Asymmetric Synthesis of *trans*-Dihydroarylfurans in a Friedel-Crafts/Substitution Domino Reaction under Squaramide Catalysis

Carlos Jarava-Barrera,^{*a*} Francisco Esteban,^{*a*} Carmen Navarro-Ranninger,^{*b*} Alejandro Parra,^{**b*} and José Alemán^{**b*}

^aDepartment of Inorganic Chemistry (Módulo-7) Universidad Autónoma de Madrid Cantoblanco, 28049-Madrid (Spain)

^bDepartamento de Química Orgánica (Módulo-1), Facultad de Ciencias, Universidad Autónoma de Madrid. Cantoblanco, 28049-Madrid (Spain). E-mail: jose.aleman@uam.es, <u>Alejandro.parra@uam.es</u>

Supporting Information

Contents

Table ESI-1. Completed list of evaluated co-bases	S2
General Methods and Materials	S3
Experimental Procedures and Characterizations	S3
Spectra of compounds 3a-o	S11
HPLC chromatograms of compounds 3a-o	S26

Table ESI-1. Other co-bases that were evaluated on screening.

Entry	Base	Co-base (mol%)	Conversion (%) (ee%)	Reaction time
1	N/A	0	10(50)	24h
2	DIPEA	20	31	24h
3	Et ₃ N	10	30	24h
4	NaOAc	10	26	24h
5	K_2CO_3	10	12	24h
6	Pyridine	10	8	24h
7	NaHCO ₃	10	0	24h
8	DMAP	10	37	4d
9	DBU	10	32	4d
10	Dimethylaniline	10	22	4d
11	Pyridine	10	41	4d
12	Et_3N	100	100 (28)	3d
13	NaOAc	100	81 (50)	3d
14	DMAP	50	67 (45)	3d
15	DBU	50	77 (43)	3d
16	Methylimidazole	10	27	24h
17	DABCO	10	56	24h
18	Diethylamine	10	29	24h
19	TMEDA	10	27	24h
20	DABCO	20	53	18h

General Methods

NMR spectra were acquired on a Bruker 300 spectrometer, running at 300, 75 and 282 MHz for ¹H, ¹³C and ¹⁹F respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.26 ppm for ¹H NMR, CDCl₃, 77.0 ppm). ¹³C-NMR spectra were acquired on a broad band decoupled mode. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation, phosphomolybdic acid or KMnO₄ dip. Purification of reaction products was carried out by flash chromatography (FC) using silica gel Merck-60. Optical rotation was measured on a Perkin-Elmer 241 polarimeter. The enantiomeric excesses (*ee*) of products were determined by chiral stationary phase HPLC (Daicel Chiralcel IC and IB columns) or SFC (Supercritical fluid chromatography) system.

Materials

Commercially available naphtols **1a-g**, phenols, catalysts **4a**, **4e**, and solvents were used without further purification. Bromonitroalkenes,¹ catalysts **4b-c**² and **4d**³ were synthesized according to the literature.

Experimental Procedures and Characterizations

General Procedure for the synthesis of compounds 3. In To an ordinary vial charged with corresponding naphtol 1 (0.18 mmol) was added the catalyst 4e (10 mol%) and the corresponding bromonitroalkene 2 (0.1 mmol) in CHCl₃ (0.2 mL) at 0 °C. Once the reaction was finished (as monitored by ¹H NMR spectroscopy, usually 16-40h), the solvent of the reaction was eliminated under reduce pressure and the crude was directly charged and purified by FC (eluent indicated in each case), affording pure products.

(1*S*,2*S*)-2-Nitro-1-phenyl-1,2-dihydronaphtho[2,1-b]furan (3a)

¹ (a) R. R. Dauzonne *Synthesis*, 1987, 1021; b) D. Dauzonne, H, Josien, P. Demerseman *Tetrahedron* **1990**, *21*, 7359; c) D. Dauzonne, P. Demerseman *Synthesis*, 1990, 67.

² B. Vakulya, V. Szilárd, C. Antal, T. Soós Org. Lett. 2005, 7, 1967

³ J. P. Malerich, K. Hagihara, V. H. Rawal J. Am. Chem. Soc. 2008, 130, 14416.

