3-Bromooxindoles as Nucleophiles in Asymmetric Organocatalytic Mannich Reactions with N-Ts-imines

Jianhao Li, Taiping Du, Gang Zhang* and Yungui Peng*

School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China Fax: (+86) 02368253157; E-mail: pengyungui@hotmail.com Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P. R. China

E-mail: zhanggang1968@yahoo.com.cn

Table of Contents

1. General methods	2
2. Synthesis of chiral catalysts	2
3. Asymmetric Mannich reaction of 3-bromooxindole with N-Ts-imine catalyzed by o	ther catalysts
	7
4. Optimization of the reaction conditions	9
5. Determination of the absolute configuration of the major disastereomer	
6. General procedure for synthesis of 3-bromo 3, 3'-disubstituted oxindoles via	a asymmetric
anti-Mannich reaction	11
7. Characterization of the <i>anti</i> -Mannich reaction products	11
8. Synthesis of aziridine via the product of <i>anti</i> -Mannich reaction	17
9. References	
10. NMR spectra and HPLC for catalysts and <i>anti</i> -Mannich reaction products	19

1. General methods

All solvents were purified by standard procedures and distilled prior to use. Reagents obtained from commercial source were used without further purification. Petroleum ether and ethyl acetate for flash column chromatography were distilled before use. All reactions were monitored by TLC with silica gel coated plates. Flash column chromatography was performed on silica gel H (10–40 μ). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 300 spectrometer, respectively. Chemical shifts are reported in ppm from tetramethyl silane (TMS) with the solvent resonance as the internal standard. Proton signal multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) or a combination of them. *J*-values are in Hz. HRMS (Bio TOF Q) spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. Optical rotations were measured on a Perkin Elmer 341 Polarimeter at $\lambda = 589$ nm. Analytical high performance liquid chromatography (HPLC) was carried out on WATERS 510 instrument (2487 Dual λ Absorbance Detector and 515 HPLC Pump) using chiral column, Chiralpak columns purchased from Daicel Chemical Industries, LTD.

2. Synthesis of chiral catalysts

The preparation of catalyst precursor's 2-R⁴-QD-NH₂^[1-4]

Trifluoroacetic acid (1.12 mL, 15 mmol, 3.0 equiv.) was added to the solution of **QD** (1.62 g, 5 mmol, 1.0 equiv.) in dichloromethane (25 mL), phenylboronic acid (1.22 g, 10 mmol, 2.0 equiv.) and silver (I) nitrate (170 mg, 0.1 mmol, 0.2 equiv.) in water (10 mL) were added subsequently, then potassium persulfate (2.72 g, 10 mmol, 2.0 equiv.) was added. The resulted solution was stirred vigorously at room temperature for 4 h, additional phenylboronic (0.61 mg, 0.125 mmol, 1.0 equiv.) was added, and the reaction was further stirred for 9 h, diluted with dichloromethane (40 mL) and washed with 2 M NaOH (3×30 mL). The layers were separated, and the aqueous layer was extracted with 70% CHCl₃, 30% isopropyl alcohol (6×30 mL), and the combined organic layers were concentrated under reduced pressure. Purification was performed by column chromatography to provide **5aa** in 50% yield.

5aa (2.5 mmol) and triphenylphosphane (0.786 g, 3 mmol, 1.2 equiv.) were dissolved in dry THF (10 mL) and the solution was cooled to 0 °C. Diisopropyl azidocarboxylate (0.62 mL, 3 mmol, 1.2 equiv.)

was added in one portion. A solution of diphenyl phosphoryl azide (0.66 mL, 3 mmol 1.2 equiv.) in dry THF (2 mL) was then added drop wise at 0 °C. The mixture was allowed to warm to room temperature. After having been stirred for 12 h, the solution was heated at 50 °C for 2h. Triphenyl phosphane (0.85 g, 3.25 mmol) was then added and heating was maintained until the gas evolution had ceased (2 h). The solution was cooled to room temperature, water (0.3 mL) was added, and the solution was stirred for 3 h. Solvents were removed in vacuo and the residue was dissolved in CH_2Cl_2 (12 mL) and diluted hydrochloric acid (10%, 12 mL). The aqueous phase was washed with CH_2Cl_2 (3×12 mL). The aqueous phase was then alkalized with an excess of concd. aqueous ammonia and washed with CH_2Cl_2 (3×12 mL). The CH₂Cl₂ solutions were dried with Na₂SO₄ and concentrated. The concentrated organic phase was purified by column chromatography on silica gel with elution with $CHCl_3/MeOH/aq$. NH₄OH (50/1/0.1) to afford a yellow solid **5ab**. **5ab** was then directly used to the next step.

In a 50 mL Schlenk tube flushed with argon was charged with LiCl (1.26 g, 30 mmol), magnetic stir bar and sealed with septum. Mg (1.08 g, 45 mmol) and 0.5 mL of THF were added under argon. 2 mL of a solution of aryl bromide in THF (30 mmol was dissolved in 15 mL) was added to the slurry and stirred vigorously. The formation of Grignard reagents was initiated in one minute (which was realized by the generation of heat), and then remaining aryl bromide was added slowly by maintaining the same temperature. After the addition of aryl bromide, the reaction mixture was stirred for 15 - 30 min at rt.

Aryl magnesium bromide (30 mmol, 0.25M in THF) was diluted with toluene and evaporated under the vacuum. After removing solvent, 10 mL of toluene was added. **QD-NH**₂ (0.969 g, 3 mmol) was added to this solution and the mixture was heat to 80 °C for 15 h. The reaction mixture was quenched with aq. NH₄Cl and water; the organic phase was dried over anhydrous MgSO₄ and evaporated. The crude product was purified by column chromatography (CHCl₃/MeOH/aq. NH₄OH = 50/1/0.1) to provide **5eb** as a yellow solid.

General procedure for the preparation of catalysts

Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2013

3,5-Bis(trifluoromethyl)phenyl isothiocyanate (1 mmol) in anhydrous DCM (2 mL) was added to a solution of catalyst precursors **QD-NH**₂ of **4c** (or **5**) (1 mmol) in anhydrous DCM (5 mL) at 0 °C. TLC analysis indicated completion of the reaction. The reaction mixture was concentrated in vacuo. The residue was purified directly by column chromatography on silica gel (CH₃Cl/MeOH/cc. aq. NH₄OH = 200/1/1 as eluant) and then neutral Al₂O₃ (EA/PE = 3/1 as eluant) affording thiourea as a soild.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((*R*)-(6-isopropoxyquinolin-4-yl)((*1S*, 2S, 4S, 5R)-5-vinylquinuclidin-2-yl)methyl)thiourea (4c)

Catalyst precursor QD-NH₂ of 4c was prepared according to literature known procedure.^[1, 5] The pure product 4c was obtained as a white solid in 94% yield. mp:

