported. ${ }^{2}$

## General Procedure for the Preparation of Propargylic Alcohols S3 - S7:

To a solution of 1.00 eq. of the corresponding alkyne in dry THF at $-78^{\circ} \mathrm{C}$ was slowly added $n$-butyllithium ( 1.20 eq., 2.0 M in cyclohexane). The resulting solution was stirred at this temperature for 1 h , and then 1.10 eq . of 3-methylbutanal were added via syringe. After 1 h of stirring, the reaction mixture was allowed to warm to room temperature and stirred for an additional hour. The reaction mixture was quenched with a saturated solution of ammonium chloride and the phases were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic layers were washed with brine, dried over anhydrous $\mathrm{MgSO}_{4}$ and the solvent was removed under reduced pressure. Purification by flash chromatography afforded the corresponding Propargylic Alcohols $\mathbf{S 3}$ - $\mathbf{S 7}$ in variable yields given below.

[^1]| Alkyne | $n$-BuLi | Aldehyde | THF | Product | Purification |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { 1-Pentyne } \\ 300 \mathrm{mg} \\ (4.40 \mathrm{mmol}) \end{gathered}$ | $\begin{gathered} 2.64 \mathrm{ml} \\ (5.28 \mathrm{mmol}) \end{gathered}$ | 420 mg <br> $(4.84 \mathrm{mmol})$ | 10.0 ml | S3 | $\begin{aligned} & 40.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(10: 1) \end{aligned}$ |
| 4-Methyl-1pentyne 300 mg ( 3.65 mmol ) | $\begin{gathered} 2.19 \mathrm{ml} \\ (4.38 \mathrm{mmol}) \end{gathered}$ | 346 mg <br> $(4.02 \mathrm{mmol})$ | 10.0 ml | S4 | $\begin{aligned} & 40.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(10: 1) \end{aligned}$ |
| $\mathbf{S 9}$ 100 mg $(1.02 \mathrm{mmol})$ | $\begin{gathered} 0.61 \mathrm{ml} \\ (1.22 \mathrm{mmol}) \end{gathered}$ | $\begin{gathered} 96.5 \mathrm{mg} \\ (1.12 \mathrm{mmol}) \end{gathered}$ | 5.00 ml | S5 | $\begin{gathered} \hline 20.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ n \text {-hexane/ethyl } \\ \text { acetate }(10: 1) \end{gathered}$ |
| S1 500 mg $(2.52 \mathrm{mmol})$ | $\begin{gathered} 1.52 \mathrm{ml} \\ (3.02 \mathrm{mmol}) \end{gathered}$ | $\begin{gathered} 239 \mathrm{mg} \\ (2.77 \mathrm{mmol}) \end{gathered}$ | 15.0 ml | S6 | $\begin{aligned} & 60.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(10: 1) \end{aligned}$ |
| $\mathbf{S 2}$ 300 mg $(1.47 \mathrm{mmol})$ | $\begin{gathered} 0.88 \mathrm{ml} \\ (1.76 \mathrm{mmol}) \end{gathered}$ | $\begin{gathered} 140 \mathrm{mg} \\ (1.62 \mathrm{mmol}) \end{gathered}$ | 10.0 ml | S7 | $\begin{gathered} 50.0 \mathrm{~g} \mathrm{SiO}_{2} \\ n \text {-hexane/ethyl } \\ \text { acetate }(5: 1) \end{gathered}$ |

## 2-Methylnon-5-yn-4-ol (S3)



Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$
Exact Mass: 154,1358
Molecular Weight: 154,2493

Yield $69 \%(466 \mathrm{mg}, 3.02 \mathrm{mmol}) .{ }^{3} \mathrm{R}_{\mathrm{f}}=0.29$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$-NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.52-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{sxt}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{spt}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dt}, J=$ $7.0,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{tt}, J=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 13.44$, 20.63, 22.08, 22.50, 22.54, 24.79, 47.31, 61.27, 81.63, 85.27; HRMS (EI+) calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}\left[M-\mathrm{H}^{+}\right]: 153.1279$, found: 153.1289.

## 2,8-Dimethylnon-5-yn-4-ol (S4)



Yield $65 \%(397 \mathrm{mg}, 2.36 \mathrm{mmol}) .{ }^{4} \mathrm{R}_{\mathrm{f}}=0.31$ ( $n$-hexane/ethyl acetate 10:1); ${ }^{1} \mathrm{H}$-NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 1.73$ $(\mathrm{spt}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{spt}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=6.6,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{tt}, J=$ $6.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 21.94,22.52,22.54,24.84,27.85,27.81$, 47.34, 61.31, 82.41, 84.34; HRMS (EI+) calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}\left[M-\mathrm{H}^{+}\right]: 153.1279$, found: 153.1289.

## 9-Methoxy-2-methylnon-5-yn-4-ol (S5)



[^2]Yield $48 \%$ ( $89.0 \mathrm{mg}, 0.49 \mathrm{mmol}$ ). $\mathrm{R}_{\mathrm{f}}=0.33$ ( $n$-hexane/ethyl acetate $5: 1$ ); ${ }^{1} \mathrm{H}$-NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{ddd}, J=13.3$, $7.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.54 (ddd, $J=13.3,7.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (quin, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.77 (spt, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dt}, J=6.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{tt}, J$ $=7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 15.45,22.51,22.55,24.81,28.64$, 47.27, 58.63, 61.25, 71.17, 81.83, 84.60; HRMS (ESI+) calculated for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}[M+\mathrm{Na}]^{+}$: 207.1361, found: 207.1362.

## 8-(4-Methoxybenzyloxy)-2-methylnon-5-yn-4-ol (S6)



Yield $91 \%$ ( $389 \mathrm{mg}, 1.34 \mathrm{mmol}$ ). $\mathrm{R}_{\mathrm{f}}=0.17$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$-NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \operatorname{ppm} 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.53(\mathrm{ddd}, J=13.5,7.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{ddd}, J=13.5,7.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{spt}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, J=16.5,7.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=16.5,5.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ ( $\mathrm{sxt}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 19.6,22.48,22.53,24.8$, 26.3, 47.2, 55.3, 61.2, 70.3, 73.1, 82.0, 83.2, 113.8, 129.2, 130.6, 159.2; HRMS (ESI+) calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[M+\mathrm{Na}]^{+}: 313.1780$, found: 313.1772.

## 8-(tert-Butyldimethylsilyloxy)-2-methylnon-5-yn-4-ol (S7)



Yield $79 \%(569 \mathrm{mg}, 2.00 \mathrm{mmol}) . \mathrm{R}_{\mathrm{f}}=0.17$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$-NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.085(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{ddd}, J=13.5,6.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61$ (ddd,
$J=13.4,7.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{spt}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{ddd}, J=16.5,7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.38 (ddd, $J=16.2,5.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{tq}, J=6.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{tt}, J=7.2,1.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-4.7,-4.6, ~, 18.1,22.4,22.5,23.3,24.8,25.8,29.6$, 47.2, 61.3, 67.6, 82.69/82.71* ${ }^{*}$ 82.92/82.95*; HRMS (ESI+) calculated for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}$ $[M+\mathrm{Na}]^{+}: 307.2069$, found: 307.2067.
*Diastereomers slightly differ in ${ }^{13} \mathrm{C}$ - chemical shifts.

## Methylhept-2-yn-4-ol (S8)



Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}$ Exact Mass: 126,1045
Molecular Weight: 126,1962

Methylacetylene was bubbled into 30.0 ml of dry THF at $-78^{\circ} \mathrm{C}$ for 25 min . To this solution was slowly added $n$-Butyllithium ( $5.00 \mathrm{ml}, 10.0 \mathrm{mmol}, 2.0 \mathrm{M}$ in cyclohexane). The resulting solution was stirred at this temperature for 1 h , and then 3-methylbutanal ( $718 \mathrm{mg}, 8.33$ $\mathrm{mmol}, 1.10 \mathrm{eq}$.$) was added via syringe. After 1 \mathrm{~h}$ of stirring, the reaction mixture was allowed to warm to room temperature and stirred for an additional hour. The reaction mixture was quenched with a saturated solution of ammonium chloride ( 10.0 ml ) and the phases were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15.0 \mathrm{ml})$, the combined organic layers were washed with brine ( 15.0 ml ), dried over anhydrous $\mathrm{MgSO}_{4}$ and the solvent was removed under reduced pressure. Purification by flash chromatography ( $60.0 \mathrm{~g} \mathrm{SiO}_{2}, n-$ hexane/ethyl acetate $10: 1$ ) afforded $\mathbf{S 8}(639 \mathrm{mg}, 5.06 \mathrm{mmol}, 60 \%)$ as a slightly yellow oil. $\mathrm{R}_{\mathrm{f}}=0.24$ (n-hexane/ethyl acetate 10:1); ${ }^{1} \mathrm{H}$-NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 0.85$ (d, $J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{spt}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 3 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 3.55,22.49,22.54,24.77,47.20$, 61.16, 80.67, 80.86; MS (EI+) $m / z 125.10\left[M-\mathrm{H}^{+}\right]$. The spectroscopic data were in agreement with those previously reported. ${ }^{5}$

[^3]
## 5-Methoxypent-1-yne (S9)



Chemical Formula: $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$
Exact Mass: 98,0732
Molecular Weight: 98,1430

To a mixture of iodomethane ( $20.1 \mathrm{~g}, 141 \mathrm{mmol}, 1.70 \mathrm{eq}$.) and sodium hydride ( 5.33 g , $1.33 \mathrm{~mol}, 1.60$ eq., $60 \%$ in mineral oil) in dry THF ( 150 ml ) was added dropwise within 15 min under Ar and at room temperature, pent-4-yn-l-ol ( $7.00 \mathrm{~g}, 83.2 \mathrm{mmol}, 1.00 \mathrm{eq}$.$) . The$ mixture was then heated to $50^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature, and poured into 70.0 ml of water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the extract dried over $\mathrm{MgSO}_{4}$ and evaporated. Distillation (b.p. 107-115 ${ }^{\circ} \mathrm{C}$ ) afforded of $2.98 \mathrm{~g}(30.4 \mathrm{mmol}, 37 \%)$ of $\mathbf{S 9}$ as a colourless liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.67-1.76$ (quin, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.88(\mathrm{t}, J=2.7,1 \mathrm{H}), 2.22(\mathrm{dt}, J=7.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 15.59,28.86,50.31,58.99,68.79,71.42 ; \mathrm{MS}(\mathrm{EI}+) \mathrm{m} / \mathrm{z}=98.1$ $\left[M^{+}\right]$. The spectroscopic data were in agreement with those previously reported. ${ }^{6}$

## 5-Methoxyhex-2-yn-1-ol (S10)



Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2}$
Exact Mass: 128,0837
Molecular Weight: 128,1690

5-methoxypent-1-yn ( $\mathbf{S 9}$ ) ( $2.00 \mathrm{~g}, 20.4 \mathrm{mmol}, 1.00$ eq.) was dissolved in dry THF ( 90.0 ml ) and cooled to $-78{ }^{\circ} \mathrm{C}$. Then $n$-butyllithium ( $9.78 \mathrm{ml}, 24.5 \mathrm{mmol}, 1.20 \mathrm{eq}$., 2.5 M in $n$-hexane) was slowly added. The resulting mixture was stirred at this temperature for 15 min , then allowed to warm to room temperature and transferred by cannula into a solution of paraformaldehyde ( $2.38 \mathrm{~g}, 26.5 \mathrm{mmol}, 1.30 \mathrm{eq}$.) in dry THF ( 40.0 ml ). After stirring for further 15 min the reaction mixture was quenched with a saturated solution of ammonium chloride ( 30.0 ml ). The phases were separated and the organic layer was extracted with ethyl acetate ( 3 x 30.0 ml ). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{MgSO}_{4}$ and the solvent was removed in vacuo. Purification by flash chromatography ( $50.0 \mathrm{~g} \mathrm{SiO}_{2}$, $n$-hexane/ethyl acetate $10: 1$ ) afforded 1.88 g ( 14.7 mmol , $72 \%$ ) of $\mathbf{S 1 0}$ as a colourless liquid. $\mathrm{R}_{\mathrm{f}}=0.18$ ( $n$-hexane/ethyl acetate $3: 1$ ); ${ }^{1} \mathrm{H}$-NMR (300

[^4]$\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ ppm $1.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (quin, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.24(\mathrm{tt}, J=7.0$, $2.20 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{dt}, J=6.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 15.49,28.52,51.30,58.60,71.15,78.66,85.62$; HR-MS (EI+) calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{2}[M-\mathrm{H}]^{+}: 127.0764$, found: 127.0758.

