SUPPORTING INFORMATION

Directed Nucleation of Monomeric and Dimeric Uranium(VI) Complexes with a Room Temperature Carboxyl-Functionalized Phosphonium Ionic Liquid

Xiao-Yan Chen, George S. Goff,* Mauricio Quiroz-Guzman, Daniel P. Fagnant Jr., Joan F. Brennecke, Brian L. Scott, and Wolfgang Runde*

Table of Contents

Experim	ental Section)n					3		
Table S1	. Selected c	rystal data and	structure	refine	ments for [UO ₂ (C	$(H_2O)_2$	$[Tf_2N]_2$ (1)		
and [UO ₂ (CTMP) ₃] ₂ [NTf ₂] ₄									
(2)									
Table S2	2. Selected b	oond lengths (Å) and ang	les (de	eg) of [UO ₂ (CTM]	$P_{3}(H_{2}O)_{2}][Tf]$	$_{2}N]_{2}$ (1) and		
[UO ₂ (CT	$[MP)_3]_2[NT]$	$[f_2]_4$							
(2)						7			
Figure	S1. Photo	ographs of s	single cr	ystals	[UO ₂ (CTMP) ₃ ($H_2O)_2][Tf_2N]_2$	(1) and		
[UO ₂ (CT	$[MP)_3]_2[NT]$	$[f_2]_4$							
(2)						8			
Figure	S2 .	¹ H-NMR	of		[HCTMP][Tf ₂ N]	in	DMSO- d_6		
			8						
Figure	S3 .	¹³ C-NMR	of	2	[HCTMP][Tf ₂ N	I] in	DMSO-		
<i>d</i> ₆			9						
Figure	S4 .	³¹ P-NMR	of		[HCTMP][Tf ₂ N	[] in	DMSO-		
<i>d</i> ₆			9						
Figure S	5. Thermog	ravimetric anal	ysis of						
[HCTMP	9][Tf ₂ N]				10				
Figure S	6. Different	ial scanning cal	orimetry o	of					
[HCTMP	P][Tf ₂ N]	•••••		.10					
Figure	S7 .	Viscosity	data	of	[HCTMP][T	f ₂ N] at	different		
temperati	ures		.11						
Figure	S8 .	Density	data	of	[HCTMP][Tf	[2N] at	different		
temperati	ures		11						
Figure	S 9	·. ¹ H	-NMR		of [H0	CTMP][Tf ₂ N]	in		
CD ₃ CN				1	2				
Figure	S1	0 . ¹³ 0	C-NMR		of [He	CTMP][Tf ₂ N]	in		
CD ₃ CN.				12					

Figure	S11 .	¹ H-NMR	of	$[UO_2($	$CTMP)_3(H_2O)_2][Tf_2N]_2$	(1)	in	CD_3CN
		13						
Figure	S12 .	¹³ C-NM	R	of	$[UO_2(CTMP)_3(H_2O)_2]$	$[Tf_2N]_2$	(1) in
CD ₃ CN			.13					
Figure	S13 .	¹ H-N	MR	of	[UO ₂ (CTMP) ₃] ₂ [N	$VTf_2]_4$	(2)) in
CD ₃ CN				.14				
Figure	S14 .	¹³ C-NMR	ot	f [U	$O_2(CTMP)_3]_2[NTf_2]_4$	(2)	in	CD ₃ CN
		14	ł					
Referenc	es							15

Experimental Section

Materials. Trimethylphosphine and bromoacetic acid were purchased from Aldrich. Anhydrous acetonitrile was used as received from VWR. Anhydrous deuterated dimethyl sulfoxide (DMSO-*d*₆) was obtained from Cambridge Isotope Laboratories. Anhydrous deuterated acetonitrile (CD₃CN) was purchased from Acros. LiTf₂N was purchased from 3M. All other chemicals were purchased from Fisher Scientific, Inc.. The deionized water has a specific resistance $\geq 18.0 \text{ M}\Omega \cdot \text{cm}$. UO₂CO₃ was prepared in a manner similar to that reported for PuO₂CO₃.¹ Crystals of UO₂(NO₃)₂·6H₂O were dissolved into water and the pH was adjusted to 7 with NH₄OH. CO₂ was sparged through the solution and solution was periodically exchanged for fresh deionized water. The reaction was monitored by changes in the O=U=O Raman frequency until no additional changes were observed with the final value of 885 cm⁻¹.² The solid was triply rinsed with deionized water, re-suspended in distilled deionized water, sparged with CO₂ for another day and stored under CO₂ atmosphere. Aliquats were removed for each experiment. [Hbet][Tf₂N] was prepared according to literature method.³ [HCTMP][Tf₂N] was prepared by a modified method.⁴⁻⁶