131–133 °C, $[\alpha]_D^{25}$ = +173 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.69 (d, *J* = 4.2 Hz, 1H), 8.04 (d, *J* = 9.2 Hz, 1H), 7.88 (s, 2H), 7.67 (s, 1H), 7.53 (s, 1H), 7.40 (dd, *J* = 9.2, 2.1 Hz, 1H), 7.37 (m, 1H), 5.83–5.78 (m, 2H), 5.17–5.11 (m, 2H), 4.76–4.72 (m, 1H), 3.04–2.93 (m, 4H), 2.38 (dd, *J* = 14.9, 7.8 Hz, 1H), 1.83–1.61 (m, 4H), 1.43 (d, *J* = 5.9 Hz, 6H), 1.22 (d, *J* = 5.5 Hz, 1H), 1.04 (dd, *J* = 17.6, 8.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 181.0, 156.4, 147.1, 146.7, 144.4, 140.2, 139.7, 132.4 (q, *J* = 33.8 Hz), 131.5, 128.1, 123.5, 123.0 (q, *J* = 273.0 Hz), 122.6, 120.1, 118.6, 115.2, 104.0, 70.4, 61.4, 48.6, 47.2, 38.8, 27.2, 20.1, 25.1, 22.1, 21.8. HRMS [EI-(+H)] calcd for C₃₁H₃₃F₆N₄OS 623.2274, found 623.2266.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((*R*)-(6-methoxy-2-phenylquinolin-4-yl)((*1S*, 2S, 4S, 5R)-5-vinylquinuclidin-2-yl)methyl)thiourea (5a).

The pure product **5a** was obtained as a yellow solid in 88% yield. mp: 124–126 °C, $[\alpha]_D^{25} = +98 \text{ (c} = 1, \text{CHCl}_3\text{)}; {}^{1}\text{H} \text{ NMR} (300 \text{ MHz}, \text{CDCl}_3) \delta 8.15-8.02 \text{ (m, 3H)}, 7.83 \text{ (s, 3H)}, 7.63 \text{ (s, 1H)}, 7.42 \text{ (t, } J = 8.6 \text{ Hz}, 4\text{H}\text{)}, 7.26 \text{ (s, 1H)}, 5.87 \text{ (s, 2H)}, 5.22-5.15 \text{ (m, 2H)},$

3.96 (s, 3H), 3.36–2.93 (m, 5H), 2.38 (d, J = 6.1 Hz, 1H), 1.65 (d, J = 32.6 Hz, 3H), 1.31–1.05 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 180.9, 158.1, 154.8, 145.0, 143.9, 142.1, 140.3, 139.2, 135.9, 132.3 (q, J = 33.0 Hz), 132.2, 129.2, 128.8, 127.2, 126.5, 123.4, 123.0 (q, J = 271.0 Hz), 122.4, 118.6, 115.6, 101.7, 60.4, 55.7, 48.6, 46.9, 38.6, 27.1, 25.8, 25.0, 21.0. HRMS [EI-(+H)] calcd for C₃₅H₃₃F₆N₄OS 671.2274, found 671.2297.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((*R*)-(6-methoxy-2-(*p*-tolyl)quinolin-4-yl)((*1 S*, *2S*, *4S*, *5R*)-5-vinylquinuclidin-2-yl)methyl)thiourea (5b).

The pure product **5b** was obtained as a yellow solid in 85% yield. mp: 139–140 °C, $[\alpha]_D^{25} = +82$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, J =

9.2 Hz, 1H), 7.94 (d, J = 7.6 Hz, 2H), 7.85 (s, 2H), 7.77 (s, 1H), 7.62 (s, 1H), 7.39 (dd, J = 9.2, 1.9 Hz, 1H), 7.24 (d, J = 6.4 Hz, 3H), 5.86 (s, 2H), 5.22–5.15 (m, 2H), 3.96 (s, 3H), 3.29 (d, J = 60.3 Hz, 2H), 2.97 (dd, J = 24.5, 10.4 Hz, 3H), 2.39 (s, 3H), 1.70–1.58 (m, 3H), 1.26 (s, 2H), 1.08 (t, J = 11.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 180.8, 158.0, 154.8, 145.0, 143.8, 142.0, 140.2, 139.3, 139.1, 136.4, 132.2 (q, J = 33.5 Hz), 132.1, 129.5, 127.1, 126.5, 123.4, 123.0 (q, J = 272.8 Hz), 122.3, 118.5, 115.7, 101.7, 61.7, 55.7, 48.6, 46.9, 38.5, 27.1, 25.7, 25.0, 24.3, 21.3. HRMS [EI-(+H)] calcd for C₃₆H₃₅F₆N₄OS 685.2430, found 685.2455.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((*R*)-(2-(4-ethylphenyl)-6-methoxyquinolin-4-yl)((*1S*, *2S*, *4S*, *5R*)-5-vinylquinuclidin-2-yl)methyl)thiourea (5c).

The pure product **5c** was obtained as a yellow solid in 79% yield. mp: 112–114 °C, $[\alpha]_D^{25} = +68 \text{ (c} = 1, \text{ CHCl}_3); {}^{1}\text{H} \text{ NMR} (300 \text{ MHz}, \text{ CDCl}_3) \delta 8.16-8.03 \text{ (m, 1H)}, 7.96 \text{ (t, } J = 10.2 \text{ Hz}, 2\text{H}), 7.80 \text{ (d, } J = 19.3 \text{ Hz}, 3\text{H}), 7.62 \text{ (s, 2H)}, 7.39 \text{ (d, } J = 9.1 \text{ Hz}, 1\text{H}),$

7.26 (d, J = 8.7 Hz, 3H), 5.86 (s, 2H), 5.21–5.14 (m, 2H), 3.96 (s, 3H), 3.27 (dd, J = 48.9, 7.5 Hz, 2H), 2.96 (dd, J = 25.0, 11.1 Hz, 3H), 2.69 (dd, J = 14.9, 7.4 Hz, 2H), 2.36 (d, J = 6.6 Hz, 1H), 1.68 (s, 1H), 1.57 (s, 1H), 1.33–1.23 (m, 5H), 0.97 (dd, J = 61.8, 7.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 181.6, 158.0, 154.8, 145.7, 145.0, 144.1, 142.0, 140.3, 139.3, 136.7, 132.3 (q, J = 3.8 Hz), 132.2, 128.4, 127.3, 127.2, 123.4, 123.0 (q, J = 273.0 Hz), 122.3, 118.5, 115.6, 101.7, 61.8, 55.7, 48.6, 45.0, 38.6, 29.7, 28.7, 27.2, 25.8, 25.0, 15.5. HRMS [EI-(+H)] calcd for C₃₇H₃₇F₆N₄OS 699.2587, found 699.2583.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((*R*)-(6-methoxy-2-(4-methoxyphenyl)quino lin-4-yl)((*1S*, *2S*, *4S*, *5R*)-5-vinylquinuclidin-2-yl)methyl)thiourea (5d).