## 6-Methoxyhex-2-ynyl-4-methylbenzenesulfonate (S11)



To a solution of alcohol $\mathbf{S 1 0}$ ( $500 \mathrm{mg}, 3.90 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in dry $\mathrm{Et}_{2} \mathrm{O}(50.0 \mathrm{ml})$ was added 4-methylbenzenesulfonyl chloride ( $817 \mathrm{mg}, 4.29 \mathrm{mmol}, 1.10 \mathrm{eq}$.). The resulting mixture was cooled to $-5^{\circ} \mathrm{C}$ and at this temperature potassium hydroxide ( $1.53 \mathrm{~g}, 27.3 \mathrm{mmol}, 7.00 \mathrm{eq}$.) was added in portions over 2 h . After an additional hour of stirring at $-5^{\circ} \mathrm{C}$ the reaction mixture was poured into ice water ( 50.0 ml ), the layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $2 \times 20.0 \mathrm{ml}$ ). The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$ and the solvent was removed in vacuo. Purification by flash chromatography ( 60.0 g $\mathrm{SiO}_{2}, n$-hexane/ethyl acetate $3: 1$ ) afforded $\mathbf{S 1 1}(968 \mathrm{mg}, 3.43 \mathrm{mmol}, 88 \%$ ) as a colourless liquid. $\mathrm{R}_{\mathrm{f}}=0.56$ ( $n$-hexane/ethyl acetate $1: 1$ ); ${ }^{1} \mathrm{H}$-NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 1.57$ (quin, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{tt}, J=6.9,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{t}, J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.63$ (t, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.28 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 15.44,21.63,28.10,58.61,70.89 .72 .14,77.21,89.79,128.11,129.73$, 133.43, 144.88; HR-MS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{SNa}[M+\mathrm{Na}]^{+}: 305.0824$, found: 305.0818 .

## General Procedure for the Preparation of 1,6-Diynes 5a-f:

To a suspension of sodium hydride ( 1.60 eq., $60 \%$ dispersion in mineral oil) in acetonitrile at $0^{\circ} \mathrm{C}$ was slowly added 1.00 eq. of the corresponding alcohol. The resulting heterogeneous mixture was stirred at room temperature for 1 h whereupon 1.20 eq. of 6 -methoxyhex- 2 -ynyl-4-methylbenzene-sulfonate ( $\mathbf{S 1 1}$ ) were successively added. After stirring at room temperature for 24 h , the mixture was quenched by a saturated solution of ammonium chloride, phases
were separated and the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated in vасиo. Purification by flash chromatography afforded the corresponding 1,6-diynes in variable yields given below.

| Alcohol | Tosylate | NaH | $\mathrm{CH}_{3} \mathrm{CN}$ | Product | Purification |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S3 200 mg $(1.30 \mathrm{mmol})$ | $\begin{gathered} 440 \mathrm{mg} \\ (1.56 \mathrm{mmol}) \end{gathered}$ | $\begin{gathered} 83.2 \mathrm{mg} \\ (2.08 \mathrm{mmol}) \end{gathered}$ | 15.0 ml | 5a | $\begin{gathered} 30.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ n \text {-hexane/ethyl } \\ \text { acetate }(30: 1) \end{gathered}$ |
| $\mathbf{S 4}$ 200 mg $(1.19 \mathrm{mmol})$ | $\begin{gathered} 403 \mathrm{mg} \\ (1.43 \mathrm{mmol}) \end{gathered}$ | $\begin{gathered} 76.0 \mathrm{mg} \\ (1.90 \mathrm{mmol}) \end{gathered}$ | 15.0 ml | 5b | $\begin{gathered} 30.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ n \text {-hexane/ethyl } \\ \text { acetate }(30: 1) \end{gathered}$ |
| S8 150 mg $(1.19 \mathrm{mmol})$ | $\begin{gathered} 403 \mathrm{mg} \\ (1.43 \mathrm{mmol}) \end{gathered}$ | $\begin{gathered} 76.0 \mathrm{mg} \\ (1.90 \mathrm{mmol}) \end{gathered}$ | 15.0 ml | 5c | $\begin{gathered} 30.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ n \text {-hexane/ethyl } \\ \text { acetate }(30: 1) \end{gathered}$ |
| S5 45.0 mg $(0.24 \mathrm{mmol})$ | $\begin{gathered} 82.7 \mathrm{mg} \\ (0.29 \mathrm{mmol}) \end{gathered}$ | $\begin{gathered} 15.4 \mathrm{mg} \\ (0.38 \mathrm{mmol}) \end{gathered}$ | 5.00 ml | 5d | $\begin{aligned} & \hline 10.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(30: 1) \end{aligned}$ |
| S6 200 mg $(0.69 \mathrm{mmol})$ | $\begin{gathered} 233 \\ (0.83 \mathrm{mmol}) \end{gathered}$ | $\begin{gathered} 44.0 \mathrm{mg} \\ (1.10 \mathrm{mmol}) \end{gathered}$ | 10.0 ml | 5 e | $\begin{aligned} & 20.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(10: 1) \end{aligned}$ |
| S7 200 mg $(0.70 \mathrm{mmol})$ | $\begin{gathered} 237 \mathrm{mg} \\ (0.84 \mathrm{mmol}) \end{gathered}$ | $\begin{gathered} 44.9 \mathrm{mg} \\ (1.12 \mathrm{mmol}) \end{gathered}$ | 10.0 ml | $5 f$ | $\begin{gathered} 20.0 \mathrm{~g} \mathrm{SiO}_{2} \\ n \text {-hexane/ethyl } \\ \text { acetate }(30: 1) \end{gathered}$ |

## 6-(6-Methoxyhex-2-ynyloxy)-8-methylnon-4-yne (5a)



Yield $80 \%$ ( $260 \mathrm{mg}, 1.04 \mathrm{mmol}$ ). $\mathrm{R}_{\mathrm{f}}=0.43$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3 H ), 1.53 (quin, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.55 (ddd, $J=13.6,8.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67$ (ddd, $J=13.4$, $7.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.78 (quin, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.87(\mathrm{spt}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dt}, J=7.3,2.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.32(\mathrm{tt}, J=7.3,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{td}, J=$ $15.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{tt}, J=7.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{td}, J=15.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 13.44,15.56,20.69,22.13,22.37,22.60,24.64,28.60,44.89,55.94$, 58.60, 66.78, 71.20, 76.29, 78.82, 85.83, 86.34; HR-MS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na}$ $[M+\mathrm{Na}]^{+}: 287.1987$, found: 287.1981.

## 6-(6-Methoxyhex-2-ynyloxy)-2,8-dimethylnon-4-yne (5b)



Yield $54 \%(180 \mathrm{mg}, 0.65 \mathrm{mmol}) . \mathrm{R}_{\mathrm{f}}=0.43$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $6 \mathrm{H}), 1.53(\mathrm{ddd}, J=13.5,7.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=13.5,7.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{tt}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{spt}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{spt}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=6.5,1.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.32(\mathrm{tt}, J=7.0,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{td}, J=15.3,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31$ (dddd, $J=7.4,6.9,2.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{td}, J=15.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 15.6,21.9,22.4,22.6,24.7,27.9,28.0,28.6,44.9,55.9,58.6,66.8$, 71.2, 76.3, 79.6, 85.4, 85.8; HR-MS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}[M+\mathrm{Na}]^{+}: 301.2143$, found: 301.2134.

## 4-(6-Methoxyhex-2-ynyloxy)-6-methylhept-2-yne (5c)



Yield $56 \%(159 \mathrm{mg}, 0.67 \mathrm{mmol}) . \mathrm{R}_{\mathrm{f}}=0.42$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.51$ (ddd, $J=13.5$, $7.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{ddd}, J=13.7,7.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (quin, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.87$ (spt, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.32(\mathrm{tt}, J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J$ $=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{td}, J=15.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dddd}, J=7.4,6.7,2.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ $(\mathrm{td}, J=15.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 3.6,15.6,22.3,22.6,24.6,28.6$, $44.8,56.0,58.6,66.7,71.2,76.3,77.9,81.8,85.9$; $\mathrm{HR}-\mathrm{MS}$ (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}$ $[M+N a]^{+}: 259.1674$, found: 259.1669.

## 1-Methoxy-6-(6-methoxyhex-2-ynyloxy)-8-methylnon-4-yne (5d)



Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{3}$
Exact Mass: 294,2195
Molecular Weight: 294,4290

Yield $68 \%(49.0 \mathrm{mg}, 0.17 \mathrm{mmol}) . \mathrm{R}_{\mathrm{f}}=0.45$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{ddd}, J=13.5$, $7.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{ddd}, J=13.8,7.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (quin, $J=6.7,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.78$ (quin, $J=6.7,6.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.86(\mathrm{spt}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{tt}, J=7.1,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{dt}, J$ $=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.21(\mathrm{td}, J=15.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (dddd, $J=7.8,6.2,2.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{td}, J=15.2$, $2.1 \mathrm{~Hz}, 2 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 15.5,15.6,22.4,22.6,24.6,28.6,28.7,44.8$, $56.0,58.6,58.6,66.7,71.2,71.2,76.2,79.0,85.7,85.9$; HR-MS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}[M+\mathrm{Na}]^{+}: 317.2093$, found: 317.2088.

## 1-Methoxy-4-((6-(6-methoxyhex-2-ynyloxy)-8-methylnon-4-yn-2-yloxy)methyl)benzene

 (5e)

Yield $90 \%$ ( $248 \mathrm{mg}, 0.62 \mathrm{mmol}$ ). $\mathrm{R}_{\mathrm{f}}=0.24$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.53$ (ddd, $J=13.4,7.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ (ddd, $J=13.9,7.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.78 (quin, $J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{spt}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, J=16.5,7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{tt}, J=$ $7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{ddd}, J=16.6,5.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.67(\mathrm{tq}, J=6.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{td}, J=15.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (dddd, $J=7.5$, $6.4,2.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{td}, J=15.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 15.6,19.7 / 19.8^{*}, 22.4,22.6,24.6$, 26.4, 26.9, 28.6, 44.8, 55.3, 56.1, 58.6, 66.7, 70.3/70.4*, 71.2, 73.2, 76.2, 80.4/80.4*, 83.1 , 86.0, 113.8, 129.2, 130.6, 159.1; HR-MS (ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Na}[M+\mathrm{Na}]^{+}$: 423.2511, found: 423.2506.
"Diastereomers slightly differ in ${ }^{13} \mathrm{C}$ - chemical shifts.

## 10-Isobutyl-14,16,16,17,17-pentamethyl-2,9,15-trioxa-16-silaoctadeca-6,11-diyne (5f)



Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}$
Exact Mass: 394,2903
Molecular Weight: 394,6633

Yield $67 \%(185 \mathrm{mg}, 0.47 \mathrm{mmol}) . \mathrm{R}_{\mathrm{f}}=0.37$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{ddd}, J=13.5,7.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=$
13.4, $7.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.78 (quin, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.87 (spt, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.28 (ddd, $J=$ $15.0,7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{tt}, J=7.2,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{ddd}, J=16.6,5.3,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{tq}, J=7.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{td}, J=15.1,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30$ (dddd, $J=7.2,6.9,2.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{td}, J=15.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-4.4,-4.3,16.0,22.8,23.0,23.7 / 23.7^{*}, 25.0,26.2,29.0,30.1,45.2,56.4$, 59.0, 67.1, 68.0/68.0* ${ }^{*} 71.6,76.6,80.6 / 80.6^{*}, 84.0 / 84.1^{*}, 86.3$; HR-MS (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{SiNa}[M+\mathrm{Na}]^{+}: 417.2801$, found: 417.2797.
"Diastereomers slightly differ in ${ }^{13} \mathrm{C}$ - chemical shifts.

