Electronic Supplementary Information

How Innocent Is Thallium(I)? Correct Formulations of [TI₂Pd₁₄(CO)₉(PMe₃)₁₁][PF₆]₂ and [TIPd₉(CO)₉(PPh₃)₆][PF₆] Clusters Previously Reported as Corresponding Au₂Pd₁₄ and AuPd₉ Clusters

Evgueni G. Mednikov^a and Lawrence F. Dahl^a

Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA E-mail: <u>mednikov@chem.wisc.edu</u>; <u>dahl@chem.wisc.edu</u>

Experimental part.

General Remarks. $Pd_{10}(CO)_{12}(PMe_3)_6$ was obtained in accordance with the approach developed for $Pd_{10}(CO)_{12}(PAlk_3)_6$ clusters^{1a} and recrystallized from CH_2Cl_2 /heptane. $Pd_{10}(CO)_{12}(PPh_3)_6$ was obtained from the literature method^{1b} and recrystallized from $CHCl_3$ /hexane. $[(Ph_3P)_2N]Cl$ was recrystallized from acetone/*i*-Pr₂O. All other reagents were used without additional purification, but before use solvents were purged with nitrogen for at least 20 min. All operations except crystallization of $[TIPd_9(CO)_9(PPh_3)_6][PF_6]$ were performed under N_2 . ³¹P{¹H} NMR spectra were obtained on Bruker AC-300 spectrometer and referenced to 85% H₃PO₄ in D₂O as an external standard. IR spectra were recorded on Bruker Tensor 27 FT-IR spectrometer. X-Ray diffraction data collections were performed on Bruker APEX2 area-detector diffractometer (Mo K α radiation, $\lambda = 0.71073$ Å).

X-Ray Crystallographic Determinations of $[Tl_2Pd_{14}(\mu_2-CO)_2(\mu_3-CO)_7(PMe_3)_{11}][PF_6]_2$ •Me₂CO [(1a-Me)·Me₂CO] and [TlPd₉(CO)₉(PPh₃)₆][PF₆]·1.65THF·0.66CH₂Cl₂ (2a-Ph).

X-Ray data for crystals (1a-Me)·Me₂CO and 2a-Ph were collected at 100(2) K; reflections from both crystals were empirically corrected for absorption (SADABS).^{2a} The crystal structures were obtained by use of direct methods followed by difference Fourier maps. Least-squares refinements (based on F^2) were carried out with SHELXTL.^{2a, b} In the crystal structure of $(1a-Me) \cdot Me_2CO$ one of two [PF₆]⁻ anions and the methyl groups attached to P3, P6, and P8 atoms are disordered over two sites with refined occupancy factors of 0.60/0.40, 0.51/0.49, 0.71/0.29 and 0.61/0.39, respectively. All non-hydrogen atoms with the exception of most of those that are disordered were refined anisotropically.

In the crystal structure of **2a-Ph** the crystallographically independent part of the unit cell contains: (a) one-third of the $[Pd_9Tl(CO)_9(PPh_3)_6][PF_6]$; and (b) THF and CH_2Cl_2 solvent molecules that are disordered over the same site with the refined partial occupancies of 0.55 and 0.22, respectively. The $[PF_6]^-$ anion is disordered around crystallographic threefold axis at two independent positions (the refined s.o.f. 0.56/0.44) giving rise to six different orientations of $[PF_6]^-$. All non-hydrogen atoms with the exception of the Cl (of CH_2Cl_2), F (of $[PF_6]^-$), and C and O atoms of solvent molecules were refined anisotropically. A rigid-group constraint (AFIX 66) was applied to all phenyl groups. EADP constraints were used for the F atoms of the disordered $[PF_6]^-$ anion and the Cl, C and O atoms of the solvent molecules. Distance restraints were applied to the P-F bonds, to disordered Ph groups, and to the Cl, C, and O atoms of the solvent molecules.

In both structures the hydrogen atoms were generated geometrically and refined as riding atoms with corresponding default C-H distances. Structural CIF/PLATON tests performed by the http://journals.iucr.org/services/cif/checking/checkform.html are in accordance with the crystal structure determinations. CCDC reference numbers are 906532 [(1a-Me)·Me₂CO] and 906531 (2a-Ph).