The pure product **5d** was obtained as a yellow solid in 86% yield. mp: 133–135 °C, $[\alpha]_D^{25} = +73$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, J = 9.2 Hz, 1H), 7.96 (d, J = 7.0 Hz, 2H), 7.82 (s, 2H), 7.68 (d, J = 36.6 Hz, 3H), 7.37 (d,

J = 9.0 Hz, 1H), 6.93 (d, J = 7.7 Hz, 2H), 5.87 (s, 2H), 5.22–5.15 (m, 2H), 3.95 (s, 3H), 3.83 (s, 3H), 3.28 (d, J = 46.3 Hz, 2H), 2.95 (dd, J = 25.0, 11.5 Hz, 3H), 2.36 (d, J = 6.2 Hz, 1H), 1.63 (d, J = 35.7 Hz, 3H), 1.25 (dd, J = 8.5, 5.7 Hz, 1H), 1.06 (t, J = 9.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 180.8, 160.7, 157.8, 154.4, 146.9, 144.9, 144.1, 142.2, 140.4, 139.3, 132.2 (q, J = 34.2 Hz), 131.7, 128.5, 126.5, 123.5, 123.0 (q, J = 272.9 Hz), 122.4, 118.5, 115.6, 114.2, 101.8, 61.6, 55.6, 55.4, 48.6, 46.9, 38.5, 27.1, 25.8, 25.0, 24.5. HRMS [EI-(+H)] calcd for C₃₆H₃₅F₆N₄O₂S 701.2379, found 701.2382.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((*R*)-(2-(4-fluorophenyl)-6-methoxyquinolin -4-yl)((*1S*, *2S*, *4S*, *5R*)-5-vinylquinuclidin-2-yl)methyl)thiourea (5e).

The pure product **5e** was obtained as a yellow solid in 83% yield. mp: 106–107 °C, $[\alpha]_D^{25} = +98$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.08–8.02 (m, 3H), 7.80–7.46 (m, 5H), 7.40 (d, J = 8.6 Hz, 1H), 7.13 (d, J = 7.1 Hz, 2H), 5.87 (s, 2H),

5.17 (s, 2H), 3.95 (s, 3H), 3.38–2.78 (m, 4H), 2.38 (d, J = 5.6 Hz, 1H), 1.66 (d, J = 27.2 Hz, 3H), 1.26 (s, 2H), 1.08 (d, J = 27.2 Hz, 3H), 1.26 (s, 2H), 1.08 (d, J = 27.2 Hz, 3H), 1.26 (s, 2H), 1.08 (d, J = 27.2 Hz, 3H), 1.26 (s, 2H), 1.08 (d, J = 27.2 Hz, 3H), 1.26 (s, 2H), 1.08 (d, J = 27.2 Hz, 3H), 1.26 (s, 2H), 1.08 (d, J = 27.2 Hz, 3H), 1.26 (s, 2H), 1.08 (d, J = 27.2 Hz, 3H), 1.26 (s, 2H), 1.08 (s

J = 8.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 181.2, 163.6 (d, J = 248.9 Hz), 158.1, 153.6, 144.9, 143.8, 142.1, 140.0, 139.4, 135.3, 132.4 (q, J = 34.3 Hz), 129.0, 128.9, 126.6, 123.4, 122.9 (q, J = 272.9 Hz), 122.5, 118.7, 115.8, 115.6, 101.6, 61.7, 55.6, 48.5, 46.9, 38.6, 29.7, 27.2, 25.9, 25.0. HRMS [EI-(+H)] calcd for C₃₅H₃₂F₇N₄OS 689.2180, found 689.2183.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((*R*)-(2-(4-chlorophenyl)-6-methoxyquinolin -4-yl)((*1S*, *2S*, *4S*, *5R*)-5-vinylquinuclidin-2-yl)methyl)thiourea (5f)

The pure product **5f** was obtained as a yellow solid in 71% yield. mp: 112–113 °C, $[\alpha]_D^{25} = +68 \text{ (c} = 1, \text{CHCl}_3); ^1\text{H NMR (300 MHz, CDCl}_3) \delta 8.14-8.05 \text{ (m, 1H)}, 7.90$ (d, J = 46.4 Hz, 3H), 7.65 (t, J = 24.9 Hz, 3H), 7.33 (dt, J = 27.9, 13.7 Hz, 4H),

5.84–5.86 (m, 2H), 5.23–5.16 (m, 2H), 3.94 (d, J = 15.7 Hz, 3H), 3.14–2.96 (m, 4H), 2.33 (dd, J = 40.7, 5.0 Hz, 1H), 1.26 (s, 3H), 1.06 (s, 2H), 0.87 (d, J = 7.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 181.4, 158.2, 157.8, 153.2, 144.9, 143.8, 142.1, 140.0, 139.2, 137.5, 135.3, 132.4 (q, J = 33.9 Hz), 128.9, 128.4, 126.6, 123.3, 123.0 (q, J = 550.0, 277.1 Hz), 118.6, 116.9, 115.6, 101.6, 61.8, 55.6, 48.6, 46.9, 38.5, 29.7, 27.1, 25.8, 25.0. HRMS [EI-(+H)] calcd for C₃₅H₃₂ClF₆N₄OS 705.1884, found 705.1897.

1-((*R*)-(2-benzyl-6-methoxyquinolin-4-yl)((*1S*, *2S*, *4S*, *5R*)-5-vinylquinuclidin-2-yl) methyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (5g).^[4]

The pure product **5g** was obtained as a yellow solid in 90% yield. mp: 111–113 °C, $\lceil \alpha \rceil_D^{25} = +100 \text{ (c} = 1, \text{ CHCl}_3\text{); }^{1}\text{H NMR} (300 \text{ MHz}, \text{CDCl}_3) \delta 8.02 \text{ (d}, J = 9.1 \text{ Hz}, 1\text{H}),$

7.76 (s, 2H), 7.62 (s, 2H), 7.39 (d, J = 9.1 Hz, 1H), 7.10 (s, 6H), 5.80 (s, 2H), 5.11 (d, J = 5.0 Hz, 2H), 4.20 (s, 2H), 3.95 (s, 3H), 2.96 (dd, J = 36.9, 26.9 Hz, 5H), 2.32 (d, J = 6.8 Hz, 1H), 1.60 (d, J = 24.7 Hz, 3H), 1.26–1.16 (m, 1H), 0.95–0.88 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 181.0, 158.3, 157.9, 151.7, 144.5, 144.0, 141.9, 140.1, 139.2, 132.2 (q, J = 32.7 Hz), 131.4, 129.0, 128.9, 128.6, 126.4, 123.4, 123.0 (q, J = 270.2 Hz), 122.1, 118.4, 115.5, 102.0, 61.5, 55.7, 48.4, 46.9, 44.8, 38.6, 27.2, 25.8, 24.9, 24.3. HRMS [EI-(+H)] calcd for C₃₆H₃₅F₆N₄OS 685.2430, found 685.2439.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((*R*)-(2-butyl-6-methoxyquinolin-4-yl)((1*S*, 2*S*, *S*, 5*R*)-5-vinylquinuclidin-2-yl)methyl)thiourea (5h).^[4]

The pure product **5h** was obtained as a yellow solid in 91% yield. mp: 104–105 °C, $[\alpha]_D^{25} = +104$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.09–8.02 (m, 3H), 7.74 (s, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.34 (d, J = 17.6 Hz, 2H), 5.96 (s, 2H), 5.33–5.27 (m, 2H), 4.06 (s, 3H), 3.17–2.96 (m, 7H), 2.52 (d, J = 5.9 Hz, 1H), 1.82 (d, J = 8.8 Hz, 5H), 1.53–1.37 (m, 3H), 1.21–1.14 (m, 1H), 1.03 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 180.6, 160.2, 157.7, 144.6, 140.5, 138.8, 132.2 (q, J = 33.7 Hz), 131.3, 129.1, 126.1, 126.0, 123.2, 123.0 (q, J = 272.9 Hz), 121.9, 118.4, 115.8, 101.9, 61.7, 55.6, 48.5, 46.8, 38.6, 38.4, 32.1, 27.1, 25.6, 24.9, 24.1, 22.7, 13.9. HRMS [EI-(+H)] calcd for C₃₃H₃₇F₆N₄OS 651.2587, found 651.2591.