## General Procedure for the Preparation of 3,4-Bisalkylidene-substituted Tetrahydrofurans from 1,6-Diynes 5a-f:

1.00 eq. of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ was dissolved in extra dry THF and cooled under argon to $-78^{\circ} \mathrm{C}$. Then, 2.00 eq. of $n$-butyllithium ( 2.0 M in cyclohexane) were added via syringe and the resulting yellow solution was stirred at $-78^{\circ} \mathrm{C}$. After 30 min of stirring, 1.00 eq. of the pre-dried $1,6-$ diyne in extra dry THF was successively added, the solution was allowed to warm to room temperature and stirred for additional 2 h . The reaction mixture was then quenched with 1 N HCl , extracted with diethyl ether, dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated in vacuo. Purification by flash chromatography afforded the corresponding 3,4-bisalkylidene substituted tetrahydrofurans 6a-f in variable yields given below.

| 1,6-Diyne | $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ | $n-\mathrm{BuLi}$ | THF | Product | Purification |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 a}$ 20.0 mg $(76.0 \mu \mathrm{~mol})$ | $\begin{gathered} 22.3 \mathrm{mg} \\ (76.0 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 76.0 \mu \mathrm{l} \\ (152 \mu \mathrm{~mol}) \end{gathered}$ | $0.3+0.3 \mathrm{ml}$ | 6 a | $\begin{aligned} & 10.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(40: 1) \end{aligned}$ |
| $\mathbf{5 b}$ 15.0 mg $(54.0 \mu \mathrm{~mol})$ | $\begin{gathered} 16.0 \mathrm{mg} \\ (54.0 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 54.0 \mu \mathrm{l} \\ (108 \mu \mathrm{~mol}) \end{gathered}$ | $0.2+0.2 \mathrm{ml}$ | 6b | $\begin{aligned} & 10.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(40: 1) \end{aligned}$ |
| $\mathbf{5 c}$ 13.0 mg $(54.0 \mu \mathrm{~mol})$ | $\begin{gathered} 16.0 \mathrm{mg} \\ (54.0 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 54.0 \mu \mathrm{l} \\ (108 \mu \mathrm{~mol}) \end{gathered}$ | $0.2+0.2 \mathrm{ml}$ | 6 c | $\begin{aligned} & 10.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(40: 1) \end{aligned}$ |
| $\mathbf{5 d}$ 3.60 mg $(12.0 \mu \mathrm{~mol})$ | $\begin{gathered} 4.00 \mathrm{mg} \\ (12.0 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 12.0 \mu \mathrm{l} \\ (24.0 \mu \mathrm{~mol}) \end{gathered}$ | $0.1+0.1 \mathrm{ml}$ | 6d | $5.00 \mathrm{~g} \mathrm{SiO}_{2}$, <br> n-hexane/ethyl <br> acetate (40:1) |
| $\begin{gathered} \hline \mathbf{5 e} \\ 20.0 \mathrm{mg} \\ (50.0 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 15.0 \mathrm{mg} \\ (50.0 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 63.0 \mu \mathrm{l} \\ (100 \mu \mathrm{~mol}) \end{gathered}$ | $0.2+0.2 \mathrm{ml}$ | 6 e | $\begin{gathered} 10.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ n \text {-hexane/ethyl } \\ \text { acetate }(20: 1) \end{gathered}$ |
| $\mathbf{5 f}$ 21.0 mg $(54.0 \mu \mathrm{~mol})$ | $\begin{gathered} 16.0 \mathrm{mg} \\ (54.0 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 54.0 \mu \mathrm{l} \\ (108 \mu \mathrm{~mol}) \end{gathered}$ | $0.2+0.2 \mathrm{ml}$ | 6 f | $\begin{aligned} & 10.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(40: 1) \end{aligned}$ |

## (3Z, 4Z)-3-Butylidene-2-isobutyl-4-(4-methoxybutylidene)tetrahydrofuran (6a)



Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2}$
Exact Mass: 266,2246
Molecular Weight: 266,4189

Yield $84 \%(17.0 \mathrm{mg}, 64.0 \mu \mathrm{~mol}) . \mathrm{R}_{\mathrm{f}}=0.36$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15(\mathrm{ddd}, J=14.1,9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{tq}, J=7.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.49$ (ddd, $J=14.2$, $10.4,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.69$ (quin, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.03$ (dt, $J=15.4,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{dt}, J=15.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{t}, J=6.4 \mathrm{~Hz}$, 2H), 4.46 (br. s., 2H), 4.79 (td, $J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.75(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 13.9,21.6,22.8,23.8,24.9,26.1,29.3,31.3,43.1,58.6,68.4,72.0,79.2,116.4$, 117.5, 137.3, 140.3; HR-MS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}[M+\mathrm{Na}]^{+}: 289.2143$, found: 289.2140 .
(3Z, 4Z)-2-Isobutyl-4-(4-methoxybutylidene)-3-(3-methylbutylidene)tetrahydrofuran (6b)


Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}$ Exact Mass: 280,2402 Molecular Weight: 280,4455

Yield $63 \%(9.50 \mathrm{mg}, 34.0 \mu \mathrm{~mol}) . \mathrm{R}_{\mathrm{f}}=0.36$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.93(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15(\mathrm{ddd}, J=14.4,9.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{ddd}, J=14.2,10.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.69$ (quin, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{ddd}, J=15.2,9.8,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.93$ (ddd, $J=15.3,9.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dt}, J=8.6,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{td}, J=10.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 21.6,22.3,22.7,23.8,24.9,26.1,28.9,29.3,38.3,42.9,58.6,68.3$, $72.0,79.2,116.4,116.5,137.3,140.7$; HR-MS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}[M+\mathrm{Na}]^{+}$: 303.2300, found: 303.2294.
(3Z, 4Z)-3-Ethylidene-2-isobutyl-4-(4-methoxybutylidene)tetrahydrofuran (6c)


Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$
Exact Mass: 238,1933
Molecular Weight: 238,3657

Yield $60 \%(7.70 \mathrm{mg}, 32.0 \mu \mathrm{~mol}) . \mathrm{R}_{\mathrm{f}}=0.35$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{ddd}, J=14.2$, $9.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{ddd}, J=14.2,10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ (quin, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{dt}, J=7.6,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.41-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{tt}, J=7.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (dq, $J=7.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 14.6,21.5,23.8,24.8,26.1$, 29.3, 42.5, 58.6, 68.4, 72.0, 79.0, 111.7, 116.3, 137.3, 141.2; HR-MS (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}[M+\mathrm{Na}]^{+}: 261.1830$, found: 261.1836.
(3Z, 4Z)-2-Isobutyl-3,4-bis(4-methoxybutylidene)tetrahydrofuran (6d)


Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3}$ Exact Mass: 296,2351
Molecular Weight: 296,4449

Yield $75 \%(2.60 \mathrm{mg}, 9.00 \mu \mathrm{~mol}) . \mathrm{R}_{\mathrm{f}}=0.37$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{ddd}, J=14.3$, 9.6, 2.7 Hz, 1H), 1.49 (ddd, $J=14.1,10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.69 (quin, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.69
(quin, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.81-1.92 (m, 1H), $2.07(\mathrm{dt}, J=8.1,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{dt}, J=7.8,7.2$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 3.34 (s, 3 H ), $3.35(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-$ $4.50(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{dt}, J=10.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dt}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{tt}, J=7.6$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 21.5,23.8,24.9,25.7,26.1,29.2,29.5,42.9$, 58.6, 58.6, 68.3, 71.9, 72.0, 79.1, 116.7, 116.7, 137.2, 140.8; HR-MS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na}[M+\mathrm{Na}]^{+}: 319.2249$, found: 319.2258.

## (3Z, 4Z)-2-isobutyl-3-(3-(4-methoxybenzyloxy)butylidene)-4-(4-methoxybutylidene)-

## tetrahydrofuran (6e)



Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{4}$ Exact Mass: 402,2770
Molecular Weight: 402,5668

Yield $82 \%(17.7 \mathrm{mg}, 44.0 \mu \mathrm{~mol}) . \mathrm{R}_{\mathrm{f}}=0.18$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) / 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})^{*}, 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.09-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{tt}, J=6.9,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.79-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{dt}, J=8.2,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.42$ $(\mathrm{m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{tq}, J=6.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 4.40-4.54 (m, 2 H), 4.46 (s, 2 H ), 4.78 (td, $J=10.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), $5.61-5.74$ (m, 2 H ), 6.88 $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) / 7.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}){ }^{*} ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 19.7,21.5 / 21.6^{* *}, 23.8 / 23.8^{* *}, 24.9 / 24.9^{* *}, 26.1,29.2,36.0 / 36.3^{* *}, 42.8 / 42.8^{* *}$, $55.3,58.6,68.3,70.1 / 70.1^{* *}, 72.0,74.1 / 74.3^{* *}, 79.2 / 79.2^{* *}, 113.3,113.8,116.9 / 117.0^{* *}, 129.2$, $130.9 / 130.9^{* *}, 137.2,141.8 / 141.9^{* *}, 159.1$; HR-MS (ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na}$ $[M+\mathrm{Na}]^{+}: 402.2770$, found: 402.2771.
*Diastereomers slightly differ in ${ }^{1} \mathrm{H}-$ chemical shifts.
** Diastereomers slightly differ in ${ }^{13} \mathrm{C}$ - chemical shifts.

## tert-Butyl((Z)-4-((Z)-2-isobutyl-4-(4-methoxybutylidene)dihydrofuran-3(2H)-ylidene)butan-2-yloxy)dimethylsilane (6f)



Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Si}$ Exact Mass: 396,3060
Molecular Weight: 396,6792

Yield $47 \%(10.1 \mathrm{mg}, 25.0 \mu \mathrm{~mol}) . \mathrm{R}_{\mathrm{f}}=0.31$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.05(\mathrm{~s}, 3 \mathrm{H}) / 0.06(\mathrm{~s}, 3 \mathrm{H})^{*}, 0.06(\mathrm{~s}, 3 \mathrm{H}) / 0.06(\mathrm{~s}, 3 \mathrm{H})^{*}, 0.89(\mathrm{~s}, 9 \mathrm{H}) / 0.90$ $(\mathrm{s}, 9 \mathrm{H})^{*}, 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{ddd}, J=14.0,9.6,2.8 \mathrm{~Hz}$, $1 \mathrm{H}) / 1.19(\mathrm{ddd}, J=14.2,9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 1.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.48(\mathrm{ddd}, J=14.3,10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}) / 1.49(\mathrm{ddd}, J=14.3,10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 1.69($ quin, $J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{dt}, J=8.1,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{ddd}, J=14.6,8.4,6.6$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 2.19 (ddd, $J=14.8,8.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-$ $3.89(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.50(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.80(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-4.8 /-4.7^{* *},-4.6 /-4.5^{* *}, 18.1 / 18.2^{* *}, 21.5 / 21.5^{* *}, 23.8 / 23$. $^{* *}, 23.8 / 23$. . $^{* *}$, $24.8 / 24.9^{* *}, 25.8 / 25.9^{* *}, 26.1,29.3,39.3 / 39.5^{* *}, 42.9 / 43.0^{* *}, 58.6,68.3 / 68.4^{* *}, 68.6 / 68.6^{* *}$, $71.9,79.1 / 79.2^{* *}, 114.1,116.7 / 116.7^{* *}, 137.2 / 137.3^{* *}, 141.3 / 141.5^{* *}$; HR-MS (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{SiNa}[M+\mathrm{Na}]^{+}: 419.2957$, found: 419.2961.
*Diastereomers slightly differ in ${ }^{1} \mathrm{H}$ - chemical shifts.
** Diastereomers slightly differ in ${ }^{13} \mathrm{C}$ - chemical shifts.

