Electronic Supplementary Information (ESI)

Synthesis of CdS nanoparticles in switchable surfactant reverse micelles

Jianzhong Jiang^{a,b*}, Yane He^a, Leping Wan^a, Zhe Cui^a, Zhenggang Cui^a, and Philip Jessop^{b*}

^a Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, China

^b Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada. Tel: 613 533 3212; Fax: 613 533 6669, E-mail:jessop@chem.queensu.ca

Experimental Procedures

1.1. Materials

N,N-Dimethylacetamide dimethyl acetal (90%) and dodecylamine (97%) were purchased from TCI. Hexadecyltrimethylammonium bromide (CTAB 99%), hexamethyldisilathiane (97%), hexanol (99%), heptane (99%), 1-dodecanethiol (99%), and cadmium nitrate (99%) were purchased from Sigma-Aldrich. N'-dodecyl-N,N-dimethylacetamidinium bicarbonate was synthesized as literature¹.

1.2. Synthesis of CdS nanoparticles in switchable surfactant reverse micelles

N'-dodecyl-N,N-dimethylacetamidinium bicarbonate (0.1g) and *n*-hexanol (0.3g) were dissolved in heptane (2.7g). Hexamethyldisilathiane (10 μ L) was added into the solution and the mixture was stirred. A cadmium nitrate aqueous solutions (10 μ L, 0.1M) was then added into the solution with sonication for 10 min. The reverse micelle was then magnetic stirred at room temperature for 12 h. After the CdS nanoparticles we're synthesized, 1-2 drops of 1-dodecanethiol were added into the micelle. The micelle was broken by bubbling of N₂ gas through the mixture at 65°C for 30 min. The yellow product was separated from the solution by centrifugation (12000 r/min). CdS NPs were washed by acetone and ethanol 2-3 times.

1.3. Characterizations

The fourier transform infrared spectrometer (FTIR) spectra were recorded by a ABB MB-104 instrument with a resolution of 4 cm⁻¹ over the frequency range of 400-4000 cm⁻¹. The CdS nanoparticles were redispersed in ethanol, which then dried on a KBr slice for FTIR measurements. Transmission electron microscopy (TEM) images and selected-area electron diffraction (SAED) patterns were obtained on a TEM (JEOL JEM-2100) at an acceleration voltage of 200 kV. The CdS nanoparticles were air-dried on a carbon-coated copper grid for TEM measurements. UV-vis absorption spectra of the CdS nanoparticles dispersions were recorded on a Shimadzu UV-3101PC UV-Vis spectrometer. The solid products were subjected to a powder X-ray diffraction (XRD) analyzer (Bruker D8 Advance) with Cu K α radiation at a scanning rate of 8°/min in the 2 θ range from 5 to 80°.

References

1 Y. Liu, P. G. Jessop, M. Cunningham, C. A. Eckert, C. L. Liotta, Science. 2006, 313, 958.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

2 B. A. Harruff, C. E. Bunker. *Langmuir* 2003, 19, 893.