1-(3,5-bis(trifluoromethyl)phenyl)-3-((*R*)-(2-(tert-butyl)-6-methoxyquinolin-4-yl)

((1S, 2S, 4S, 5R)-5-vinylquinuclidin-2-yl)methyl)thiourea (5i).^[4]

The pure product **5i** was obtained as a yellow solid in 88% yield. mp: 115–116 °C, $[\alpha]_D^{25} = +84$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.02–7.90 (m, 3H), 7.63 (s, 1H), 7.39 (d, J = 21.2 Hz, 3H), 5.78 (s, 2H), 5.10 (d, J = 8.8 Hz, 2H), 3.92 (s, 3H), 3.42–2.97 (m, 5H), 2.36 (s, 1H), 1.68 (s, 3H), 1.43 (s, 9H), 1.26 (t, J = 7.0 Hz, 1H), 1.06 (d, J = 6.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 181.8, 171.2, 166.5, 157.8, 157.2, 144.2, 140.8, 140.0, 135.2, 132.1 (q, J = 49.7 Hz), 125.7, 123.4, 123.1 (q, J = 272.7 Hz), 121.5, 118.3, 115.5, 101.6, 61.8, 60.4, 55.7, 48.5, 38.6, 37.9, 30.2, 27.2, 25.8, 21.0, 14.2. HRMS [EI-(+H)] calcd for C₃₃H₃₇F₆N₄OS 651.2587, found 651.2584.

3. Asymmetric Mannich reaction of 3-bromooxindole with N-Ts-imine catalyzed by other catalysts.^[a]

Electronic Supplementary Information

5	$ \begin{array}{c} $	55	89: 11	56
6	S N N CF ₃	49	88: 12	51
7	N N H H CF ₃	42	91: 9	-44
8	N H H CF ₃ CF ₃	59	78: 22	-48
9	S N N N N N N N N N N N N N N N N N N N	25	84: 16	-58
10	S Ph M H H OH	23	92: 8	-10
11		66	74: 26	-27
12	Ph- N- H H Ph- N- Ph- N- Ph- N- Ph- Ph- N- N- N- Ph- N- N- N- N- N- N- N- N- N- N- N- N- N-	70	70: 30	0/66
13	N S CF ₃ N H H CF ₃ CF ₃	55	99:1	-80
14	N S CF_3 CF_3 CF_3 CF_3	25	99:1	-83

[a] Reaction conditions: **6a** (0.1 mmol), **7a** (0.12 mmol), **cat.** (0.01mmol), c = 0.20 M, -40 °C, 72 h. [b] Yield of the isolated product after purification by column chromatography on silica gel. [c] Determined by HPLC analysis on a chiral stationary phase.

4. Optimization of the reaction conditions ^[a]

		Br /		NTS		TSHN Br		
			0 +	solvent	∫1%)			
		Ň			, . [N H		
		6a	7a			8a		
Entry	Solvent	x (mol%)	T/°C	c/mol/L	t (h)	Yield (%) ^[b]	Dr ^[c]	Ee (%) ^[c]
1	DCM	10	-40	0.20	72	76	96:4	94
2	CHCl ₃	10	-40	0.20	72	68	96:4	92
3	C_2H_5Br	10	-40	0.20	72	70	98:2	89
4	$(CHCl_2)_2$	10	-40	0.20	72	45	94:6	90
5	toluene	10	-40	0.20	72	55	96:4	70
6	EA	10	-40	0.20	72	83	95:5	65
7	hexane	10	-40	0.20	72	Trace	-	-
8	Et ₂ O	10	-40	0.20	72	Trace	-	-
9	THF	10	-40	0.20	72	NR	-	-
10	CH ₃ CN	10	-40	0.20	72	NR	-	-
11	DMF	10	-40	0.20	72	NR	-	-
11	ⁱ PrOH	10	-40	0.20	72	NR	-	-
12	DCM	5	-40	0.20	72	51	96:4	94
13	DCM	15	-40	0.20	72	76	96:4	94
14	DCM	10	-40	0.20	24	53	96:4	94
15	DCM	10	-40	0.20	48	66	96:4	94
16	DCM	10	-40	0.20	96	76	96:4	94
17	DCM	10	-40	0.20	120	74	96:4	94
18	DCM	10	-30	0.20	72	68	94:6	94
19	DCM	10	-50	0.20	72	66	97:3	94
20	DCM	10	-40	0.15	72	69	95:5	92
21	DCM	10	-40	0.25	72	70	96:4	94
22 ^[d]	DCM	10	-40	0.20	72	62	96:4	94
23 ^[e]	DCM	10	-40	0.20	72	87	96:4	94
24 ^[f]	DCM	10	-40	0.20	72	91	96:4	94
25 ^[g]	DCM	10	-40	0.20	72	89	96:4	94

[a] Reaction conditions: **6a** (0.1 mmol), **7a** (0.12 mmol). [b] Yield of the isolated product after purification by column chromatography on silica gel. [c] Determined by HPLC analysis on a chiral stationary phase. [d] 4 Å molecular sieves (50 mg) were added. [e] **7a** (0.14 mmol). [f] **7a** (0.15 mmol). [g] **7a** (0.16 mmol).

5. Determination of the absolute configuration of the major diastereomer:

Proposed transition state model.

To account for the stereochemical outcome, a transition state model was proposed. The two reactive partners were activated concurrently by the catalyst and the nucleophilic attack from both the Re-faces of the enolate anion and the *N*-Ts-imine afford the observed products. Other product configurations were deduced based on analogy.

6. General procedure for synthesis of 3-bromo 3, 3'-disubstituted oxindoles via asymmetric *anti*-Mannich reaction

3-bromooxindole **6a** (0.1 mmol, 1 equiv.) was dissolved in anhydrous DCM (0.5 mL), subsequently catalyst **5e** (0.01 mmol, 0.1 equiv.) and *N*-Ts-imine **7a** (0.15 mmol, 1.5 equiv.) were added at -40 °C. After being stirred 72 h, the reaction mixture was purified directly by flash chromatography on silica gel. (AcOEt/PE = 1:3) to give the corresponding product.

7. Characterization of the anti-Mannich reaction products

N-((S)-((R)-3-bromo-2-oxoindolin-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide (8a)

The title compound was isolated as yellow solid in 91% yield, mp: 109–111 °C, $[\alpha]_D^{25} =$ +122 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.18 (s, 1H), 7.75 (d, *J* = 7.4 Hz, 1H),

7.49 (d, J = 8.2 Hz, 2H), 7.24–7.17 (m, 2H), 7.02 (dd, J = 13.3, 7.7 Hz, 3H), 6.87 (t, J = 7.6 Hz, 2H), 6.76–6.68 (m, 4H), 4.88 (d, J = 7.6 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 143.4, 139.6, 136.2, 133.6, 130.8, 129.3, 128.7, 128.3, 127.7, 127.4, 127.2, 127.0, 123.8, 110.5, 63.8, 58.7, 21.4. HRMS [EI-(+Na)] calcd for C₂₂H₁₉BrN₂NaO₃S 493.0192, found 493.0203. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (70/30 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{maior} = 32.9$ min, $t_{minor} = 38.5$ min).