Table S1. Zirconocene-mediated cyclisation of 1, 6-diyne 5a and oxidative ring-opening.

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| entry | oxidant | conditions ${ }^{\text {a }}$ | 7a:8a | yield [\%] |
| 1 | NIS (X=I) | $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$ | - | $0 \%{ }^{\text {b }}$ |
| 2 | NBS ( $\mathrm{X}=\mathrm{Br}$ ) | $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$ | - | dec. ${ }^{\text {c }}$ |
| 3 | $\mathrm{NCS}(\mathrm{X}=\mathrm{Cl})$ | $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$ | - | $0 \%{ }^{\text {b }}$ |
| 4 | $\mathrm{I}_{2}(1.0 \mathrm{eq}$.$) ( \mathrm{X}=\mathrm{I}$ ) | $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$ | - | dec. ${ }^{\text {c }}$ |
| 5 | $n$-BuLi, $\mathrm{CBrCl}_{3}(\mathrm{X}=\mathrm{Br})$ | $-78{ }^{\circ} \mathrm{C}$ to rt, 2 h | - | dec. ${ }^{\text {c }}$ |
| 6 | $\mathrm{AlMe}_{3}(\mathrm{X}=\mathrm{Me}$ ) | rt to $50^{\circ} \mathrm{C}, 2 \mathrm{~h}$ | - | $0 \%{ }^{\text {b }}$ |
| 7 | $\mathrm{I}_{2}(1.0 \mathrm{eq}).(\mathrm{X}=\mathrm{I})$ | $-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$ | - | $56 \%{ }^{\text {d }}$ |
| 8 | NBS (X=Br) | $-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$ | > 20:1 | 65\% |

${ }^{a}$ All reactions were initiated in the same manner by zirconocene-mediated cyclization (step 1) and hydrolysed by addition of $3 \mathrm{~N} \mathrm{HCl} .{ }^{b}$ No conversion was detected and 6 was reisolated by column chromatography. ${ }^{c}$ dec.: decomposition. ${ }^{d}$ A 3:1 mixture of the diiodide and a monoiodide was obtained.

## General Procedure for the Preparation of 3-Bromoalkylidene-4-alkylidene-substituted

## Tetrahydrofurans from 1,6-Diynes 5a-f:

1.00 eq. of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ was dissolved in extra dry THF and cooled under argon to $-78^{\circ} \mathrm{C}$. Then, 2.00 eq. of $n$-butyllithium ( 2.0 M in cyclohexane) were added via syringe and the resulting yellow solution was stirred at $-78^{\circ} \mathrm{C}$. After 30 min of stirring, 1.00 eq. of the pre-dried 1,6 diyne in extra dry THF was successively added and the solution was allowed to warm to room
temperature. After 2 h of stirring, the reaction mixture was again cooled to $-78^{\circ} \mathrm{C}, 1.20 \mathrm{eq}$. of NBS were added and stirring was continued at this temperature for additional 2 h . The solution was then allowed to warm to room temperature and immediately quenched with 1 N HCl . Phases were separated and the aqueous layer was extracted with diethyl ether. The combined organic layers were dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and concentrated in vacuo. Purification by flash chromatography afforded the corresponding bromides 7a-d, 7f, 8d-e in variable yields given below.

| 1,6-Diyne | $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ | $n-\mathrm{BuLi}$ | THF | NBS | Product | Purification |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 a}$ 14.0 mg $(54.0 \mu \mathrm{~mol})$ | $\begin{gathered} 16.0 \mathrm{mg} \\ (54.0 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 54.0 \mu \mathrm{l} \\ (108 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 0.2+0.2 \\ \mathrm{ml} \end{gathered}$ | $\begin{gathered} 12.0 \mathrm{mg} \\ 65.0 \mu \mathrm{~mol} \end{gathered}$ | 7a | $\begin{aligned} & \hline 10.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(40: 1) \end{aligned}$ |
| $\mathbf{5 b}$ 15.0 mg $(54.0 \mu \mathrm{~mol})$ | $\begin{gathered} 16.0 \mathrm{mg} \\ (54.0 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 54.0 \mu \mathrm{l} \\ (108 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 0.2+0.2 \\ \mathrm{ml} \end{gathered}$ | $\begin{gathered} 12.0 \mathrm{mg} \\ 65.0 \mu \mathrm{~mol} \end{gathered}$ | 7b | $\begin{aligned} & \hline 10.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(40: 1) \end{aligned}$ |
| 5c 13.0 mg $(54.0 \mu \mathrm{~mol})$ | $\begin{gathered} 16.0 \mathrm{mg} \\ (54.0 \mu \mathrm{~mol}) \end{gathered}$ | $54.0 \mu \mathrm{l}$ <br> (108 $\mu \mathrm{mol}$ ) | $\begin{gathered} 0.2+0.2 \\ \mathrm{ml} \end{gathered}$ | $\begin{gathered} 12.0 \mathrm{mg} \\ 65.0 \mu \mathrm{~mol} \end{gathered}$ | 7c | $\begin{aligned} & 10.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(40: 1) \end{aligned}$ |
| 5d 3.90 mg $(13.0 \mu \mathrm{~mol})$ | $\begin{gathered} 4.00 \mathrm{mg} \\ (13.0 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 13.0 \mu \mathrm{l} \\ (26.0 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 0.1+0.1 \\ \mathrm{ml} \end{gathered}$ | $\begin{gathered} 2.80 \mathrm{mg} \\ 15.6 \mu \mathrm{~mol} \end{gathered}$ | 7d/8d | $5.00 \mathrm{~g} \mathrm{SiO}_{2}$, <br> n-hexane/ethyl <br> acetate (40:1) |
| $\mathbf{5 e}$ 44.0 mg $(108 \mu \mathrm{~mol})$ | $32.0 \mathrm{mg}$ <br> (108 $\mu \mathrm{mol}$ ) | $\begin{gathered} 108 \mu \mathrm{l} \\ (216 \mu \mathrm{~mol}) \end{gathered}$ | $\begin{gathered} 0.4+0.4 \\ \mathrm{ml} \end{gathered}$ | $24.0 \mathrm{mg}$ <br> $130 \mu \mathrm{~mol}$ | 8 e | $\begin{aligned} & 10.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(20: 1) \end{aligned}$ |
| $\mathbf{5 f}$ 21.0 mg $(54.0 \mu \mathrm{~mol})$ | $\begin{gathered} 16.0 \mathrm{mg} \\ (54.0 \mu \mathrm{~mol}) \end{gathered}$ | $54.0 \mu \mathrm{l}$ <br> (108 $\mu \mathrm{mol})$ | $\begin{gathered} 0.2+0.2 \\ \mathrm{ml} \end{gathered}$ | $\begin{gathered} 12.0 \mathrm{mg} \\ 65.0 \mu \mathrm{~mol} \end{gathered}$ | 7f | $\begin{aligned} & 10.0 \mathrm{~g} \mathrm{SiO}_{2}, \\ & n \text {-hexane/ethyl } \\ & \text { acetate }(40: 1) \end{aligned}$ |

(3Z, 4E)-4-(1-Bromo-4-methoxybutylidene)-3-butylidene-2-isobutyltetrahydrofuran (7a)


Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{BrO}_{2}$
Exact Mass: 344,1351
Molecular Weight: 345,3150

Yield $65 \%(12.2 \mathrm{mg}, 35.0 \mu \mathrm{~mol}) . \mathrm{R}_{\mathrm{f}}=0.36$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15$ (ddd, $J=14.3,9.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{tq}, J=8.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.51$ (ddd, $J=14.3$, $10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.87$ (quin, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.45-$ $2.54(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.46-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{dt}, J=10.4,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68(\mathrm{dt}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 13.9,21.6,22.7$, 23.8, 24.9, 27.9, 31.8, 37.0, 42.7, 58.5, 70.7, 70.8, 80.0, 116.0, 127.3, 134.0, 139.3; HR-MS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{BrO}_{2} \mathrm{Na}[M+\mathrm{Na}]^{+}: 367.1249$, found: 367.1251.
(3Z, 4E)-4-(1-Bromo-4-methoxybutylidene)-2-isobutyl-3-(3-methylbutylidene)tetrahydrofuran (7b)


Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{BrO}_{2}$
Exact Mass: 358,1507
Molecular Weight: 359,3415

Yield $65 \%(12.4 \mathrm{mg}, 34.0 \mu \mathrm{~mol}) .{ }^{7} \mathrm{R}_{\mathrm{f}}=0.36$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.97$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.15 (ddd, $J=14.2,9.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.51 (ddd, $J=14.3$, 10.4, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.87$ (quin, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{ddd}$, $J=14.2,7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{ddd}, J=14.3,7.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dt}, J=7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.33 (s, 3H), 3.37 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.51 (br. s., 2H), 4.85 (dt, $J=10.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.71 (dt, $J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 21.6,22.3,22.7,23.8,24.9,27.8$, $28.8,36.9,38.8,42.6,58.5,70.7,70.7,79.9,116.0,126.4,134.0,139.6$; HR-MS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{BrO}_{2} \mathrm{Na}[M+\mathrm{Na}]^{+}: 381.1405$, found: 381.1401.
(3Z, 4E)-4-(1-bromo-4-methoxybutylidene)-3-ethylidene-2-isobutyltetrahydrofuran (7c)


Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BrO}_{2}$ Exact Mass: 316,1038
Molecular Weight: 317,2618

Yield $64 \%(10.9 \mathrm{mg}, 34.0 \mu \mathrm{~mol}) . \mathrm{R}_{\mathrm{f}}=0.35$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.18$ (ddd, $J=14.1$, $9.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{ddd}, J=14.4,10.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.86$ $(\mathrm{m}, 1 \mathrm{H}), 1.87$ (quin, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}$, $3 \mathrm{H}), 3.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.46-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.87-4.94(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{dq}, J=7.3,1.8$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 15.1,21.5,23.7,24.9,27.8,36.9,42.2,58.5$, 70.7, 70.9, 79.9, 115.9, 121.5, 133.9, 140.3; HR-MS (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}$ $[M+\mathrm{Na}]^{+}: 339.0936$, found: 339.0940 .

[^5](3Z, 4E)-4-(1-bromo-4-methoxybutylidene)-2-isobutyl-3-(4-methoxybutylidene)tetrahydrofuran (7d) / (3E,4Z)-3-(1-bromo-4-methoxybutylidene)-2-isobutyl-4-(4-methoxybutylidene)tetrahydrofuran (8d)



Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{BrO}_{3}$ Exact Mass: 374,1457
Molecular Weight: 375,3409