The product was obtained following the standard procedure, and the crude was charged in FC (25/1 Hexane: AcOEt), affording the pure product as white solid (71% yield). M.p.= 135.5 °C. $[\alpha]^{20}_{D}$ = +67.5 (*c* = 0.2, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.96-7.85 (m, 2H), 7.45 (d, *J* = 8.9, Hz, 1H), 7.40-7-30 (m, 6H), 7.24-7.16 (m, 2H), 6.11

(d, J = 1.8 Hz, 1H), 5.32 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 156.5 (C), 138.3 (C), 131.8 (CH), 131.2 (C), 129.9 (C), 129.7 (CH, 2C), 129.4 (CH), 128.8 (CH), 128.0 (CH), 127.9 (CH, 2C), 124.8 (CH), 123.3 (CH), 118.6 (C), 112.9 (CH), 112.2 (CH), 55.7 (CH). MS (FB+): calcd. for C₁₈H₁₃NO₃: [M]⁺, 291.0895, found 291.0897. Enantiomeric excess was determinated by HPLC using a IC Chiralcell column [hexane/iPrOH (90:10)]; flow rate 1 ml/min; $\tau_{major} = 6.5$ min, $\tau_{minor} = 5.5$ min (ee= 98%).

(1*S*,2*S*)-2-Nitro-1-*p*-tolyl-1,2-dihydronaphtho[2,1-b]furan (3b)

The product was obtained following the standard procedure, and the crude was charged in FC (50/1 Hexane: AcOEt), affording the pure product as yellow oil (85% yield). $[\alpha]^{20}_{D} = +78.2$ (c = 0.9, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.82-7.73 (m, 2H), 7.32 (d, J = 8.9 Hz, 1H), 7.28-7.22 (m, 2H), 7.14 (s, 1H), 7.03 (d, J = 8.1 Hz, 2H), 6.96 (d, J = 8.1 Hz, 2H), 5.97 (d, J = 0.9, 1H), 5.17 (s, 1H), 2.21 (s,

3H). ¹³C NMR (75 MHz, CDCl₃) δ 156.2 (C), 138.3 (C), 135.0 (C), 131.3 (CH), 130.9 (C), 130.0 (CH) (2 C), 129.6 (CH), 129.0 (CH), 127.6 (CH), 127.4 (CH, 2C), 124.5 (CH), 123.0 (CH),118.4 (C), 112.7 (CH), 111.8 (CH), 55.1 (CH), 21.1 (CH₃). MS (ESI⁺): calcd. for C₁₉H₁₅O: [M-NO₂]⁺: 259.1117, found 259.1146. Enantiomeric excess was determinated by HPLC using a IC Chiralcell column [hexane/iPrOH (90:10)]; flow rate 1 ml/min; $\tau_{major} = 6.4$ min, $\tau_{minor} = 5.4$ min (ee= 94%).

(1*S*,2*S*)-1-(4-Methoxyphenyl)-2-nitro-1,2-dihydronaphtho[2,1-b]furan (3c)

The product was obtained following the standard procedure, and the crude was charged in FC (50/1 Hexane: AcOEt), affording the pure product as yellow oil (45% yield). $[\alpha]^{20}_{D} = +58.4$ (c = 0.4, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.94-7.83 (m, 2H), 7.43 (d, J = 8.9 Hz, 1H), 7.39-7.33 (m, 3H), 7.10 (d, J = 8.6, 2H), 6.85 (d, J = 8.7, 1H), 6.07 (d, J = 1.7 Hz, 1H), 5.27 (s, 1H), 3.77 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.6 (C), 156.1 (C), 136.7 (CH), 131.2 (C), 130.3 (C), 129.9 (C), 129.3 (CH), 129.0 (CH, 2C), 127.9 (CH), 124.8 (CH), 123.3 (CH), 118.8 (C), 115.0 (CH, 2C), 113.0 (CH), 112.2 (CH), 55.6 (CH), 55.1 (CH₃). MS (ESI⁺): calcd. for C₁₉H₁₅O₂:[M-NO₂]⁺, 275.1072, found 275.1096. Enantiomeric excess was determinated by HPLC using a IC Chiralcell column [hexane/iPrOH (90:10)]; flow rate 1 ml/min; $\tau_{major} = 10.1$ min, $\tau_{minor} = 7.1$ min (ee= 94%).

