Computational details: The details of PBE calculations are same as in the paper. Gaussian09 was used for PBE0 [1], TPSS and TPSSh [2] calculations. cc-pVTZ (cc-pVTZ-PP for Au) basis sets were used in Gaussian calculations.

Table 1: Optimized geometries of $X_4Au_2(C_5H_5N)_2$, X = H, F-I and CF₃ with PBE0, TPSS and TPSSh. cc-pVTZ basis sets was used. All bond lengths in pm and all angles in degree.

Х	Functional	R(Au-Au)	R(Au-N)	R(Au-X)	∠XAuX	∠XAuN
Н	PBE0	247.8	215.5	163.8	172.8	93.6
	TPSS	249.4	216.8	165.0	174.0	93.0
	TPSSh	248.6	216.4	164.5	173.6	93.2
F	PBE0	250.0	215.7	193.0	179.0	89.5
	TPSS	252.2	218.0	195.3	178.9	89.4
	TPSSh	251.1	217.2	194.2	178.9	89.5
Cl	PBE0	252.4	217.2	229.2	175.0	92.5
	TPSS	254.6	219.3	231.6	175.3	92.4
	TPSSh	253.4	218.5	230.6	175.1	92.4
Br	PBE0	253.0	216.7	243.5	174.0	93.0
	TPSS	254.9	218.8	245.9	174.0	93.0
	TPSSh	253.8	218.0	244.8	173.9	93.1
I	PBE0	254.0	216.4	263.1	172.9	93.5
	TPSS	255.7	218.6	265.3	172.8	93.6
	TPSSh	254.7	217.8	264.2	172.7	93.7
CF_3	PBE0	251.7	215.0	209.2	177.4	88.7
	TPSS	253.8	217.7	211.2	177.1	88.5
	TPSSh	252.8	216.8	210.4	177.3	88.7

ADF was used for these calculations. Х R(Au-Au)R(Au-N)R(Au-X)∠XAuX ∠XAuN Η 250.4220.793.1165.5174.9F 253.5219.5196.7177.291.4 Cl 231.488.6 255.5219.5179.0 Br 255.6179.789.2219.5247.6Ι 256.3220.0266.1178.990.8

Table 2: Optimized geometries at the level of PBE/TZ2P/SR-ZORA for

 $X_4Au_2(NH_3)_2$, X = H, F-I, all bond lengths in pm and all angles in degree.

Figure 1: The electron density of $(CF_3)_4Au_2(C_5H_5N)_2$, isosurf. = 0.06 a.u.

References

- Adamo C and Barone V. Toward reliable density functional methods without adjustable parameters: The pbe0 model. J. Chem. Phys., 110:6158–6169, 1999.
- [2] Jianmin Tao, John P. Perdew, Viktor N. Staroverov, and Gustavo E. Scuseria. Climbing the density functional ladder: Nonempiri-

cal meta[~]generalized gradient approximation designed for molecules and solids. *Phys. Rev. Lett.*, 91:146401, Sep 2003.