Yield $46 \%(2.20 \mathrm{mg}, 6.00 \mu \mathrm{~mol}) . \mathrm{R}_{\mathrm{f}}=0.37$ ( $n$-hexane/ethyl acetate $10: 1$ ); 7d: ${ }^{1} \mathrm{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})^{*}, 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})^{*}, 1.01-1.12(\mathrm{~m}, 1 \mathrm{H})^{*}$, $1.40-1.51(\mathrm{~m}, 1 \mathrm{H})^{*}, 1.62-1.70(\mathrm{~m}, 2 \mathrm{H})^{*}, 1.72-1.79(\mathrm{~m}, 1 \mathrm{H})^{*}, 1.80$ (quin, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.09 (dq, $J=10.8,7.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dq}, J=10.8,7.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.25-3.28(\mathrm{~s}, 3 \mathrm{H})^{*}, 3.25-3.28(\mathrm{~s}, 3 \mathrm{H})^{*}, 3.28-3.37(\mathrm{~m}, 4 \mathrm{H})^{*}, 4.42-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.78-$ $4.83(\mathrm{~m}, 1 \mathrm{H})^{*}, 6.56-6.65(\mathrm{~m}, 1 \mathrm{H})^{*} ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 20.3 / 20.5^{* *}$, $22.7 / 22.7^{* *}, 23.8 / 23.9^{* *}, 25.2,26.8 / 27.3^{* *}, 28.0 / 28.3^{* *}, 36.0,41.3 / 41.6^{* *}, 57.5 / 57.5^{* *}$, $57.6 / 57.6^{* *}, 69.7,69.7 / 69.8^{* *}, 70.8 / 70.9^{* *}, 78.9,115.3,125.4,132.9,138.8 ; 8 d:{ }^{1} H$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})^{*}, 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})^{*}, 1.01-1.12(\mathrm{~m}, 1 \mathrm{H})^{*}$, $1.40-1.51(\mathrm{~m}, 1 \mathrm{H})^{*}, 1.62-1.70(\mathrm{~m}, 2 \mathrm{H})^{*}, 1.72-1.79(\mathrm{~m}, 1 \mathrm{H})^{*}, 1.77-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.83-$ $1.91(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.57(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.28(\mathrm{~s}$, $3 \mathrm{H})^{*}, 3.25-3.28(\mathrm{~s}, 3 \mathrm{H})^{*}, 3.28-3.37(\mathrm{~m}, 4 \mathrm{H}), 4.45-4.47(\mathrm{~m}, 2 \mathrm{H}), 4.78-4.83(\mathrm{~m}, 1 \mathrm{H})^{*}, 6.56$ - $6.65(\mathrm{~m}, 1 \mathrm{H}){ }^{*} ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 20.3(\mathrm{~s}), 20.5(\mathrm{~s}), 22.7(\mathrm{~s}), 22.7(\mathrm{~s}), 23.8$ ( s ), 23.9 ( s$), 25.5$ ( s , 26.8 ( s ), 27.3 ( s$), 28.0$ ( s$), 28.3$ ( s$), 35.6$ ( s$), 41.3$ ( s$), 41.6$ ( s$), 57.5$ ( s$)$, 57.5 (s), 57.6 (s), 57.6 ( s$), 68.1(\mathrm{~s}), 69.7(\mathrm{~s}), 69.8(\mathrm{~s}), 70.8$ ( s$), 70.9(\mathrm{~s}), 80.6$ ( s$), 117.0$ (s), 126.3 (s), 134.6 (s), $137.0(\mathrm{~s}){ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 20.3 / 20.5^{* *}, 22.7 / 22.7^{* *}$, $23.8 / 23.9^{* *}, 25.5,26.8 / 27.3^{* *}, 28.0 / 28.3^{* *}, 35.6,41.3 / 41.6^{* *}, 57.5 / 57.5^{* *}, 57.6 / 57.6^{* *}, 68.1$, 69.7/69.8 ${ }^{* *}$, 70.8/70.9 ${ }^{* *}$, 80.6, 117.0, 126.3, 134.6, 137.0; HR-MS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{BrO}_{3} \mathrm{Na}[M+\mathrm{Na}]^{+}: 397.1354$, found: 397.1350.

[^6](3Z, 4E)-4-(1-bromo-4-methoxybutylidene)-2-isobutyl-3-(3-(4-methoxybenzyloxy)-

## butylidene)tetrahydrofuran (8e)



Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{BrO}_{4}$ Exact Mass: 480,1875
Molecular Weight: 481,4629

Yield $69 \%(36.1 \mathrm{mg}, 75.0 \mu \mathrm{~mol}) .{ }^{8} \mathrm{R}_{\mathrm{f}}=0.18$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3$ H), 1.29 (ddd, $J=14.6,9.8,2.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.47 (ddd, $J=14.8,10.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{tt}, J=$ $6.9,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.83(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{td}, J=8.1,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{dd}, J=14.2,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=14.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3$ H), 4.00 (qt, $J=6.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (s, 2 H), 4.85 (dd, $J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{tt}, J=7.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2$ H), $7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 19.5,21.3,23.6,24.8,26.5$, $29.0,41.8,47.3,55.3,58.6,68.9,70.7,71.9,73.5,82.0,113.7,115.1,127.7,129.2,130.8$, 135.7, 139.0, 159.0; HR-MS (ESI) calculated for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{BrO}_{4} \mathrm{Na}[M+\mathrm{Na}]^{+}: 503.1773$, found: 503.1773 .

[^7]( $(Z)$-4-( $(E)$-4-(1-bromo-4-methoxybutylidene)-2-isobutyldihydrofuran-3(2H)-ylidene)butan-2-yloxy)(tert-butyl)dimethylsilane (7f)


Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{BrO}_{3} \mathrm{Si}$
Exact Mass: 474,2165
Molecular Weight: 475,5752

Yield $80 \%(20.4 \mathrm{mg}, 43.0 \mu \mathrm{~mol}) . \mathrm{R}_{\mathrm{f}}=0.31$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.06(\mathrm{~s}, 3 \mathrm{H}) / 0.07(\mathrm{~s}, 3 \mathrm{H})^{*}, 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}) / 0.90(\mathrm{~s}, 9 \mathrm{H})^{*}, 0.94$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{ddd}, J=14.5,9.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}) / 1.21$ (ddd, $J$ $=14.8,8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 1.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{ddd}, J=14.8,10.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}) / 1.51$ (ddd, $J=14.7,10.4,4.2 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 1.78-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.87$ (quin, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.16 (ddd, $J=15.0,8.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddd}, J=14.6,7.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.57(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}$, $3 \mathrm{H}), 3.37(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{tt}, J=10.4,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.69-6.75(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm}-4.7 /-4.6^{* *},-4.5 /-4.5^{* *}$, $18.1 / 18.1^{* *}, 21.5 / 21.6^{* *}, 23.7 / 23.8^{* *}, 23.9 / 23.9^{* *}, 24.9 / 24.9^{* *}, 25.9 / 25.9^{* *}, 27.8 / 27.9^{* *}, 36.9$, $39.9 / 40.1^{* *}, 42.5 / 42.6^{* *}, 58.5,68.2 / 68.3^{* *}, 70.6 / 70.6^{* *}, 70.7 / 70.8^{* *}, 80.0 / 80.0^{* *}, 116.2 / 116.3^{* *}$, $123.7123 .8^{* *}, 133.9 / 134.0^{* *}, 140.2 / 140.5^{* *}$; HR-MS (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{BrO}_{3} \mathrm{SiNa}$ $[M+\mathrm{Na}]^{+}: 497.2063$, found: 497.2073.
*Diastereomers slightly differ in ${ }^{1} \mathrm{H}-$ chemical shifts.
** Diastereomers slightly differ in ${ }^{13} \mathrm{C}$ - chemical shifts.

## tert-butyl( $(Z)$-4-((Z)-2-isobutyl-4-(5-methoxypentan-2-ylidene)dihydrofuran-3(2H)-

 ylidene)butan-2-yloxy)dimethylsilane (10)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}$
Exact Mass: 410,3216
Molecular Weight: 410,7057

To a stirring solution of bromide $7 \mathbf{f}(11.5 \mathrm{mg}, 24.0 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.$) in dry THF ( 0.60 \mathrm{ml}$ ) at $78^{\circ} \mathrm{C}$ was added tert-butyllithium ( 1.7 M in pentane, $34.0 \mu \mathrm{l}, 48.0 \mu \mathrm{~mol}, 2.00$ eq.). After stirring at that temperature for $15 \mathrm{~min}, \mathrm{Me}_{2} \mathrm{SO}_{4}(3.50 \mu \mathrm{l}, 35 \mu \mathrm{~mol}, 1.20 \mathrm{eq}$.) was subsequently added. The reaction mixture was allowed to warm to room temperature, stirred for additional 15 min and quenched with water $(0.50 \mathrm{ml})$. Phases were separated and the aqueous layer was extracted with diethyl ether ( $3 \times 2.00 \mathrm{ml}$ ). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{MgSO}_{4}$ and concentrated in vacuo. Purification by flash chromatography ( $10.0 \mathrm{~g} \mathrm{SiO}_{2}, n$-hexane/ethyl acetate $40: 1$ ) afforded a $5: 1$ mixture of 9 and diene $7 \mathbf{f}\left(7.80 \mathrm{mg}, 19.0 \mu \mathrm{~mol}, 80 \%\right.$ of pure 9 ). ${ }^{9} \mathrm{R}_{\mathrm{f}}=0.31$ ( $n$-hexane/ethyl acetate $10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta \mathrm{ppm} 0.05(\mathrm{~s}, 3 \mathrm{H}) / 0.07(\mathrm{~s}, 3 \mathrm{H})^{*}, 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}) / 0.90$ $(\mathrm{s}, 9 \mathrm{H})^{*}, 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H})$, 1.96-2.10(m, 2 H), 2.13-2.28(m, 2H), 3.32-3.35 (m, 2 H), 3.33 (s, 3 H ), 3.88 (tq, $J=6.4$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.82(\mathrm{~m}, 1 \mathrm{H}), 5.55$ - $5.63(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCL}_{3}$ ) $\delta \mathrm{ppm}-4.7 /-4.7^{* *},-4.5 /-4.4^{* *}, 18.1 / 18.1^{* *}$, $19.8 / 19.8^{* *}, 21.6 / 21.6^{* *}, 23.7 / 23.8^{* *}, 23.8 / 23.9^{* *}, 24.8 / 24.8^{* *}, 25.8 / 25.9^{* *}, 27.5 / 27.5^{* *}$, $33.8 / 33.8^{* *}, 40.0 / 40.2^{* *}, 43.0 / 43.1^{* *}, 58.6,68.4,68.6,69.5 / 69.6^{* *}, 72.0 / 72.0^{* *}, 79.2 / 79.3^{* *}$, $120.2 / 120.3^{* *}, 128.9 / 128.9^{* *}, 130.8 / 130.8^{* *}, 142.0 / 142.3^{* *}$; HR-MS (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{SiNa}[M+\mathrm{Na}]^{+}: 433.3114$, found: 433.3118 .
*Diastereomers slightly differ in ${ }^{1} \mathrm{H}-$ chemical shifts.
** Diastereomers slightly differ in ${ }^{13} \mathrm{C}$ - chemical shifts.

[^8]II. COPIES OF ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA.







Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Information











144136128
$120 \quad 112$
$\begin{array}{cc}80 & 72 \\ \text { Chemical } & \\ \text { Shift (ppm) }\end{array}$























Electronic Supplementary Information






























$\qquad$ ${ }^{\prime \prime} h_{1}$ Man

Chemical Shift (ppm)






## III. COMPUTATIONAL DETAILS

### 3.1 General procedures

All stationary points on the potential energy surface (PES) presented herein were calculated with density functional theory (DFT), with the hybrid B3LYP ${ }^{10}$ functional (with Becke's three parameter exchange functional and the correlation functional from Lee, Yang and Parr). Unless otherwise stated, the LANL2DZ ${ }^{11}$ basis set, which employs effective core potentials (ECPs) for transition metals, in combination with a solvent model as indicated in THF as solvent was used. DFT calculations were performed with the Gaussian09 ${ }^{12}$ (G09) software package. Minima were found using the standard optimization technique implemented in G09. The nature of each stationary point was determined by vibrational analysis using the same method and basis set. All of the minima presented in this study have all-real vibrational frequencies and do not show any imaginary value. Since the mechanism of the electrophilic NBS bromination for our substrate is not clear, ${ }^{13}$ transition states were not calculated.

Instead, we focused on the calculation of the brominated intermediates S12-S15, with either the bromine positioned at C 15 or C 18 (Figure S 1 ). These structures were chosen as representatives for the experimentally observed selectivities. We focused on the electrophilic attack from the top face (vide infra) of the zirconacyclopentadiene and compared the free enthalpies of both resulting regioisomers ( $15 R$-bromo and $18 S$-bromo) in different geometries (a-c).

[^9]
zirconacyclopentadiene



Figure S1. Bromination of the zirconacyclopentadiene precursor, either from the top or bottom face and the possible geometries a) - c) for the mono-brominated intermediates S12-S15.