(1*S*,2*S*)-1-(2-Fluorophenyl)-1,2-dihydro-2-nitronaphtho[2,1-b]furan (3d)

The product was obtained following the standard procedure, and the crude was charged in FC (15/1 Hexane: AcOEt), affording the pure product as red solid (94% yield). M.p. = 86 °C. $[\alpha]^{20}_{D}$ = +103.2 (*c* = 1.5, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.96-7.82 (m, 2H), 7.48-7,14 (m, 6H), 6.99 (t, *J* = 7.5 Hz , 1H), 6.75 (t, *J* = 7.6 Hz, 1H),

6.16 (s, 1H), 5,56 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 160.2 (d, J_{CF} = 246.5 Hz, C), 156.6 (C), 131.9 (CH), 131.2 (C), 130.6 (d, J_{CF} = 8.1 Hz, C), 129.8 (C), 129.4 (CH), 129.3 (d, J = 3.1 Hz, CH), 128.1 (CH), 125.3 (d, J_{CF} = 3.5 Hz, CH), 125.1 (C), 124.9 (CH), 123.0 (CH), 117.8 (CH), 116.5 (CH), 116.3 (CH), 112.1 (d, J_{CF} = 10.1 Hz, CH), 48.3 (d, J_{CF} = 3.7 Hz, CH). ¹⁹F NMR (282 MHz, CDCl₃) δ -116.8. MS (ESI+): calcd. for C₁₈H₁₂OF: [M-NO₂]⁺, 263.0866, found 263.0859. Enantiomeric excess was determinated by HPLC using a IC Chiralcell column [hexane/iPrOH (90:10)]; flow rate 1 ml/min; τ_{major} = 6.4 min, τ_{minor} = 5.8 min (ee= 88%).

(1*S*,2*S*)-1-(4-Fluorophenyl)-2-nitro-1,2-dihydronaphtho[2,1-b]furan (3e)

The product was obtained following the standard procedure, and the crude was charged in FC (50/1 Hexane: AcOEt), affording the pure product as red solid (59% yield). M.p. = 127 °C. $[\alpha]^{20}_{D}$ = +6.2 (*c* = 0.8, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.97-7.86 (m, 2H), 7.45 (d, *J* = 8.9 Hz, 1H) 7.41-7.30 (m, 3H), 7.17 (dd, *J* = 8.5, 5.4 Hz, 1H), 7.03 (t, *J* = 8.5 Hz, 2H), 6.07 (d, *J* = 1.4 Hz, 1H), 5.32 (s, 1H). ¹³C

NMR (75 MHz, CDCl₃) δ 162.6 (d, J_{CF} = 150 Hz, C), 162.7 (C), 156.2 (C), 133.7 (C), 133.6 (C), 131.7 (CH), 130.2 (d, J_{CF} = 108.75 Hz, CH), 129.3 (CH), 129.2 (CH) 129.1 (CH), 127.8 (CH), 124.6 (CH), 122.9 (CH) , 118.0 (C), 116.4 (d, J_{CF} = 12.7 Hz, CH),

112.3 (CH), 111.9 (CH), 54.6 (CH). {¹H} ¹⁹F NMR (282 MHz, CDCl₃) δ -113.2. MS (EI⁺): calcd. for C₁₈H₁₃OF: [M-NO₂⁺], 264.0950, found 263.0881. Enantiomeric excess was determinated by HPLC using a IC Chiralcell column [hexane/iPrOH (90:10)]; flow rate 1 ml/min; $\tau_{\text{major}} = 7.6 \text{ min}, \tau_{\text{minor}} = 5.8 \text{ min}$ (ee= 97%).