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(2-fluorophenyl)methyl)-4-methylbenzenesulfon amide (8b)

The title compound was isolated as yellow solid in 94% yield. mp: 92–94 °C, $[\alpha]_D^{25} = +76$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.70 (s, 1H), 7.48 (q, J = 7.9 Hz, 4H), 7.30–7.28 (m, 1H), 7.16–7.08 (m, 3H), 6.95 (dd, J = 14.6, 7.9 Hz, 3H), 6.80 (d, J = 7.8 Hz,

1H), 6.72–6.66 (m, 1H), 5.38 (d, J = 9.0 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.0, 159.9 (d, J = 247.9 Hz), 143.5, 139.6, 135.8, 130.8, 130.2, 130.1, 129.3, 128.4, 127.1, 126.1, 124.0, 123.9, 123.8, 114.8 (d, J = 22.8 Hz), 110.8, 57.3, 55.4, 21.4. HRMS [EI-(+Na)] calcd for C₂₂H₁₈BrFN₂NaO₃S 511.0098, found 511.0105. The *ee* and *dr* were determined by a chiral phase Chiralpak AD-H column (76/24 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 220$ nm, $t_{major} = 35.8$ min, $t_{minor} = 28.1$ min).

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(3-fluorophenyl)methyl)-4-methylbenzenesulfon amide (8c)

The title compound was isolated as yellow solid in 99% yield, mp: 160–162 °C, $[\alpha]_D^{25} =$

+92 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.36 (s, 1H), 7.68 (d, J = 7.3 Hz, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 7.1 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.04 (d, J = 8.2 Hz, 2H), 6.91–6.86 (m, 1H), 6.76 (dd, J = 16.6, 7.7 Hz, 3H), 6.63 (d, J = 7.8 Hz, 1H), 6.50 (d, J = 9.4 Hz, 1H), 4.87 (d, J = 7.5 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 161.7 (d, J = 246.8 Hz), 143.8, 139.5, 136.3, 136.2, 136.0, 131.0, 129.4, 127.4, 127.1, 126.8, 124.4, 123.9, 116.0 (d, J = 23.1 Hz), 115.4 (d, J = 20.8 Hz), 110.7, 63.2, 58.1, 21.4. HRMS [EI-(+Na)] calcd for C₂₂H₁₈BrFN₂NaO₃S 511.0098, found 511.0111. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (60/40 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{maior} = 15.6$ min, $t_{minor} = 29.7$ min).

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(4-fluorophenyl)methyl)-4-methylbenzenesul fonamide (8d)

The title compound was isolated as yellow solid in 96% yield, mp: 169–171 °C, $[\alpha]_D^{25} =$ +109 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.36 (s, 1H), 7.76 (d, *J* = 7.0 Hz,

1H), 7.47 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 7.6 Hz, 1H), 7.19 (t, J = 7.3 Hz, 1H), 7.01 (d, J = 8.1 Hz, 2H), 6.80 (d, J = 7.6 Hz, 1H), 6.73–6.68 (m, 3H), 6.54 (t, J = 8.6 Hz, 2H), 4.85 (d, J = 7.6 Hz, 1H), 2.28 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 162.4 (d, J = 248.5 Hz), 143.7, 139.6, 136.2, 131.0, 130.6, 130.5, 129.4, 127.4, 127.0, 126.95, 123.9, 114.7 (d, J = 21.6 Hz), 110.7, 63.1, 58.5 (d, J = 1.2 Hz), 21.4. HRMS [EI-(+Na)] calcd for C₂₂H₁₈BrFN₂NaO₃S 511.0098, found 511.0108. The *ee* and *dr* were determined by a chiral phase Chiralpak AD-H column (76/24 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 220$ nm, $t_{major} = 21.0$ min, $t_{minor} = 26.4$ min).

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(2-chlorophenyl)methyl)-4-methylbenzenesulfon amide (8e)

The title compound was isolated as yellow solid in 84% yield, mp: 174–1176 °C, $[\alpha]_D^{25} =$ +104 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.09 (s, 1H), 8.06 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 8.8 Hz, 1H), 7.51 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.7

Hz, 1H), 7.23–7.22 (m, 1H), 7.15 (t, J = 5.4 Hz, 3H), 6.98 (d, J = 8.2 Hz, 2H), 6.88 (d, J = 7.6 Hz, 1H), 5.77 (d, J = 8.9 Hz, 1H), 2.25 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.7, 143.4, 139.6, 135.6, 135.1, 134.4, 130.7, 130.4, 129.4, 129.4, 129.2, 128.7, 127.2, 126.8, 125.7, 123.8, 111.0, 57.5, 56.9, 21.4. HRMS [EI-(+Na)] calcd for C₂₂H₁8BrClN₂NaO₃S 526.9802, found 526.9809. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (70/30 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{major} = 56.1$ min, $t_{minor} = 43.5$ min).

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(3-chlorophenyl)methyl)-4-methylbenzenesulfo namide (8f)

The title compound was isolated as yellow solid in 99% yield, mp: 192–193 °C, $[\alpha]_D^{25}$ = +116 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.39 (s, 1H), 7.67 (d, *J* = 7.5 Hz, 1H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.02 (t, *J* = 7.7

Hz, 3H), 6.87 (t, J = 7.8 Hz, 1H), 6.77–6.66 (m, 4H), 4.82 (d, J = 7.4 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (75 MHz, CDCl₃)

δ 174.2, 143.9, 139.5, 135.9, 135.6, 133.5, 131.1, 129.8, 129.4, 129.1, 128.5, 127.3, 127.0, 126.9, 126.6, 123.9, 110.8, 63.2, 58.0, 21.5. HRMS [EI-(+Na)] calcd for C₂₂H₁₈BrClN₂NaO₃S 526.9802, found 526.9806. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (60/40 hexane/*i*PrOH, flow rate 0.5 mL/min, λ = 254 nm, $t_{major} = 15.5$ min, $t_{minor} = 28.1$ min).

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(4-chlorophenyl)methyl)-4-methylbenzenes ulfonamide (8g)

The title compound was isolated as yellow solid in 94% yield, mp: 117–119 °C, $[\alpha]_D^{25}$ = +145 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.34 (s, 1H), 7.76 (d, *J* = 7.4 Hz,

1H), 7.48 (d, J = 8.2 Hz, 2H), 7.29 (dd, J = 7.8, 0.8 Hz, 1H), 7.20 (t, J = 7.2 Hz, 1H), 7.03 (d, J = 8.1 Hz, 2H), 6.84 (t, J = 9.2 Hz, 3H), 6.71 (t, J = 8.8 Hz, 3H), 4.85 (d, J = 7.6 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 143.9, 139.5, 136.0, 134.4, 132.1, 131.0, 130.1, 129.4, 127.9, 127.4, 127.0, 126.9, 126.4, 124.0, 110.8, 63.2, 58.3, 21.5. HRMS [EI-(+Na)] calcd for C₂₂H₁₈BrClN₂NaO₃S 526.9802, found 526.9811. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (60/40 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{major} = 18.3$ min, $t_{minor} = 30.1$ min).