Synthesis of [HCTMP]Br. Inside the glove box, bromoacetic acid (45.8257 g, 329.8 mmol) dissolved in anhydrous CH₃CN (80 mL) was transferred into an addition funnel with leveling arm. The addition funnel was fitted into a 100 mL Schlenk flask in which trimethyl phosphine (34 mL, 329 mmol) was dissolved in CH₃CN (30 mL). The assembled equipment was brought outside to an ice bath and charged with a positive dry nitrogen flow. Bromoacetic acid was added dropwise into trimethyl phosphine over one hour under vigorous stirring. The temperature was then slowly increased to RT. After stirring overnight, CH₃CN was eveporated to get a white solid, which was dispersed in isopropanol and filtered through a fine frit, repeated 3 times in total. The white solid was air dried in frit under a nitrogen atmosphere, and then in vacuum line at 45°C. ¹H NMR (DMSO-*d*₆): $\delta = 1.95$ (d, 15.3 Hz, 9H, P(CH₃)₃), 3.75 (d, 14.9 Hz, 2H, CH₂COOH), 13.56 (s, 1H, COOH). ³¹P NMR (DMSO-*d*₆): $\delta = 26.86$ (s, P(CH₃)₃).

Synthesis of [HCTMP][Tf₂N]. [HCTMP]Br (23.8369 g, 110.85 mmol), LiTf₂N (30.1887 g, 133.02 mmol) and millipore water (200 mL) were added into a 500 mL round bottom flask. After stirring overnight at RT, the reaction mixture was washed five times with millipore water (50 mL each time). The resulting pale pink ionic liquid was dried in vacuum line at 60°C for 2 weeks. ¹H NMR (DMSO- d_6): $\delta = 1.89$ (d, 1.89, 15.11 Hz, 9H, P(CH₃)₃), 3.59 (d, 14.65 Hz, 2H, CH₂COOH), 13.31 (s, 1H, COOH). ¹³C NMR (DMSO- d_6): $\delta = 7.9$ (d, 55.13 Hz, P(CH₃)₃), 30.5 (d, 56.8 Hz, CH₂COOH), 119.7 (q, 321.7 Hz, SO₂CF₃), 167.3 (d, 4.9 Hz, CH₂COOH). ³¹P NMR (DMSO- d_6): $\delta = 26.72$ (s, P(CH₃)₃).

Synthesis of $[UO_2(CTMP)_3(H_2O)_2][Tf_2N]_2$ (1). $[HCTMP][Tf_2N]$ (0.5 mmol, 207.6 mg) was dissolved in 5 mL of deionized water in a 20 mL borosilicate scintillation vial at around 90°C. UO₂CO₃ (0.17 mmol, 56 mg) was added into the above solution and stirred for 30 minutes to get a clear solution. Water was added to bring the final volume to 5 mL and the final pH was 3. The solution was filtered through a 0.45 µm polyamide syringe filter and transferred to a 20 mL borosilicate scintillation vial, allowing for slow evaporation at RT. After one week, yellow needle-like crystals suitable for single crystal analysis were obtained (51 mg, yield: 23.6%). Mp. 172°C. Crystal data for 1: $C_{19}H_{37}F_{12}N_2O_{18}P_3S_4U$, $M_r = 1268.69$, triclinic space group *P*-1, *a* = 8.3319(7) Å, *b* = 21.0439(19) Å, *c* = 24.947(2) Å, *a* = 100.891(1)°, *β* = 90.379(1)°, *γ* = 96.996(1)°, *V* = 4261.4(6) Å³, *Z* = 4, $\rho_{calcd} = 1.977$ g cm⁻³, *T* = 120(1) K, F(000) = 2472, $\mu(Mo_{k\alpha})$

= 4.237 mm⁻¹, yellow needle-like crystal, 47416 reflections measured, 18927 unique ($R_{int} = 0.0384$), $R_1 = 0.0326$ ($I > 2\sigma(I)$), $wR_2 = 0.0651$ (all data), GOF = 1.024.