### 3.2 Generation of the input structures

Zirconacyclopentadiene precursors were optimized at DFT/B3LYP level of theory with basis set and solvent model as indicated, followed by frequency calculations. The mono-brominated intermediates in the stretched arrangement for the top face attack ( $15 R$ - and $18 S$-bromospecies) as well as for the bottom face attack ( $15 S$ - and $18 R$-bromo-species) were obtained by adding a hydrogen atom at the corresponding carbon atoms C 15 and C 18 in the pre-optimized neutral structures, followed by subsequent substitution with bromine. The $\mathrm{C}-\mathrm{Br}$ bond length was adjusted automatically. The over-all charge was set to +1 . The four structures were again optimized at DFT/B3LYP level of theory with basis set and solvent model as indicated, followed by frequency analysis. The resulting free enthalpies for $15 R$ - and $15 S$-bomo-species as well as for $18 S$ - and $18 R$-bromo-species were finally compared. For the mono-brominated species with $\mathrm{Zr}-\mathrm{O}_{\mathrm{Me}^{-}}$and $\mathrm{Zr}-\mathrm{O}_{\mathrm{PG}}$-arrangement the side chain containing the electron donor function was additionally arranged close to the metal center before geometry optimization.

### 3.3 Basis sets and solvent models

Concerning a possible solvent model dependency and the accuracy of the relative energies derived from smaller basis sets, a benchmark study was carried out. As model structure we took the neutral structure $\mathbf{S 1 6}$ (Table S2), which misses the $i$-butyl group at C26 and bears two identical residues at the pentacyclic Zr -system. We calculated the positively charged bromonium intermediates $15 R$-bromo-S16 and $18 S$-bromo-S16. Due to the symmetric nature of the substitution pattern at the metallacycle, the energy values for both mono-brominated intermediates should be similar, independent from the choice of the basis set or solvent model. As shown in Table S2, employing the LANL2DZ basis set with either the polarizable continuum model (PCM) ${ }^{14}$ or the polarizable conductor calculation model (CPCM) ${ }^{15}$ and THF ( $\varepsilon=7.4257$ ) as solvent showed almost the same energies for the mono-brominated species of $\mathbf{S 1 6}\left(\Delta \Delta \mathrm{G}<1 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. The larger Def2-TZVP ${ }^{16}$ basis set delivered the same tendencies, with an energy deviation of about $2-4 \mathrm{~kJ} \mathrm{~mol}^{-1}$. This revealed that the LANL2DZ basis set should be accurate enough for our molecular system. Based on these results, further calculations were performed using a combination of LANL2DZ basis set and PCM solvent model for the uncharged Zr -precursors as well as for the charged mono-brominated intermediates.

[^10]Table S2. Solvent model dependency and accuracy of relative energies derived from small basis sets for structure S16 and its mono-brominated intermediates either at position C15 or C18. Free enthalpies are calculated at DFT/B3LYP level of theory in combination with basis set and solvent model as indicated.


| substance $^{a}$ | basis set | solvent model $^{b}$ | $\Delta \mathrm{G}\left[\mathrm{kJ} \mathrm{mol}^{-1}\right]^{c}$ |
| :--- | :---: | :---: | :---: |
| Zr-precursor-S16 | LANL2DZ | PCM | 0.0 |
| $15 R$-bromo-S16 | LANL2DZ | PCM | 89.1 |
| $18 S$-bromo-S16 | LANL2DZ | PCM | 88.6 |
| Zr-precursor-S16 | LANL2DZ | CPCM | 0.0 |
| $15 R$-bromo-S16 | LANL2DZ | CPCM | 87.8 |
| $18 S$-bromo-S16 | LANL2DZ | CPCM | 87.7 |
| Zr-precursor-S16 | Def2_TZVP | PCM | 0.0 |
| $15 R$-bromo-S16 | Def2_TZVP | PCM | 88.4 |
| $18 S$-bromo-S16 | Def2_TZVP | PCM | 92.8 |
| Zr-precursor-S16 | Def2_TZVP | CPCM | 0.0 |
| $15 R$-bromo-S16 | Def2_TZVP | CPCM | 71.9 |
| $18 S$-bromo-S16 | Def2_TZVP | CPCM | 69.6 |

${ }^{a}$ For all mono-brominated structures the electrophilic attack from the top face is calculated, following the rational, that enantiomers produce the same energetic profile. ${ }^{b}$ solvent $=\mathrm{THF} ;{ }^{c}$ Free enthalpies for the Zr precursors were set to zero. All other free enthalpies are relative values in relation to the corresponding Zr precursor.

### 3.4 Top and bottom face attack

We wanted to investigate the steric influence of the $i$-butyl sidechain at C26. Structure $\mathbf{S 1 2}$, which displays a 20 -fold enhanced selectivity for the bromination at C18 (cf. Table 2), was taken as representative for this study. We calculated all four possible regio- and diastereomers for the bromination reaction in the stretched arrangement and compared the relative energies for $15 R$ - and $15 S$-bromo-S12 as well as for $18 S$ - and $18 R$-bromo-S12 (Table S3). This revealed an energy difference of less than $8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the top or bottom face attack at the same C -atom. The energy differences in the $\mathrm{Zr}-\mathrm{O}_{\mathrm{Me}}$ arrangement indicate the same tendencies $\left(<6.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. Considering the error range of DFT-calculations, ${ }^{17}$ the observed energy difference indicates no significant influence of the $i$-butyl function on the selectivity for this

[^11]reaction. On this account, just the mono-brominated structures derived from top face attack on the Zr -precursors S12-S15 (15R-bromo and $18 S$-bromo) were calculated.

Table S3. Bromination of the pentacyclic Zr -precursor S12, either from the top or bottom face of the diiene system and the possible geometries a) and b) for the mono-brominated products of S12. Relative free enthalpies and bond lengths are shown in the table at the bottom. DFT-calculations were performed at the B3LYP/LANL2DZ level of theory with THF as solvent (PCM solvent model).


| substance | electrophilic <br> attack | $\Delta \mathrm{G}^{a}$ <br> $\left[\mathrm{~kJ} \mathrm{~mol}^{-1}\right]$ | bond length [ $\AA$ ] |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C} 15-\mathrm{Zr}$ | $\mathrm{C} 18-\mathrm{Zr}$ | $\mathrm{C} 15-\mathrm{Br}$ | $\mathrm{C} 18-\mathrm{Br}$ | $\mathrm{O}_{\mathrm{Me}}-\mathrm{Zr}$ | $\mathrm{O}_{\mathrm{PG}}-\mathrm{Zr}$ |  |  |
| Zr-precursor-S12 |  | 0.0 | 2.25 | 2.25 | - | - | - | - |  |
| $15 R$-bromo-S12 |  | 91.4 | 2.43 | 2.35 | 2.16 | - | - | - |  |
| $18 S$-bromo-S12 |  | 86.2 | 2.32 | 2.44 | - | 2.15 | - | - |  |
| $15 S$-bromo-S12 |  | 97.8 | 2.40 | 2.35 | 2.18 | - | - | - |  |
| $18 R$-bromo-S12 |  | 89.3 | 2.32 | 2.42 | - | 2.18 | - | - |  |
| $15 R$-bromo-S12 |  | 107.9 | 2.60 | 2.39 | 2.15 | - | 2.47 | - |  |
| $18 S$-bromo-S12 |  | 74.8 | 2.36 | 2.47 | - | 2.19 | 2.49 | - |  |
| $15 S$-bromo-S12 | bottom $^{c}$ | 104.1 | 2.50 | 2.39 | 2.21 | - | 2.49 | - |  |
| $18 R$-bromo-S12 | bottom $^{c}$ | 81.3 | 2.36 | 2.46 | - | 2.21 | 2.48 | - |  |

${ }^{a}$ Free enthalpies for the Zr -precursors were set to zero. All other free enthalpies are relative values in relation to the corresponding Zr -precursor. ${ }^{b}$ stretched arrangement; ${ }^{c} \mathrm{Zr}-\mathrm{O}_{\mathrm{Me}}$ arrangement for methoxy side chain at C 18 close to the Zr metal.

### 3.5 Free enthalpies and bond lengths for resulting mono-brominated intermediates

All structures in the stretched arrangement were obtained following the procedure described in section 3.2. For the $\mathrm{Zr}-\mathrm{O}_{\mathrm{Me}}$ arrangement and $\mathrm{Zr}-\mathrm{O}_{\mathrm{PG}}$ arrangement the "chelatization" between the metal and the side chain was sometimes removed during minimization. If so, the distance between the oxygen and the metal was frozen during optimization using the opt=modredundant keyword in Gaussian09. In a second optimization run, the $\mathrm{Zr}-\mathrm{O}$ distance was again kept flexible to allow the side chain to adjust to the metal in a suitable manner. Additionally, sometimes the optimization process for the mono-brominated structures did not stop at the intermediate structure, but did minimize to the product structure with the metallacycle already opened. To prevent this outcome the bonds between the $\alpha$-carbon atoms
and the metal were frozen, the structure was minimized and the "frozen"-pre-optimized structure was again minimized with flexible treatment of all bond length.

Table S4. Relative free enthalpies and bond lengths for the resulting mono-brominated intermediates S12-S15 in different geometries. DFT-calculations were performed at the B3LYP level of theory, with the LANL2DZ basis set and THF as solvent (PCM solvent model).

| substance | geometry ${ }^{\text {a }}$ | $\Delta \Delta \mathrm{G}\left[\mathrm{kJ} \mathrm{mol}^{-1}\right]$ | bond length [ A ] |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | C15-Zr | C18-Zr | C15-Br | C18-Br | $\mathrm{O}_{\mathrm{Me}}-\mathrm{Zr}$ | $\mathrm{O}_{\mathrm{PG}}-\mathrm{Zr}$ |
| 15R-bromo-S12 | stretched | 91.4 | 2.43 | 2.35 | 2.16 | - | - | - |
| 18S-bromo-S12 | stretched | 86.2 | 2.32 | 2.44 | - | 2.15 | - | - |
| 15R-bromo-S12 | $\mathrm{Zr}-\mathrm{OMe}^{\text {b }}$ | 107.9 | 2.60 | 2.39 | 2.15 | - | 2.47 | - |
| 18S-bromo-S12 | $\mathrm{Zr}-\mathrm{O}_{\mathrm{Me}}{ }^{\text {b }}$ | 74.8 | 2.36 | 2.47 | - | 2.19 | 2.49 | - |
| 15R-bromo-S13 | stretched | 90.4 | 2.43 | 2.35 | 2.16 | - | - | - |
| 18S-bromo-S13 | stretched | 85.8 | 2.34 | 2.42 | - | 2.16 | - | - |
| 15R-bromo-S13 | $\mathrm{Zr}-\mathrm{OMe}^{\text {b }}$ | 109.1 | 2.60 | 2.39 | 2.17 | - | 2.47 |  |
| 18S-bromo-S13 | $\mathrm{Zr}-\mathrm{OMe}^{\text {b }}$ | 93.8 | 2.35 | 2.44 | - | 2.17 | 2.59 | - |
| 15R-bromo-S13 | $\mathrm{Zr}-\mathrm{OMe}^{\text {c }}$ | 93.5 | 2.51 | 2.40 | 2.17 | - | 2.55 | - |
| 18S-bromo-S13 | $\mathrm{Zr}-\mathrm{OMe}^{\text {c }}$ | 108.9 | 2.34 | 2.42 | - | 2.22 | 2.63 | - |
| 15R-bromo-S14 | stretched | 90.6 | 2.44 | 2.31 | 2.16 | - | - | - |
| 18S-bromo-S14 | stretched | 92.9 | 2.36 | 2.43 | - | 2.16 | - | - |
| 15R-bromo-S14 | $\mathrm{Zr}-\mathrm{OMe}^{\text {b }}$ | 136.3 | 2.56 | 2.38 | 2.22 | - | 2.47 | - |
| 18S-bromo-S14 | $\mathrm{Zr}-\mathrm{OMe}{ }^{\text {b }}$ | 95.8 | 2.38 | 2.46 | - | 2.20 | 2.51 | - |
| 15R-bromo-S14 | $\mathrm{Zr}-\mathrm{O}_{\mathrm{PG}}$ | 56.5 | 2.41 | 2.37 | 2.15 | - | - | 2.56 |
| 18S-bromo-S14 | $\mathrm{Zr}-\mathrm{O}_{\mathrm{PG}}$ | 97.4 | 2.34 | 2.55 | - | 2.14 | - | 3.15 |
| 15R-bromo-S15 ${ }^{\text {d }}$ | stretched | 87.6 | 87.6 | 2.46 | 2.31 | 2.16 | - | - |
| 18S-bromo-S15 ${ }^{d}$ | stretched | 90.0 | 90.0 | 2.34 | 2.43 | - | 2.16 | - |
| 15R-bromo-S15 ${ }^{\text {d }}$ | $\mathrm{Zr}-\mathrm{OMe}^{\text {b }}$ | 127.9 | 127.9 | 2.56 | 2.38 | 2.22 | - | 2.45 |
| 18S-bromo-S15 ${ }^{d}$ | $\mathrm{Zr}-\mathrm{OMe}^{\text {b }}$ | 90.6 | 90.6 | 2.40 | 2.48 | - | 2.18 | 2.51 |

${ }^{a}$ resulting from the top face attack; ${ }^{b} \mathrm{Zr}-\mathrm{O}_{\mathrm{Me}}$ arrangement for methoxy side chain at C 18 close to the Zr metal;
${ }^{c} \mathrm{Zr}-\mathrm{O}_{\mathrm{Me}}$ arrangement for methoxy side chain at C 15 close to the Zr metal; ${ }^{d}$ The corresponding $\mathrm{Zr}-\mathrm{O}_{\mathrm{PG}}$
arrangement was not found.