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(o-tolyl)methyl)-4-methylbenzenesulfonamide (8h)

The title compound was isolated as yellow solid in 89% yield, mp: 166–168 °C, $[\alpha]_D^{25} =$ +100 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.41 (s, 1H), 7.43 (d, *J* = 8.2 Hz, 2H),

7.29 (d, J = 8.2 Hz, 2H), 7.10 (t, J = 7.6 Hz, 1H), 6.99 (t, J = 6.5 Hz, 3H), 6.86 (dd, J = 12.4, 7.7 Hz, 2H), 6.78 (dd, J = 6.9, 4.3 Hz, 2H), 6.64 (d, J = 7.1 Hz, 1H), 5.22 (d, J = 7.2 Hz, 1H), 2.28 (s, 3H), 2.05 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.5, 143.2, 139.7, 137.2, 136.7, 133.1, 130.8, 130.0, 129.1, 128.4, 127.5, 127.1, 126.8, 126.4, 125.7, 123.7, 110.7, 58.7, 57.6, 21.5, 19.9. HRMS [EI-(+Na)] calcd for C₂₃H₂₁BrN₂NaO₃S 507.0348, found 507.0348. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (60/40 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{major} = 22.7$ min, $t_{minor} = 26.0$ min).

N-((S)-((R)-3-bromo-2-oxoindolin-3-yl)(m-tolyl)methyl)-4-methylbenzenesulfonamide (8i)

The title compound was isolated as yellow solid in 99% yield, mp: 187–188 °C, $[\alpha]_D^{25} =$ +104 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.15 (s, 1H), 7.74–7.70 (m, 1H), 7.47

(d, J = 8.2 Hz, 2H), 7.24–7.16 (m, 2H), 6.99 (d, J = 8.1 Hz, 2H), 6.78 (dt, J = 15.2, 7.5 Hz, 2H), 6.69 (d, J = 7.4 Hz, 1H), 6.54 (dd, J = 18.4, 7.4 Hz, 2H), 6.44 (s, 1H), 4.82 (d, J = 7.6 Hz, 1H), 2.28 (s, 3H), 1.94 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 143.3, 139.6, 137.2, 136.4, 133.4, 130.8, 130.0, 129.7, 129.1, 129.0, 127.7, 127.4, 127.0, 125.4, 123.7, 110.5, 63.8, 58.6, 21.4, 21.0. HRMS [EI-(+Na)] calcd for C₂₃H₂₁BrN₂NaO₃S 507.0348, found 507.0342. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (60/40 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$

nm, $t_{\text{major}} = 20.4 \text{ min}$, $t_{\text{minor}} = 40.4 \text{ min}$).

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(p-tolyl)methyl)-4-methylbenzenesulfonamid e (8j)

The title compound was isolated as yellow solid in 87% yield, mp: 106–107 °C, $[\alpha]_D^{25} =$ +92 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.00 (s, 1H), 7.68 (d, *J* = 7.4 Hz, 1H),

7.49 (d, J = 8.2 Hz, 2H), 7.28–7.24 (m, 1H), 7.17 (t, J = 7.3 Hz, 1H), 7.02 (d, J = 8.1 Hz, 2H), 6.72–6.63 (m, 5H), 6.50 (d, J = 7.1 Hz, 1H), 4.82 (d, J = 7.1 Hz, 1H), 2.30 (s, 3H), 2.15 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.0, 143.4, 139.6, 138.2, 136.2, 130.8, 130.5, 129.2, 128.7, 128.6, 128.4, 127.5, 127.0, 123.7, 110.5, 63.5, 58.6, 21.4, 21.1. HRMS [EI-(+Na)] calcd for C₂₃H₂₁BrN₂NaO₃S 507.0348, found 507.0349. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (60/40 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{major} = 25.4$ min, $t_{minor} = 40.8$ min).

MeO TsHN Br O N Sk

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(2-methoxyphenyl)methyl)-4-methylbenzenesulf onamide (8k)

The title compound was isolated as yellow solid in 90% yield, mp: 162–164 °C, $[\alpha]_D^{25} = +68$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.99 (s, 1H), 7.49 (d, J = 8.2 Hz, 3H), 7.21 (t, J = 7.6 Hz, 1H), 7.12–7.02 (m, 3H), 6.96 (d, J = 8.1 Hz, 2H), 6.79–6.62 (m, 3H), 6.41 (d, J =

7.9 Hz, 1H), 5.26 (s, 1H), 3.28 (s, 3H), 2.24 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.4, 156.5, 143.0, 139.4, 136.8, 131.5, 130.1, 129.6, 129.0, 128.9, 127.2, 123.7, 122.9, 120.4, 111.5, 110.4, 110.1, 58.8, 54.8, 21.4. HRMS [EI-(+Na)] calcd for C₂₃H₂₁BrN₂NaO₄S 523.0298, found 523.0292. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (60/40 hexane/*i*PrOH, flow rate 0.5 mL/min, λ = 254 nm, t_{major} = 49.9 min, t_{minor} = 37.4 min).

N-((*S*)-((*R*)-3-bron o-2-oxoindolin-3-yl)(3-methoxyphenyl)methyl)-4-methylbenzene sulfonamide (8l)

The title compound was isolated as yellow solid in 99% yield, mp: 106–107 °C, $[\alpha]_D^{25} =$ +87 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.19 (s, 1H), 8.02–7.99 (m, 1H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.31–7.28 (m, 2H), 6.97 (d, *J* = 8.2 Hz, 2H), 6.87 (d, *J* = 8.4 Hz,

1H), 6.71 (dd, J = 13.0, 5.5 Hz, 2H), 6.52 (dd, J = 8.0, 1.8 Hz, 1H), 6.25 (d, J = 7.6 Hz, 1H), 6.11 (s, 1H), 4.87 (d, J = 8.3 Hz, 1H), 3.33 (s, 3H), 2.26 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 158.6, 143.5, 139.7, 136.2, 134.7, 130.8, 129.2, 128.6, 127.37, 127.35, 127.2, 124.0, 121.2, 115.4, 112.0, 110.5, 63.9, 58.6, 54.8, 21.4. HRMS [EI-(+Na)] calcd for C₂₃H₂₁BrN₂NaO₄S 523.0298, found 523.0315. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (60/40 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{major} = 19.9$ min, $t_{minor} = 49.5$ min).

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(4-methoxyphenyl)methyl)-4-methylbenz enesulfonamide (8m)

The title compound was isolated as yellow solid in 88% yield, mp: 107–109 °C, $[\alpha]_D^{25} = +86$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.80 (s, 1H), 7.62 (d, J = 7.4 Hz, 1H), 7.48 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 12.0 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 8.1 Hz, 2H), 6.68 (t, J = 10.3 Hz, 3H), 6.38 (dd, J = 20.0, 7.6 Hz, 3H), 4.77 (d, J = 6.5 Hz, 1H), 3.63 (s, 3H), 2.29 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.8, 159.5, 143.4, 139.5, 136.2, 130.8, 130.1, 129.3, 127.5, 127.3, 127.0, 125.4, 123.7, 113.1, 110.5, 63.2, 58.6, 55.1, 21.5. HRMS [EI-(+Na)] calcd for C₂₃H₂₁BrN₂NaO₄S 523.0298, found 523.0307. The *ee* and *dr* were determined by a chiral phase Chiralpak AD-H column (76/24 hexane/*i*PrOH, flow rate 0.5 mL/min, λ = 220 nm, t_{major} = 25.1 min, t_{minor} = 28.5 min).