Synthesis of $[UO_2(CTMP)_3]_2[NTf_2]_4$ (2). $[HCTMP][Tf_2N]$ (1.0 mmol, 415.2 mg) was dissolved in 5 mL of deionized water in a 20 mL borosilicate scintillation vial at around 90°C. UO_2CO_3 (0.33 mmol, 109 mg) was added into the above solution and stirred 45 min to get a clear solution. Water was added to bring the final volume to 5 mL and the final pH was 2.2. The solution was filtered through a 0.45 µm polyamide syringe filter and transferred to a 20 mL borosilicate scintillation vial, allowing for slow evaporation at RT. After one week, yellow block crystals suitable for single crystal analysis were obtained (127 mg, yield: 31.2%). Mp. 153°C. Crystal data for 2: $C_{38}H_{66}F_{24}N_4O_{32}P_6S_8U_2$, $M_r = 2465.31$, triclinic space group *P*-1, *a* = 14.9671(7) Å, *b* = 17.1019(8) Å, *c* = 17.3543(8) Å, *a* = 87.020(1)°, *β* = 77.318(1)°, *γ* = 74.0413(4)°, *V* = 4166.5(3)Å^3, Z = 2, $\rho_{calcd} = 1.965$ g cm⁻³, T = 120(1) K, F(000) = 2392, $\mu(Mo_{k\alpha}) = 4.327$ mm⁻¹, yellow block crystal, 47312 reflections measured, 19106 unique ($R_{int} = 0.0287$), $R_1 = 0.0237$ ($I > 2\sigma(I)$), $wR_2 = 0.0535$ (all data), GOF = 1.060.

General Methods. Raman spectra were collected with Nicolet Magna-IR 560 ESD with a Raman accessory. NMR spectra in DMSO- d_6 were measured on a Varian VXR-300 for ³¹P or a Varian INOVA-500 spectrometer for ¹H and ¹³C. NMR spectra in CD₃CN were obtained at room temperature using a Bruker ARX-300 spectrometer equipped with 5- and 10-mm multinuclear probes (¹H and ¹³C). The electrochemical experiments were performed using a computer-controlled Solartron 273A Potentiostat/Galvanostat (EG&G, Princeton Applied Research). All the electrodes (diameter 1 mm) were purchased from Cypress Systems. Water content was measured by Karl-Fisher titration using an 852 Titrando (Metrohm USA, Inc.). The water contents of [Hbet][Tf₂N] and [HCTMP][Tf₂N] for electrochemical measurement were 0.095 wt. % and 0.46 wt.%, respectively. The melting point determined with a Buchi M-560 Melting Point apparatus. Thermal gravimetric analyses were recorded in a Mettler Toledo TGA 851e where products were heated at a rate of 10°C/min from 25 to 500°C (dynamic decomposition) under a N₂ atmosphere. The glass transition temperature was determined with a Mettler Toledo DSC822e differential scanning calorimeter at a ramp rate of 10°C/min from -120 to 110°C under N₂. Density measurements were taken with a Anton Paar DMA 4500 oscillating u-tube densitometer. Uncertainty for density is estimated to be $\pm 5 \times 10^{-5}$ g cm⁻¹. Temperature is controlled with two internal Pt 100 thermometers with an uncertainty of \pm 0.01 K. Viscosity

measurements were done using a Reologica Viscoanalyser parallel plate viscometer with an uncertainty (Less than or within) \pm 5% and temperature precision of 0.1 K.