### 3.6 Energetic profiles and selected Cartesian coordinates for the B3LYP/LANL2DZ optimized structures of the mono-brominated intermediates in different geometries.

Table S5. Energy profiles a) - d) for the mono-brominated regioisomers S12-S15 in different geometries. DFT-calculations were performed as full geometry optimization at B3LYP level of theory, with the LANL2DZ basis set and THF as solvent (PCM solvent model). Color code for the optimized structures: carbon (gray), oxygen (red), zirconium (cyan), bromine (dark red), silicium (deep teal). Hydrogens are not shown.
a)

b)

c)

d)

$15 R$-bromo-S12, $\mathrm{Zr}-\mathrm{O}_{\mathrm{Me}}$ arrangement

| atom | x | y | z |
| :---: | :---: | :---: | :---: |
| C | -2.969 | -0.870 | 0.448 |
| O | -2.979 | -2.265 | -0.071 |
| C | -2.020 | -2.357 | -1.198 |
| C | -1.023 | -1.251 | -0.882 |
| C | -1.617 | -0.344 | 0.000 |
| C | -0.926 | 0.907 | 0.334 |
| C | -1.501 | 1.746 | 1.481 |
| C | 0.330 | -1.079 | -1.230 |
| Zr | 1.546 | 0.122 | 0.438 |
| C | 2.294 | -1.899 | 1.987 |
| C | 2.499 | -0.687 | 2.713 |
| C | 0.890 | -2.069 | 1.778 |
| C | 1.210 | -0.106 | 2.973 |
| C | 0.221 | -0.976 | 2.413 |
| C | 2.145 | 2.226 | -0.978 |
| C | 1.547 | 2.709 | 0.240 |
| C | 3.414 | 1.667 | -0.642 |
| C | 2.428 | 2.411 | 1.320 |
| C | 3.578 | 1.739 | 0.778 |
| Br | -1.272 | 2.100 | -1.419 |
| C | 0.824 | -1.880 | -2.405 |
| C | 2.235 | -1.535 | -2.895 |
| C | 3.339 | -1.966 | -1.943 |
| O | 3.322 | -1.201 | -0.662 |
| C | 4.658 | -1.313 | -0.032 |
| H | -3.045 | -0.941 | 1.542 |
| H | -1.587 | -3.362 | -1.178 |
| H | -2.539 | -2.207 | -2.155 |
| H | -2.544 | 2.040 | 1.309 |
| H | -1.464 | 1.183 | 2.422 |
| H | -0.927 | 2.663 | 1.634 |
| H | 3.059 | -2.586 | 1.659 |
| H | 3.446 | -0.299 | 3.061 |
| H | 0.417 | -2.909 | 1.288 |
| H | 1.018 | 0.782 | 3.559 |
| H | -0.846 | -0.872 | 2.523 |
| H | 1.731 | 2.331 | -1.970 |
| H | 0.625 | 3.261 | 0.306 |
| H | 4.116 | 1.235 | -1.340 |
| H | 2.282 | 2.684 | 2.355 |
| H | 4.454 | 1.441 | 1.336 |
| H | 0.773 | -2.955 | -2.146 |
| H | 0.110 | -1.759 | -3.237 |
| H | 2.424 | -2.054 | -3.844 |

Electronic Supplementary Information

| atom | x | y | z |
| :---: | :---: | :---: | :---: |
| H | 2.318 | -0.460 | -3.101 |
| H | 4.319 | -1.788 | -2.402 |
| H | 3.254 | -3.031 | -1.685 |
| H | 5.397 | -0.811 | -0.666 |
| H | 4.623 | -0.837 | 0.943 |
| H | 4.918 | -2.372 | 0.079 |
| C | -4.174 | -0.049 | -0.100 |
| H | -4.345 | -0.353 | -1.142 |
| H | -3.909 | 1.015 | -0.120 |
| C | -5.476 | -0.219 | 0.725 |
| H | -5.244 | 0.062 | 1.767 |
| C | -6.554 | 0.756 | 0.198 |
| H | -6.811 | 0.525 | -0.845 |
| H | -7.472 | 0.680 | 0.794 |
| H | -6.208 | 1.798 | 0.239 |
| C | -6.008 | -1.670 | 0.726 |
| H | -6.914 | -1.743 | 1.342 |
| H | -6.264 | -1.988 | -0.294 |
| H | -5.268 | -2.377 | 1.117 |

$18 S$-bromo-S12, $\mathrm{Zr}-\mathrm{O}_{\mathrm{Me}}$ arrangement

| atom | x | y | z |
| :---: | :---: | :---: | :---: |
| C | -3.199 | -0.459 | -0.830 |
| O | -3.364 | 0.663 | -1.809 |
| C | -2.238 | 1.602 | -1.691 |
| C | -1.227 | 0.900 | -0.823 |
| C | -1.732 | -0.334 | -0.425 |
| C | -0.832 | -1.270 | 0.137 |
| C | -1.397 | -2.601 | 0.571 |
| C | 0.122 | 1.353 | -0.415 |
| Zr | 1.450 | -0.680 | 0.045 |
| C | 0.649 | 2.528 | -1.248 |
| C | 1.976 | 3.130 | -0.761 |
| C | 3.210 | 2.306 | -1.086 |
| O | 3.243 | 0.992 | -0.375 |
| C | 4.644 | 0.506 | -0.371 |
| H | -3.397 | -1.379 | -1.395 |
| H | -1.856 | 1.821 | -2.696 |
| H | -2.568 | 2.548 | -1.236 |
| H | -1.785 | -2.497 | 1.598 |
| H | -2.250 | -2.923 | -0.042 |
| H | -0.655 | -3.402 | 0.591 |
| H | 0.784 | 2.157 | -2.278 |
| H | -0.099 | 3.332 | -1.301 |
| H | 2.126 | 4.099 | -1.257 |


| atom | x | y | z |
| :---: | :---: | :---: | :---: |
| H | 1.931 | 3.332 | 0.315 |
| H | 4.109 | 2.850 | -0.773 |
| H | 3.279 | 2.096 | -2.163 |
| H | 4.655 | -0.520 | -0.013 |
| H | 5.051 | 0.543 | -1.388 |
| H | 5.238 | 1.144 | 0.292 |
| C | -4.188 | -0.340 | 0.352 |
| H | -4.226 | 0.712 | 0.670 |
| H | -3.777 | -0.910 | 1.199 |
| C | -5.619 | -0.863 | 0.065 |
| H | -5.523 | -1.899 | -0.303 |
| C | -6.437 | -0.900 | 1.377 |
| H | -6.549 | 0.111 | 1.794 |
| H | -7.444 | -1.302 | 1.198 |
| H | -5.952 | -1.528 | 2.136 |
| C | -6.358 | -0.038 | -1.013 |
| H | -7.352 | -0.464 | -1.205 |
| H | -6.493 | 1.000 | -0.678 |
| H | -5.803 | -0.013 | -1.957 |
| Br | -0.465 | 2.289 | 1.474 |
| C | 2.933 | -1.956 | 1.799 |
| C | 3.050 | -0.575 | 2.150 |
| C | 1.573 | -2.350 | 2.017 |
| H | 3.735 | -2.604 | 1.470 |
| C | 1.768 | -0.109 | 2.578 |
| H | 3.951 | 0.017 | 2.129 |
| C | 0.855 | -1.211 | 2.518 |
| H | 1.182 | -3.351 | 1.904 |
| H | 1.538 | 0.888 | 2.919 |
| H | -0.174 | -1.189 | 2.843 |
| C | 1.152 | -0.997 | -2.546 |
| C | 2.565 | -1.022 | -2.347 |
| C | 0.603 | -2.169 | -1.918 |
| H | 0.604 | -0.283 | -3.145 |
| C | 2.892 | -2.159 | -1.544 |
| H | 3.266 | -0.297 | -2.735 |
| C | 1.675 | -2.875 | -1.279 |
| H | -0.417 | -2.511 | -2.007 |
| H | 3.883 | -2.473 | -1.251 |
| H | 1.598 | -3.822 | -0.765 |

$15 R$-bromo-S14, $\mathrm{Zr}-\mathrm{O}_{\mathrm{PG}}$ arrangement

| atom | x | y | z |
| :---: | :---: | :---: | :---: |
| C | 2.560 | 2.629 | -1.115 |
| O | 3.712 | 2.133 | -1.911 |
| C | 4.034 | 0.748 | -1.495 |
| C | 2.753 | 0.272 | -0.822 |
| C | 1.947 | 1.371 | -0.541 |
| C | 0.648 | 1.181 | 0.139 |
| C | -0.401 | 2.247 | -0.159 |
| C | 2.204 | -1.028 | -0.663 |
| C | 3.112 | -2.180 | -1.040 |
| C | 4.247 | -2.375 | 0.016 |
| C | 5.171 | -3.533 | -0.375 |
| O | 6.180 | -3.650 | 0.671 |
| C | 7.139 | -4.724 | 0.428 |
| H | 1.877 | 3.124 | -1.817 |
| H | 4.296 | 0.185 | -2.396 |
| H | 4.896 | 0.755 | -0.815 |
| H | -0.073 | 3.261 | 0.111 |
| H | 2.556 | -3.115 | -1.155 |
| H | 3.599 | -1.972 | -2.008 |
| H | 4.845 | -1.461 | 0.107 |
| H | 3.823 | -2.580 | 1.005 |
| H | 4.605 | -4.476 | -0.458 |
| H | 5.656 | -3.334 | -1.346 |
| H | 7.838 | -4.716 | 1.268 |
| H | 6.634 | -5.701 | 0.380 |
| H | 7.689 | -4.558 | -0.510 |
| H | -0.563 | 2.248 | -1.246 |
| Zr | -0.102 | -1.095 | -0.126 |
| C | -0.297 | -2.576 | -2.218 |
| C | -1.642 | -2.207 | -1.874 |
| C | 0.377 | -1.399 | -2.679 |
| H | 0.114 | -3.576 | -2.197 |
| C | -1.790 | -0.805 | -2.118 |
| H | -2.414 | -2.884 | -1.534 |
| C | -0.539 | -0.297 | -2.589 |
| H | 1.369 | -1.363 | -3.105 |
| H | -2.685 | -0.225 | -1.951 |
| H | -0.340 | 0.714 | -2.915 |
| C | 0.915 | -2.084 | 2.073 |
| C | -0.456 | -1.790 | 2.330 |
| C | 0.962 | -3.186 | 1.148 |
| H | 1.765 | -1.590 | 2.521 |
| C | -1.258 | -2.699 | 1.551 |
| H | -0.817 | -1.026 | 3.003 |