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(furan-2-yl)methyl)-4-methylbenzenesulfonamide (80)

The title compound was solated as yellow solid in 99% yield, mp: 79–82 °C, $[\alpha]_D^{25} = +51$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.68 (s, 1H), 7.61–7.49 (m, 3H), 7.24–7.20 (m,

1H), 7.14–7.11 (m, 3H), 6.97 (d, J = 8.4 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.52 (d, J = 9.0 Hz, 1H), 6.03 (s, 2H), 5.09 (d, J = 9.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.5, 147.7, 143.5, 142.2, 139.6, 136.4, 130.8, 129.4, 127.9, 127.2, 126.1, 123.7, 110.8, 110.5, 110.2, 57.4, 56.9, 21.5. HRMS [EI-(+Na)] calcd for C₂₀H₁₇BrN₂NaO₄S 482.9985, found 482.9970. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (60/40 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{major} = 21.7$ min, $t_{minor} = 27.7$ min).

N-((*S*)-((*R*)-3-bromo-2-oxoindolin-3-yl)(naphthalen-1-yl)methyl)-4-methylbenzenesulfo namide (8p)

The title compound was isolated as yellow solid in 81% yield, mp: 130–132 °C, $[\alpha]_D^{25} = +99$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, J = 8.4 Hz, 2H), 7.79 (s, 1H), 7.52 (dd, J = 19.2, 8.0 Hz, 2H), 7.38 (dd, J = 6.7, 5.3 Hz, 2H), 7.31 (dd, J = 9.3, 5.7 Hz, 3H), 7.18

(d, J = 8.2 Hz, 2H), 6.96–6.86 (m, 3H), 6.63 (dd, J = 5.6, 2.7 Hz, 1H), 6.49 (d, J = 8.1 Hz, 2H), 5.90 (d, J = 9.0 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 142.7, 139.8, 135.6, 133.0, 131.3, 131.1, 130.9, 129.0, 128.5, 128.0, 127.7, 127.2, 127.0, 126.0, 125.5, 125.5, 124.6, 124.1, 123.7, 110.4, 58.5, 57.0, 21.1. HRMS [EI-(+Na)] calcd for C₂₇H₂₁BrN₂NaO₃S 544.9566, found 544.9575. The *ee* and *dr* were determined by a chiral phase Chiralpak AD-H column (76/24 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 220$ nm, $t_{major} = 30.5$ min, $t_{minor} = 21.4$ min).

N-((S,E)-1-((R)-3-bromo-2-oxoindolin-3-yl)-3-phenylallyl)-4-methylbenzenesulfona mide (8q)

The title compound was isolated as yellow solid in 89% yield, mp: 120–121 °C, $[\alpha]_D^{25}$ = +85 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.01 (s, 1H), 7.73 (d, *J* = 8.2 Hz,

2H), 7.54 (d, J = 7.5 Hz, 1H), 7.27 (dd, J = 12.9, 4.7 Hz, 4H), 7.17 (d, J = 8.4 Hz, 3H), 7.11 (dd, J = 6.9, 3.7 Hz, 2H), 7.03 (d, J = 7.5 Hz, 1H), 6.86 (d, J = 7.7 Hz, 1H), 6.37 (dd, J = 15.8, 9.3 Hz, 1H), 5.91 (d, J = 15.8 Hz, 1H), 4.50-4.45 (m, 1H), 2.26 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 175.7, 143.8, 139.9, 136.5, 135.8, 135.4, 130.6, 129.7, 128.5, 128.4, 128.1, 127.6, 126.8, 126.0, 123.6, 122.3, 110.9, 62.2, 57.0, 21.5. HRMS [EI-(+Na)] calcd for

 $C_{24}H_{21}BrN_2NaO_3S$ 519.0348, found 519.0349. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (60/40 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{major} = 18.1$ min, $t_{minor} = 28.6$ min).

N-((*S*)-((*R*)-3-bromo-1-methyl-2-xoindolin-3-yl)(phenyl)methyl)-4-methylbenzenesulfo namide (8r)

The title compound was isolated as yellow solid in 64%, mp: 61–62 °C, $[\alpha]_D^{25} = +33$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, J = 7.3 Hz, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.32–7.29 (m, 1H), 7.19 (dd, J = 14.2, 7.1 Hz, 1H), 7.00 (dd, J = 9.3, 4.5 Hz, 3H), 6.87 (dd, J = 13.9, 6.2 Hz, 2H), 6.67 (d, J = 7.5 Hz, 2H), 6.57 (d, J = 7.7 Hz, 1H), 6.46 (d, J = 7.1 Hz, 1H), 4.83 (d, J = 7.1 Hz, 1H), 2.81 (s, 3H), 2.28 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 172.1, 143.4, 142.4, 136.2, 133.3, 130.8, 129.3, 128.5, 128.3, 127.5, 127.5, 127.0, 126.8, 123.7, 108.5, 63.9, 58.6, 26.4 (d, J = 2.4 Hz), 21.4. HRMS [EI-(+Na)] calcd for C₂₃H₂₁BrN₂NaO₃S 507.0348, found 507.0339. The *ee* and *dr* were determined by a chiral phase phenomenex Lvx 5µ Cellulose-1 column (90/10 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{maior} = 16.5$ min, $t_{minor} = 25.1$ min).

N-((*S*)-((*R*)-3-bromo-5-fluoro-2-oxoindolin-3-yl)(4-methoxyphenyl)methyl)-4 -methylbenzenesulfonamide (8s)

The title compound was isolated as yellow solid in 89% yield, mp: 158–159 °C, $[\alpha]_D^{25} = +126$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.40 (s, 1H), 7.49

(d, J = 8.2 Hz, 2H), 7.16 (dd, J = 7.6, 1.7 Hz, 1H), 7.07 (d, J = 8.1 Hz, 2H), 6.96 (td, J = 8.8, 2.5 Hz, 1H), 6.78 (d, J = 8.7 Hz, 2H), 6.68 (dd, J = 8.6, 4.2 Hz, 1H), 6.48 (d, J = 8.7 Hz, 2H), 6.42 (d, J = 6.3 Hz, 1H), 4.79 (d, J = 6.4 Hz, 1H), 3.67 (s, 3H), 2.32 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 160.6, 159.7, 157.4, 143.5, 136.4, 135.6 (d, J = 2.3 Hz), 130.2, 129.3, 129.0 (d, J = 8.5 Hz), 127.4, 125.2, 117.4 (d, J = 23.8 Hz), 114.4 (d, J = 25.6 Hz), 113.2, 111.5 (d, J = 7.9 Hz), 62.8, 58.3, 55.1, 21.5. HRMS [EI-(+Na)] calcd for C₂₃H₂₀BrFN₂NaO₄S 541.0203, found 541.0214. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (70/30 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{major} = 34.7$ min, $t_{minor} = 57.3$ min).