References

(a) E. G. Mednikov and N. K. Eremenko, *Koordin. Khim. (Sov. J. Coord. Chem.)* 1983, 9, 243;
(b) E. G. Mednikov, N. K. Eremenko and S. P. Gubin, *Koordin. Khim. (Sov. J. Coord. Chem.)* 1984, 10, 711.

 (a) G. M. Sheldrick, SHELXTL (version 6.10 (2000)) program library, Bruker Analytical X-Ray Systems, Madison, WI; (b) Bruker-AXS. 2009. Apex2 v2010.7-0, Bruker-AXS Inc., Madison, Wisconsin, USA. Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

Fig. S1 Entire $[Tl_2Pd_{14}(CO)_9(PMe_3)_{11}]^{2+}$ dication **1a-Me** of *pseudo*-C_s symmetry without Me-substituents.

Fig. S2 Entire view of the $[TlPd_9(CO)_9(PPh_3)_6]^+$ cluster cation 2a-Ph of C_{3v} symmetry without Ph-substituents .

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Table S1. Comparative Means (Å) and Individual Ranges (Å) under *Pseudo*-C_s Symmetry between the $Tl_2Pd_{14}(CO)_9P_{11}$ Fragment of $[Tl_2Pd_{14}(\mu_2-CO)_2(\mu_3-CO)_7(PMe_3)_{11}][PF_6]_2 \cdot Me_2CO$ $[(1a-Me)\cdot Me_2CO)]$ and Corresponding Crystallographic-C_s Fragment of the non-Solvated $[Au_2Pd_{14}(CO)_9(PMe_3)_{11}][PF_6]_2$ (1-Me)^a Relabeled as $[Tl_2Pd_{14}(CO)_9(PMe_3)_{11}][PF_6]_2$.

Connectivity	N ^b	Mean [Range] in (1a-Me)· Me ₂ CO ^c	Mean [Range] in 1-Me ^{a,d,e}		
Radial in Tl ₂ Pd ₁₁ icosahedron					
Pd(cent)-Tl	2	2.839 [2.8370(5)-2.8405(5)]	2.853(2) [2.853(2)]		
Pd(cent)-Pd(1)	1	2.6883(4)	2.678(5)		
Pd(cent)-Pd(2)	1	2.6415(4)	2.649(5)		
Pd(cent)-Pd(3)	2	2.824 [2.8144(6)-2.8342(6)]	2.826(4) [2.826(3)]		
Pd(cent)-Pd(4)	2	2.740 [2.7357(5)-2.7448(5)]	2.757(4) [2.757(4)]		
Pd(cent)-Pd(5)	2	2.755 [2.7521(5)-2.7580(5)]	2.759(4) [2.759(4)]		
Pd(cent)-Pd(6)	1	2.7571(4)	2.777(5)		
Pd(cent)-Pd(7)	1	2.7416(4)	2.747(5)		
Mean [Range] for Pd-Pd		2.747 [2.6415(4)-2.8342(6)]	2.754 [2.649(5)-2.826(3)]		
Tangential in Tl ₂ Pd ₁₁ icosahedron					
Tl-Pd(3)	2	2.960 [2.9487(5)-2.9712(5)]	2.967(3) [2.967(3)]		
T1-Pd(4)	2	2.884 [2.8707(5)-2.8975(4)]	2.911(3) [2.911(3)]		
Tl-Pd(5)	2	2.918 [2.8988(5)-2.9370(5)]	2.914(3) [2.914(3)]		
Tl-Pd(6)	2	2.963 [2.9625(5)-2.9635(5)]	2.985(2) [2.985(2)]		
T1-Pd(7)	2	2.970 [2.9695(5)-2.9706(5)]	2.966(2) [2.966(2)]		
Mean [Range] for Tl- Pd		2.939 [2.8707(5)-2.9712(5)]	2.949 [2.911(3)-2.985(2)]		
Pd(1)-Pd(2)	1	3.0187(4)	3.008(4)		