| atom | x | y | z |
| :---: | :---: | :---: | :---: |
| C | -0.371 | -3.571 | 0.843 |
| H | 1.853 | -3.685 | 0.801 |
| H | -2.334 | -2.796 | 1.564 |
| H | -0.667 | -4.384 | 0.195 |
| C | -1.736 | 1.998 | 0.544 |
| H | -1.660 | 2.321 | 1.591 |
| C | -2.874 | 2.741 | -0.167 |
| H | -3.067 | 2.304 | -1.154 |
| H | -3.804 | 2.736 | 0.403 |
| H | -2.575 | 3.788 | -0.310 |
| O | -1.961 | 0.509 | 0.604 |
| C | -3.090 | 0.141 | 1.532 |
| H | -2.818 | -0.841 | 1.905 |
| H | -3.053 | 0.846 | 2.370 |
| C | -4.475 | 0.106 | 0.919 |
| C | -5.484 | 0.978 | 1.392 |
| C | -4.828 | -0.842 | -0.063 |
| C | -6.790 | 0.922 | 0.889 |
| H | -5.251 | 1.704 | 2.168 |
| C | -6.130 | -0.908 | -0.590 |
| H | -4.088 | -1.554 | -0.418 |
| C | -7.116 | -0.017 | -0.114 |
| H | -7.563 | 1.590 | 1.254 |
| H | -6.363 | -1.650 | -1.347 |
| C | -8.850 | -0.933 | -1.602 |
| H | -9.904 | -0.716 | -1.782 |
| H | -8.276 | -0.776 | -2.523 |
| H | -8.738 | -1.970 | -1.262 |
| O | -8.435 | 0.009 | -0.559 |
| C | 3.038 | 3.648 | -0.044 |
| H | 2.185 | 3.933 | 0.588 |
| H | 3.766 | 3.144 | 0.605 |
| C | 3.678 | 4.921 | -0.654 |
| H | 4.453 | 4.599 | -1.364 |
| C | 4.357 | 5.742 | 0.467 |
| H | 4.842 | 6.637 | 0.055 |
| H | 3.620 | 6.072 | 1.213 |
| H | 5.123 | 5.151 | 0.986 |
| C | 2.649 | 5.790 | -1.415 |
| H | 2.193 | 5.256 | -2.259 |
| H | 1.843 | 6.119 | -0.743 |
| H | 3.133 | 6.687 | -1.822 |
| Br | 1.161 | 1.426 | 2.210 |

$18 S$-bromo-S14, $\mathrm{Zr}-\mathrm{O}_{\mathrm{PG}}$ arrangement

| atom | x | y | z |
| :---: | :---: | :---: | :---: |
| C | 1.020 | 3.354 | -0.936 |
| O | 2.026 | 3.294 | -2.044 |
| C | 2.930 | 2.159 | -1.820 |
| C | 2.269 | 1.317 | -0.760 |
| C | 1.063 | 1.936 | -0.370 |
| C | 0.056 | 1.161 | 0.231 |
| C | -1.262 | 1.848 | 0.496 |
| C | 2.747 | 0.053 | -0.195 |
| C | 3.969 | -0.562 | -0.899 |
| C | 4.412 | -1.945 | -0.384 |
| C | 5.581 | -2.501 | -1.200 |
| O | 5.902 | -3.823 | -0.667 |
| C | 7.031 | -4.454 | -1.345 |
| H | 0.064 | 3.582 | -1.417 |
| H | 3.076 | 1.631 | -2.770 |
| H | 3.917 | 2.506 | -1.471 |
| H | -1.089 | 2.817 | 0.989 |
| H | 3.721 | -0.652 | -1.967 |
| H | 4.822 | 0.131 | -0.841 |
| H | 4.722 | -1.876 | 0.665 |
| H | 3.577 | -2.657 | -0.436 |
| H | 5.313 | -2.588 | -2.268 |
| H | 6.462 | -1.842 | -1.120 |
| H | 7.180 | -5.427 | -0.869 |
| H | 6.820 | -4.596 | -2.415 |
| H | 7.945 | -3.849 | -1.237 |
| H | -1.718 | 2.093 | -0.482 |
| Zr | 0.513 | -1.130 | 0.108 |
| C | -2.298 | 1.066 | 1.313 |
| H | -1.893 | 0.839 | 2.312 |
| C | -3.599 | 1.866 | 1.461 |
| H | -4.048 | 2.072 | 0.482 |
| H | -4.336 | 1.342 | 2.075 |
| H | -3.378 | 2.824 | 1.950 |
| O | -2.464 | -0.218 | 0.593 |
| C | -3.455 | -1.176 | 1.140 |
| H | -3.058 | -2.150 | 0.834 |
| H | -3.447 | -1.132 | 2.238 |
| C | -4.871 | -0.995 | 0.622 |
| C | -5.958 | -1.019 | 1.526 |
| C | -5.149 | -0.865 | -0.752 |
| C | -7.281 | -0.920 | 1.072 |
| H | -5.773 | -1.118 | 2.593 |
| C | -6.470 | -0.754 | -1.227 |


| atom | x | y | z |
| :---: | :---: | :---: | :---: |
| H | -4.335 | -0.841 | -1.471 |
| C | -7.542 | -0.786 | -0.309 |
| H | -8.117 | -0.941 | 1.766 |
| H | -6.647 | -0.653 | -2.292 |
| C | -9.233 | -0.548 | -2.080 |
| H | -10.323 | -0.496 | -2.106 |
| H | -8.808 | 0.374 | -2.498 |
| H | -8.889 | -1.414 | -2.659 |
| O | -8.887 | -0.691 | -0.665 |
| C | 1.399 | 4.446 | 0.085 |
| H | 0.697 | 4.396 | 0.932 |
| H | 2.396 | 4.211 | 0.486 |
| C | 1.399 | 5.886 | -0.490 |
| H | 2.019 | 5.880 | -1.399 |
| C | 2.041 | 6.856 | 0.528 |
| H | 2.077 | 7.877 | 0.127 |
| H | 1.461 | 6.882 | 1.462 |
| H | 3.067 | 6.553 | 0.775 |
| C | -0.021 | 6.363 | -0.873 |
| H | -0.481 | 5.728 | -1.641 |
| H | -0.682 | 6.367 | 0.007 |
| H | 0.012 | 7.386 | -1.271 |
| Br | 3.496 | 0.736 | 1.695 |
| C | 1.827 | -2.161 | 2.068 |
| C | 0.890 | -1.247 | 2.663 |
| C | 1.091 | -3.242 | 1.491 |
| H | 2.901 | -2.067 | 2.096 |
| C | -0.421 | -1.778 | 2.464 |
| H | 1.137 | -0.346 | 3.203 |
| C | -0.308 | -2.996 | 1.721 |
| H | 1.509 | -4.110 | 1.001 |
| H | -1.335 | -1.346 | 2.838 |
| H | -1.120 | -3.654 | 1.444 |
| C | 1.056 | -1.511 | -2.409 |
| C | 0.658 | -2.776 | -1.866 |
| C | -0.083 | -0.639 | -2.391 |
| H | 2.019 | -1.289 | -2.841 |
| C | -0.733 | -2.689 | -1.521 |
| H | 1.280 | -3.657 | -1.787 |
| C | -1.187 | -1.372 | -1.852 |
| H | -0.121 | 0.373 | -2.769 |
| H | -1.340 | -3.493 | -1.129 |
| H | -2.179 | -0.983 | -1.695 |


[^0]:    ${ }^{1}$ Y. Kobayashi, M. Asano, S. Yoshida, A. Takeuchi, Org. Lett. 2005, 7, 1533.

[^1]:    ${ }^{2}$ J. J. De Voss, B. D. Schwartz, P. Y. Hayes, W. Kitching, J. Org. Chem. 2005, 70, 3054.

[^2]:    ${ }^{3}$ Product contained a minor impurity which was easily removed after etherification ( ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta \mathrm{ppm} 1.22-1.51,3.72,3.80 ;{ }^{13} \mathrm{C}-\mathrm{NMR} \delta \mathrm{ppm} 14.08,22.04,22.75,23.51,24.61,27.79$, 37.76, 46.79, 69.98).
    ${ }^{4}$ Product contained a minor impurity which was easily removed after etherification ( ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\delta \mathrm{ppm} 1.10-1.40,3.60,{ }^{13} \mathrm{C}-\mathrm{NMR} \delta \mathrm{ppm} 14.09,22.05,22.77,23.53,24.62,27.99,37.78$, 46.80, 69.89).

[^3]:    ${ }^{5}$ K. -K. Chan, N. Cohen, J. P. De Noble, A. C. Specian, G. Saucy, J. Org. Chem. 1976, 41, 3497.

[^4]:    ${ }^{6}$ P. Müller, C. Gränicher, Helv. Chim. Act. 1995, 78, 129.

[^5]:    ${ }^{7}$ Product could only be obtained as a 3:1 mixture of product and the corresponding 1,6-diyne which could not be separated by column chromatography. Yield calculations were based on ${ }^{1} \mathrm{H}$-NMR integral measurements.

[^6]:    ${ }^{* 1} \mathrm{H}$-signals could not be clearly assigned to one of the regioisomers.
    ${ }^{* * 13} \mathrm{C}$-signals could not be clearly assigned to one of the regioisomers.

[^7]:    ${ }^{8}$ The diastereomeric mixture could be separated by column chromatography. One of the diastereomers was obtained in pure form, the other diastereomer could only be afforded in an approximately $1: 1$ mixture of the diastereomers. NMR-data were received from pure diastereomer.

[^8]:    ${ }^{9}$ Yield calculations were based on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ integral measurements.

[^9]:    ${ }^{10}$ a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) A. D. Becke, J. Chem. Phys. 1993, 98, 1372-1377; c) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
    ${ }^{11}$ a) T. H. Dunning, P. J. Hay, in Modern Theoretical Chemistry, Vol. 3 (Ed.: H. F. Schaefer), Plenum, New York, 1976, pp. 1971-1928; b) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-283; c) W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284-298; d) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310.
    ${ }^{12}$ M. J. F. Gaussian 09 (Revision A.02), G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.

    Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
    ${ }^{13}$ It's not clear if molecular NBS or remaining $\mathrm{Br}_{2}$ from NBS synthesis induces the bromination, or if NBS dissociates before bromination;

[^10]:    ${ }^{14}$ a) S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117-129 b) . Miertus , J. Tomasi, Chem. Phys. 1982, 65, 239-245; c) J. L. Pascual-ahuir, E. Silla, I. Tuñon, J. Comput. Chem. 1994, 15, 1127-1138; d) M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327-335; e) V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys. 1997, 107, 3210-3221; f) E. Cances, B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 107, 3032-3041; g) B. Mennucci, E. Cancès, J. Tomasi, J. Phys. Chem. B 1997, 101, 10506-10517; h) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995-2001; i) M. Cossi, V. Barone, B. Mennucci, J. Tomasi, Chem. Phys. Lett. 1998, 286, 253-260; j) V. Barone, M. Cossi, J. Tomasi, J. Comput. Chem. 1998, 19, 404417; k) R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 1999, 103, $9100-9108$; 1) M. Cossi, V. Barone, M. A. Robb, J. Chem. Phys. 1999, 111, 5295-5302; m) J. Tomasi, B. Mennucci, E. Cancès, J. Mol. Struct. 1999, 464, 211-226; n) R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 2000, 104, 5631-5637; o) M. Cossi, V. Barone, J. Chem. Phys. 2000, 112, 2427-2435; p) M. Cossi, V. Barone, J. Chem. Phys. 2001, 115, 4708-4717; q) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Chem. Phys. 2001, 114, 5691-5701; r) M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 2002, 117, 43-54; s) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669-681; t) J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999-3094.
    ${ }^{15}$ a) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995-2001; b) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669-681.
    ${ }^{16}$ a) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305; b) D. Andrae, U. Haeussermann, M.Dolg, H.Stoll, H.Preuss, Theor. Chim. Acta 1990, 77, 123-141.

[^11]:    ${ }^{17}$ M. C. Holthausen, J. Comput. Chem. 2005, 26, 1505-1518.