N-((*S*)-((*R*)-3-bromo-5-chloro-2-oxoindolin-3-yl)(4-methoxyphenyl)methyl)-4-methylbenzenesulfonamide (8t)

The title compound was isolated as yellow solid in 90%, mp: 170–171 °C, $[\alpha]_D^{25}$ = +229 (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.45 (s, 1H), 7.50 (d, J =

8.2 Hz, 2H), 7.36 (s, 1H), 7.19 (dd, J = 8.4, 2.0 Hz, 1H), 7.09 (d, J = 8.1 Hz, 2H), 6.79 (d, J = 8.6 Hz, 2H), 6.66 (d, J = 8.4 Hz, 1H), 6.49 (d, J = 8.7 Hz, 2H), 6.37 (d, J = 6.5 Hz, 1H), 4.79 (d, J = 6.5 Hz, 1H), 3.67 (s, 3H), 2.33 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 159.7, 143.5, 138.2, 136.4, 130.7, 130.2, 129.3, 129.2, 128.7, 127.4, 126.8, 125.3, 113.3, 111.7, 62.8, 58.0, 55.1, 21.5. HRMS [EI-(+Na)] calcd for C₂₃H₂₀BrClN₂NaO₄S 556.9908, found 556.9923. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (70/30 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{major} = 33.2$ min, $t_{minor} = 54.5$ min).

N-((*S*)-((*R*)-3,5-dibromo-2-oxoindolin-3-yl)(4-methoxyphenyl)methyl)-4-me thylbenzenesulfonamide (8u)

The title compound was isolated as yellow solid in 93%, mp: 179–181 °C, $\lceil \alpha \rceil_D^{25} = +189$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.50 (s, 1H),

7.52–7.49 (m, 3H), 7.33 (dd, J = 8.3, 1.8 Hz, 1H), 7.09 (d, J = 8.1 Hz, 2H), 6.79 (d, J = 8.7 Hz, 2H), 6.61 (d, J = 8.3 Hz, 1H), 6.49 (d, J = 8.7 Hz, 2H), 6.40 (d, J = 6.5 Hz, 1H), 4.80 (d, J = 6.6 Hz, 1H), 3.67 (s, 3H), 2.33 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 159.6, 143.6, 138.7, 136.3, 133.6, 130.2, 129.5, 129.4, 127.4, 125.3, 115.8, 113.2, 112.2, 62.8, 58.0, 55.2, 21.5. HRMS [EI-(+Na)] calcd for C₂₃H₂₀Br₂N₂NaO₄S 600.9403, found 600.9428. The *ee* and *dr* were determined by a chiral phase Chiralpak IC column (70/30 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 254$ nm, $t_{major} = 34.3$ min, $t_{minor} = 56.4$ min).

*N-((S)-((R)-3-bromo-6-chloro-2-oxoindolin-3-yl)(4-methoxyphenyl)methyl)-*4-methylbenzenesulfonamide (8v)

The title compound was isolated as yellow solid in 75%, mp: 104–106 °C, $[\alpha]_D^{25} = +140$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.11 (s, 1H), 7.66

(d, J = 8.1 Hz, 1H), 7.48 (d, J = 8.2 Hz, 2H), 7.17 (dd, J = 8.2, 1.6 Hz, 1H), 7.04 (d, J = 8.2 Hz, 2H), 6.70 (dd, J = 8.7, 5.2 Hz, 3H), 6.61 (d, J = 7.3 Hz, 1H), 6.45 (d, J = 8.7 Hz, 2H), 4.80 (d, J = 7.3 Hz, 1H), 3.66 (s, 3H), 2.31 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.0, 159.5, 143.5, 140.6, 136.6, 130.0, 129.95, 129.3, 128.0, 127.4, 125.8, 125.2, 123.8, 113.2, 111.2, 63.1, 58.0, 55.1, 21.4. HRMS [EI-(+Na)] calcd for C₂₃H₂₀BrClN₂NaO₄S 556.9908, found 556.9920. The *ee* and *dr* were determined by a chiral phase Chiralpak AD-H column (76/24 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 220$ nm, $t_{major} = 30.8$ min, $t_{minor} = 55.7$ min).

8. Synthesis of aziridine via the product of anti-Mannich reaction

The produce of *anti*-Mannich Reaction **8a** (0.2 mmol, 1 equiv.) was dissolved in anhydrous toluene (0.1 mL), subsequently $AgNO_3$ (0.24 mmol, 1.2 equiv.) and TEA (0.24 mmol, 1.2 equiv.) were added at room temperature. TLC analysis indicated completion of the reaction. The reaction mixture was purified directly by flash chromatography on silica gel. (AcOEt/PE = 1 : 5) to give **9** as a yellow soild.

(2S, 3S)-3-phenyl-1-tosylspiro[aziridine-2,3'-indolin]-2'-one (9)

The product was obtained as a yellow solid in 86% yield, mp: 71–74 °C, $[\alpha]_D^{25} = -27$ (c = 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.60 (s, 1H), 7.92 (t, *J* = 7.8 Hz, 3H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.23 (s, 5H), 7.12 (t, *J* = 7.6 Hz, 2H), 6.78 (d, *J* = 7.7 Hz, 1H), 4.85 (s, 1H), 2.45 (s, 3H). ¹³C

NMR (75 MHz, CDCl₃) δ 169.6, 145.0, 142.0, 136.4, 130.5, 129.9, 129.8, 128.5, 128.2, 127.9, 127.8, 125.4, 122.8, 121.1, 110.8, 55.8 (d, J = 2.6 Hz), 53.5, 21.7. HRMS [EI-(+Na)] calcd for C₂₂H₁₈N₂NaO₃S 413.0930, found 413.0922. The *ee* and *dr* were determined by a chiral phase Chiralpak AD-H column (76/24 hexane/*i*PrOH, flow rate 0.5 mL/min, $\lambda = 220$ nm, $t_{major} = 35.2$ min, $t_{minor} = 58.6$ min).

9. References

- [1] I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L. Sobel, and P. S. Baran. J. Am. Chem. Soc. 2010, 132, 13194.
- [2] V. Benedek, V. Szilard, C. Antal and S. Tibor. Org. Lett. 2005, 7, 1967.
- [3] P. Anbarasan, H. Neumann and M. Beller, Chem. Eur. J. 2011, 17, 4217.
- [4] A. Lee, A. Michrowska, S. S. Mosse, and B. List. Angew. Chem. Int. Ed. 2011, 50, 1707.
- [5] A. Berkessel, B. Seelig, S. Schwengberg, J. Hescheler, and A. Sachinidis, ChemBioChem. 2010, 11, 208.

10. NMR spectra and HPLC for catalysts and *anti*-Mannich reaction products.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Information

56205

4.94

8.88

29.704

4

3257474

4

31.468

1910766

2.83

32700

2.19

Electronic Supplementary Material (ESI) for Chemical Communications This journal is O The Royal Society of Chemistry 2013

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	18.278	118079549	87.29	2538276	88.53
2	20.022	8713490	6.44	187297	6.53
3	30.100	8318646	6.15	137091	4.78
4	33.885	165890	0.12	4554	0.16

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	22.721	43628899	95.94	867667	94.97
2	26.001	1848444	4.06	46001	5.03

2	25.064	BB	0.9900	3964.67603	59.27349	9.5888
3	39.335	BB	1.3374	2658.28418	29.89411	6.4292
4	43.686	MM	1.9051	565.06622	4.94342	1.3666