Crystallography. Single crystals were mounted using a nylon cryoloop and Paratone-N oil. The data were collected on a Bruker D8 diffractometer, with an APEX II charge-coupleddevice (CCD) detector, and a Bruker Kryoflex low temperature device at 120 K using a liquid nitrogen vapor stream. The instrument was equipped with a graphite monochromatized Mo Ka X-ray source (λ =0.71073 Å). A hemisphere of data was collected using ω scans, with 10-s frame exposures and 0.5° frame widths. Data collection and initial indexing and cell refinement were handled using APEX II software.^[4] Frame integration, including Lorentz-polarization corrections, and final cell parameter calculations were carried out using SAINT+ software.^[5] The data were corrected for absorption using redundant reflections and the SADABS program.^[6] Decay of reflection intensity was not observed as monitored via analysis of redundant frames. The structure was solved using direct methods and difference Fourier techniques. The tertiary and secondary hydrogen atom positions were idealized, but were not refined on water molecules. The final refinement included anisotropic temperature factors on all non-hydrogen atoms. Structure solution, refinement, and creation of publication materials were performed using SHELXTL.^[7] CCDC reference numbers CCDC 904329 (1) and CCDC 904330 (2) contain the supplementary crystallographic data. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retreving.html or from the Cambridge Crystallographic Data Center, 12 union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) +44-1223-336-033; E-mail: deposit@ccdc.cam.ac.uk.

	1	2
formula	$C_{19}H_{37}F_{12}N_2O_{18}P_3S_4U$	$C_{38}H_{66}F_{24}N_4O_{32}P_6S_8U_2$
fw	1268.69	2465.31
crystal system	triclinic	triclinic
space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	8.3319(7)	14.9671(7)
<i>b</i> (Å)	21.0439(19)	17.1019(8)
<i>c</i> (Å)	24.947(2)	17.3543(8)

Table S1. Selected crystal data and structure refinements for $[UO_2(CTMP)_3(H_2O)_2][Tf_2N]_2$ (1) and $[UO_2(CTMP)_3]_2[NTf_2]_4$ (2).

α (deg)	100.891(1)	87.020(1)	
β (deg)	90.379(1)	77.318(1)	
γ (deg)	96.996(1)	74.0413(4)	
$V(\text{\AA}^3)$	4261.4(6)	4166.5(3)	
Ζ	4	2	
ρ (g/cm ³)	1.977	1.965	
$\mu (\text{mm}^{-1})$	4.237	4.327	
F(000)	2472	2392	
crystal size (mm)	$0.28 \times 0.10 \times 0.06$	$0.20\times0.18\times0.08$	
θ (deg)	1.99 to 27.45	1.84 to 28.44	
Index ranges	$-10 \le h \le 10$	-19 ≤ <i>h</i> ≤ 19	
	$-27 \le k \le 27$	$-22 \le k \le 21$	
	$-32 \le l \le 32$	$-23 \le l \le 22$	
Min. and max. transmission	0.3833 and 0.7581	0.4782 and 0.7234	
GOF on F^2	1.024	1.060	
$R_1, R_2 [I > 2\sigma (I)]$	0.0326, 0.0603	0.0237, 0.0509	
R_1, R_2 (all data)	0.0501, 0.0651	0.0321, 0.0535	
Largest diff. peak and hole $(e \cdot A^{-3})$	1.122 and -1.115	0.968 and -0.547	

Table S2. Selected bond lengths (Å) and angles (deg) of $[UO_2(CTMP)_3(H_2O)_2][Tf_2N]_2$ (1) and $[UO_2(CTMP)_3]_2[NTf_2]_4$ (2).

1							
Bond lengths (Bond lengths (Å)						
U1-01	1.754(3)	U1-O2	1.769(3)	U1-O4	2.349(3)		
U1-07	2.354(3)	U1-O8	2.395(3)	U1-O10	2.428(3)		
U1-O11	2.443(3)	O8-C11	1.267(4)	O9-C11	1.237(4)		
O14-C16	1.274(4)	O15-C16	1.243(4)	O16-C26	1.276(4)		
O18-C21 1.277(4)		O17-C26	1.235(5)	O19-C21	1.232(5)		
Bond angles (°)							
O1-U1-O2	179.49(13)	01-U1-O4	91.51(11)	O2-U1-O4	88.22(11)		
O1-U1-O7	92.47(11)	O2-U1-O7	88.01(11)	O4-U1-O7	142.08(9)		
O1-U1-O8	91.31(11)	O4-U1-O8	142.02(9)	O7-U1-O8	75.55(9)		