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Pd(1)-Pd(3)	2	2.928 [2.9185(6)-2.9370(6)]	2.914(3) [2.914(3)]		
Pd(1)-Pd(4)	2	2.831 [2.8267(6)-2.8347(6)]	2.850(4) [2.850(4)]		
Pd(2)-Pd(3)	2	2.900 [2.8798(6)-2.9199(6)]	2.919(4) [2.919(4)]		
Pd(2)-Pd(5)	2	2.805 [2.7985(6)-2.8112(6)]	2.820(4) [2.820(4)]		
Pd(3)-Pd(4)	2	2.999 [2.9979(6)-2.9992(6)]	3.000(4) [3.000(4)]		
Pd(3)-Pd(5)	2	2.986 [2.9803(6)-2.9909(6)]	3.012(4) [3.012(4)]		
Pd(4)-Pd(4A)	1	2.8386(4)	2.845(5)		
Pd(4)-Pd(6)	2	2.804 [2.8004(6)-2.8081(6)]	2.810(4) [2.810(4)]		
Pd(5)-Pd(5A)	1	2.8674(4)	2.864(5)		
Pd(5)-Pd(7)	2	2.818 [2.8024(5)-2.8332(5)]	2.825(4) [2.825(4)]		
Pd(6)-Pd(7)	1	2.9028(4)	2.901(4)		
Mean [Range] for Pd-Pd		2.888 [2.7985(6)-3.0187(4)]	2.896 [2.810(4)-3.012(4)]		
Between Tl ₂ Pd ₁₁ icosahedron and Pd ₅ trigonal bipyramid					
Tl-Pd(8)	2	2.903 [2.8762(5)-2.9303(5)]	2.919(2) [2.919(2)]		
Pd(6)-Pd(8)	2	2.755 [2.7477(6)-2.7625(5)]	2.765(4) [2.765(4)]		
Pd(7)-Pd(8)	2	2.735 [2.7171(5)-2.7538(5)]	2.746(4) [2.746(4)]		
Pd(7)-Pd(9)	1	2.7061(4)	2.728(5)		
Mean [Range] for Pd-Pd		2.737 [2.7061(4)-7625(5)]	2.750 [2.728(5)-2.765(4)]		
In Pd ₅ trigonal bipyramid					
Pd(8)-Pd(8A)	1	2.8451(4)	2.858(2)		
Pd(8)-Pd(9)	2	2.717 [2.7066(5)-2.7281(5)]	2.727(3) [2.727(3)]		

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Mean [Range] for Pd-Pd		2.760 [2.7066(5)-2.8451(4)]	2.771 [2.727(3)-2.858(2)]
Mean [Range] for Pd-P		2.33 [2.2863(11)-2.3550(15)]	2.34 [2.28(2)-2.39(1)]
Mean [Range] for Pd-C for µ ₂ -CO		2.06 [1.978(6)-2.142(6)]	2.02 [1.98(3)-2.06(3)]
Mean [Range] for C- O in µ ₂ -CO	2	1.16 [1.148(7)-1.170(7)]	1.26 [1.26(4)]
Mean [Range] for Pd-C for µ ₃ -CO		2.13 [2.014(5)-2.314(7)]	2.13 [1.98(5)-2.22(4)]
Mean [Range] for C- O in µ ₃ -CO		1.18 [1.159(5)-1.186(7)]	1.18 [1.13(5)-1.23(5)]

^a Data are taken from the crystal structure deposited in CCDC, refcode YUXFEC (R. C. B. Copley, C. M. Hill and D. M. P. Mingos, *J. Cluster Sci.*, 1995, **6**, 71); ^b denotes the total number of individual connectivities under *pseudo*-C_s symmetry; ^c crystallographic analysis of the acetone-solvated crystal structure of $[Tl_2Pd_{14}(CO)_9(PMe_3)_{11}][PF_6]_2$ (**1a-Me**) under centrosymmetric monoclinic symmetry (P2₁/n) with Z=4 required the determination of atomic parameters for one independent dication, two independent $[PF_6]^-$ anions, and one independent solvated Me₂CO molecule. The entire $[Tl_2Pd_{14}(CO)_9(PMe_3)_{11}]^{2+}$ dication (without Me substituents) possesses *pseudo* mirror-plane symmetry; ^d in the reported unsolvated crystal structure of **1-Me**, which has a centrosymmetric orthorhombic unit cell (Pmcn) with Z=4, four dications and eight $[PF_6]^-$ anions each lie on a crystallographic mirror plane that corresponds to the crystallographically independent unit being composed of one-half dication and two one-half $[PF_6]^-$ anions; ^e in **1a-Me** one of the two $[PF_6]^-$ anions and the nine methyl substituents of three PMe₃ ligands are crystallographically disordered, whereas in **1-Me** both the cluster dication and two $[PF_6]^-$ anions are ordered.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