O2-U1-O8	88.64(10)	O1-U1-O10	90.48(11)	O2-U1-O10	89.02(11)			
O4-U1-O10	70.10(9)	O7-U1-O10	147.49(9)	O8-U1-O10	72.01(9)			
2								
D 11 (1 (8.							
Bond lengths (.	A)							
U1-O2	1.7617(19)	U1-O1	1.7681(19)	U1-07	2.3028(19)			
U1-O3	2.3155(17)	U1-08	2.3930(17)	U1-O5	2.4584(17)			
U1-O6	2.4971(18)	U2-O9	1.7664(19)	U2-O10	1.7683(19)			
U2-O13	2.3167(17)	U2-O15	2.3215(18)	U2-O16	2.3987(18)			
U2-O11	2.4663(18)	U2-O12	2.4732(17)	O4-C1	1.216(3)			
O3-C1	1.288(3)	O5-C6	1.263(3)	O6-C6	1.262(3)			
O7-C11	1.234(3)	O8-C11	1.260(3)	O11-C16	1.259(3)			
Bond angles (°)								
02-111-01	179 19(8)	02-111-07	89 33(8)	01-111-07	90 55(9)			
02-111-03	92 07(8)	01-111-03	88 33(8)	02-111-05	89.06(7)			
03-111-05	73 53(6)	07-111-05	127 12(6)	01-U1-05	90.37(8)			
02-111-06	89 52(7)	01-U1-06	89 67(7)	07-111-06	74 55(6)			
02-01-00	07.52(7)	01-01-00	07.07(7)	07-01-00	77.55(0)			
1	1	1	1					

Figure S1. Photographs of single crystals $[UO_2(CTMP)_3(H_2O)_2][Tf_2N]_2$ (1) and $[UO_2(CTMP)_3]_2[NTf_2]_4$ (2).

Figure S2. ¹H-NMR of [HCTMP][Tf₂N] in DMSO- d_6 .

Figure S3. ¹³C-NMR of [HCTMP][Tf₂N] in DMSO-*d*₆.

Figure S4. ³¹P-NMR of [HCTMP][Tf₂N] in DMSO- d_6 .

Figure S5. Thermogravimetric analysis of [HCTMP][Tf₂N].

Figure S6. Differential scanning calorimetry of [HCTMP][Tf₂N].

Figure S7. Viscosity data of [HCTMP][Tf₂N] at different temperatures.

Figure S8. Density data of [HCTMP][Tf₂N] at different temperatures.

Figure S9. ¹H-NMR of [HCTMP][Tf₂N] in CD₃CN.

Figure S10. ¹³C-NMR of [HCTMP][Tf₂N] in CD₃CN.

Figure S11. ¹H-NMR of [UO₂(CTMP)₃(H₂O)₂][Tf₂N]₂ (1) in CD₃CN.

Figure S12. ¹³C-NMR of [UO₂(CTMP)₃(H₂O)₂][Tf₂N]₂ (1) in CD₃CN.

Figure S13. ¹H-NMR of $[UO_2(CTMP)_3]_2[NTf_2]_4$ (2) in CD₃CN.

Figure S14. ¹³C-NMR of [UO₂(CTMP)₃]₂[NTf₂]₄ (**2**) in CD₃CN.

References

- 1. S. D. Reilly, W. Runde and M. P. Neu, *Geochim. Cosmochim. Acta*, 2007, **71**, 2672-2679.
- 2. R. L. Frost and J. Cejka, J. Raman Spectrosc., 2007, **38**, 1488-1493.
- 3. P. Nockemann, B. Thijs, S. Pittois, J. Thoen, C. Glorieux, H. K. Van, M. L. Van, B. Kirchner and K. Binnemans, *J. Phys. Chem. B*, 2006, **110**, 20978-20992.
- 4. K. S. Narayanan and K. D. Berlin, J. Org. Chem., 1980, 45, 2240.
- 5. B. E. Maryanoff, A. B. Reitz and B. A. Duhl-Emswiler, J. Am. Chem. Soc., 1985, **107**, 217-226.
- 6. A. A. Wube, A. Huefner, C. Thomaschitz, M. Blunder, M. Kollroser, R. Bauer and F. Bucar, *Bioorg. Med. Chem.*, 2011, **19**, 567-579.