Table S2. Interatomic Angles (°) about Tl Atoms in $[Tl_2Pd_{14}(\mu_2-CO)_2(\mu_3-CO)_7(PMe_3)_{11}][PF_6]_2$ ·Me₂CO [(**1a-Me**)·**Me₂CO**)] and the non-Solvated $[Au_2Pd_{14}(CO)_9(PMe_3)_{11}][PF_6]_2$ (**1-Me**)^aRelabeled as $[Tl_2Pd_{14}(CO)_9(PMe_3)_{11}][PF_6]_2$.

Angle	N ^b	Mear	n [Range] in (1a-Me)·Me ₂ CO	Mean [Range] in 1-Me ^a
Pd(3)-Tl-Pd(4)	2	61.72(2)	[61.722(14)-61.724(13)]	61.38(7)
Pd(3)-Tl-Pd(5)	2	61.05(2)	[60.844(13)-61.250(13)]	61.61(7)
Pd(3)-Tl-Pd(6)	2	106.82(2)	[106.651(12)-106.997(13)]	106.34(7)
Pd(3)-Tl-Pd(7)	2	106.12(2)	[106.061(13)-106.169(13)]	106.47(7)
Pd(3)-Tl-Pd(8)	2	158.76(2)	[158.122(15)-159.392(15)]	158.73(8)
Pd(3)-Tl-Pd(10)	2	58.25(2)	[58.138(12)-58.359(12)]	58.05(5)
Pd(4)-Tl-Pd(5)	2	107.99(2)	[107.771(14)-108.215(15)]	108.11(8)
Pd(4)-Tl-Pd(6)	2	57.30(2)	[57.082(11)-57.517(11)]	56.91(6)
Pd(4)-Tl-Pd(7)	2	104.33(2)	[104.154(12)-104.505(12)]	103.93(7)
Pd(4)-Tl-Pd(8)	2	109.41(2)	[109.366(14)-109.456(14)]	108.74(7)
Pd(4)-Tl-Pd(10)	2	57.21(1)	[57.147(10)-57.275(10)]	57.15(6)
Pd(5)-Tl-Pd(6)	2	104.68(2)	[104.651(12)-104.700(12)]	104.69(7)
Pd(5)-Tl-Pd(7)	2	57.18(2)	[57.037(11)-57.314(10)]	57.43(6)
Pd(5)-Tl-Pd(8)	2	108.29(2)	[107.839(13)-108.733(13)]	108.69(7)
Pd(5)-Tl-Pd(10)	2	57.17(1)	[56.998(10)-57.334(10)]	57.14(6)
Pd(6)-Tl-Pd(7)	2	58.58(1)	[58.583(10)-58.585(10)]	58.35(3)
Pd(6)-Tl-Pd(8)	2	56.01(2)	[55.910(10)-56.112(11)]	55.85(4)
Pd(6)-Tl-Pd(10)	2	56.70(1)	[56.688(10)-56.712(10)]	56.75(3)
Pd(7)-Tl-Pd(8)	2	55.50(1)	[54.828(10)-56.181(10)]	55.64(5)
Pd(7)-Tl-Pd(10)	2	56.27(1)	[56.247(10)-56.295(10)]	56.31(3)
Pd(8)-Tl-Pd(10)	2	100.53(2)	[100.024(12)-101.044(12)]	100.68(6)

^a Data are taken from the crystal structure deposited in CCDC, refcode YUXFEC (R. C. B. Copley, C. M. Hill and D. M. P. Mingos, *J. Cluster Sci.*, 1995, **6**, 71); ^b denotes the total number of individual angles under *pseudo*-C_s symmetry in (**1a-Me**)·**Me**₂**CO** and crystallographic-C_s symmetry in unsolvated **1-Me** relabeled as unsolvated (**1a-Me**).

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

Table S3. Comparative Means (Å) and Individual Ranges (Å) for Connectivities and Angles (°) under *Pseudo*- C_{3v} Symmetry between the TlPd₉(CO)₉P₆ Fragment of [TlPd₉(μ_2 -CO)₆(μ_3 -CO)₃(PPh₃)₆][PF₆]•1.65THF•0.66CH₂Cl₂ (**2a-Ph**) and the Corresponding Fragment of Crystallographically Isomorphous [TlPd₉(μ_2 -CO)₆(μ_3 -CO)₃(PPh₃)₆][PF₆]•3THF Formulated Originally as [AuPd₉(μ_2 -CO)₆(μ_3 -CO)₃(PPh₃)₆][PF₆]•3THF (**2-Ph**)^a.

Connectivity, Angle	N ^b	Mean [Range] in 2a-Ph		Mean [Range] in 2-Ph ^a	
Tl - Pd(A)	3	2.83	2.831(1)	2.84	2.837(1)
$T1 \cdots Pd(C)$	3	3.15	3.147(1)	3.16	3.157(1)
Pd(A) - Pd(C)	6	2.71	2.684(1)-2.742(1)	2.72	2.687(1)-2.747(1)
Pd(A) - Pd(A)	3	3.10	3.097(1)	3.09	3.092(1)
Pd(A) - Pd(B)	6	2.75	2.746(1)-2.747(1)	2.75	2.748(1)-2.752(1)
Pd(B) - Pd(B)	3	2.82	2.822(1)	2.83	2.826(1)
Pd(B) - P(B)	3	2.33	2.334(2)	2.34	2.337(2)
Pd(C) - P(C)	3	2.34	2.336(2)	2.34	2.340(2)
$Pd(A) - (\mu_2-CO)$	6	2.13	2.090(8)-2.172(8)	2.11	2.064(7)-2.154(8)
$Pd(C) - (\mu_2-CO)$	6	1.99	1.991(7)-1.996(9)	2.02	2.018(8)-2.021(9)
$Pd(A) - (\mu_3-CO)$	3	2.45	2.450(7)	2.45	2.454(7)
$Pd(B) - (\mu_3-CO)$	6	2.10	2.091(7)-2.118(7)	2.10	2.079(8)-2.114(8)
μ_2 -C – O	6	1.15	1.151(10)-1.152(9)	1.15	1.139(10)-1.153(10)
μ_3 -C – O	3	1.15	1.150(9)	1.16	1.155(10)
Tl-Pd(A)-Pd(C)	6	69.2	68.75(2)-69.55(2)	69.2	68.83(2)-69.65(2)
Pd(A)-Tl-Pd(A)	3	66.3	66.31(2)	66.0	66.03(2)

^a Data are taken from the crystal structure deposited in CCDC, refcode SOMGAD (C. Willocq, S. Hermans, M. Devillers, and B. Tinant, *Z. Kristallogr.*, 2008, **223**, 495); ^b denotes the total number of individual connectivities under *pseudo*-C_{3v} symmetry.

IR spectrum of [Tl₂Pd₁₄(CO)₉(PMe₃)₁₁](PF₆)₂·Me₂CO in paratone.

IR spectrum of [Tl₂Pd₁₄(CO)₉(PMe₃)₁₁](PF₆)₂·Me₂CO in CH₂Cl₂.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

 $^{31}P{^{1}H}$ NMR (121.386 MHz) spectrum of $[Tl_2Pd_{14}(CO)_9(PMe_3)_{11}](PF_6)_2 \cdot Me_2CO$ in CD_2Cl_2 .

Electronic Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2013

IR spectrum of [TlPd₉(CO)₉(PPh₃)₆][PF₆] in paratone.

³¹P{¹H} NMR (121.386 MHz) spectrum of [TlPd₉(CO)₉(PPh₃)₆][PF₆] in CDCl₃.