(1*S*,2*S*)-1-(4-Bromophenyl)-1,2-dihydro-2-nitronaphtho[2,1-b]furan (3f)

Br NO₂ NO

(1*S*,2*S*)-1-Butyl-1,2-dihydro-2-nitronaphtho[2,1-b]furan (3g)

The product was obtained following the standard procedure, and the crude was charged in FC (55/1 Hexane: AcOEt), affording the pure product as orange oil (55% yield). $[\alpha]^{20}{}_{D} = +6.9$ (c = 1.1, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d , J = 8.3 Hz , 1H), 7.83 (d , J = 8.8 Hz , 1H), 7.65 (d , J = 8.3 Hz , 1H), 7.52 (t, J = 8.2 Hz , 1H),

7.40 (t, J = 7.6 Hz , 1H), 7.26 (d , J = 8.9 Hz , 1H), 6.04 (d, J = 1.4 Hz, 1H), 5.30 (s, 1H), 4.07 (dd, J = 9.2, 3.4 Hz , 1H), 2.21-2.03 (m , 1H), 1.88-1.67 (m, 2H), 1.64-1.18 (m, 2H), 0.95 (t, J = 7.2 Hz , 3H). ¹³C NMR (75 MHz, CDCl₃) δ 155.1 (C), 130.8 (C), 130.6 (C), 129.4 (C), 129.2 (C), 127.4 (C), 124.2 (C), 122.4 (C), 119.4 (C), 111.8 (C), 110.4 (CH), 50.2 (CH), 32.7 (CH₂), 28.6 (CH₂), 22.4 (CH₂), 13.9 (CH₃). MS (EI⁺): calcd. for C₁₆H₁₆O: [M-NO₂]⁺, 224.1201, found 224.1198. Enantiomeric excess was determinated by HPLC using a IC Chiralcell column [hexane/iPrOH (90:10)]; flow rate 1 ml/min; $\tau_{major} = 6.2$ min, $\tau_{minor} = 5.3$ min (ee= 91%).

(1*S*,2*S*)-4-Bromo-1,2-dihydro-2-nitro-1-phenylnaphtho[2,1-b]furan (3h).

The product was obtained following the standard procedure, and the crude was charged in FC (12/1 Hexane: AcOEt), affording the pure product as yellow solid (72% yield). M.p. = 130 °C. $[\alpha]^{20}_{D}$ = +57.6 (*c* = 0.2, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 8.12 (s, 1H), 8.03 (s, 2H), 7.68 (d, *J* = 8.6 Hz, 1H), 7.40-7.35 (m, 4H), 7.22-7.16 (m, 2H),

6.15 (s, 1H), 5.39 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 153.3 (C), 137.3 (C), 133.3 (CH), 131.9 (C), 129.5 (CH, 2C), 128.7 (CH), 128.5 (C), 128.2 (CH), 127.9 (CH), 127.5 (CH, 2C), 125.5 (CH), 123.1 (CH), 119.8 (C), 111.7 (CH), 104.2 (C), 56.3 (CH). MS (EI⁺): calcd. for C₁₈H₁₃BrO: [M-NO₂]⁺, 323.9997, found 323.9975. Enantiomeric excess was determinated by HPLC using a IC Chiralcell column [hexane/iPrOH (90:10)]; flow rate 1 ml/min; $\tau_{major} = 13.2 \text{ min}, \tau_{minor} = 7.1 \text{ min}$ (ee= 87%).

(1*S*,2*S*)-7-Bromo-2-nitro-1-phenyl-1,2-dihydronaphtho[2,1-b]furan (3i).

The product was obtained following the standard procedure, and the crude was charged in FC (8/1 Hexane: AcOEt), affording the pure product as red solid (68% yield). M.p = 128 °C. $[\alpha]^{20}_{D}$ = +39.3, (*c* = 0.1, CH₂Cl₂). ¹H-NMR (300 MHz, CDCl₃) δ 7.89 (d, *J* = 8.9 Hz, 1H), 7.74 (d, *J* = 8.8 Hz, 1H), 7.51 (d, *J* = 1.6 Hz,

1H), 7.49-7.42 (m, 3H), 7.41-7.32 (m, 3H), 7.18 (dd, J = 7.3, 2.2 Hz, 1H), 6.09 (d, J = 1.7 Hz, 1H), 5.22 (s, 1H). ¹³C-NMR (75 MHz, CDCl₃) δ 156.5 (C), 137.6 (C), 132.0 (C), 131.1 (CH), 131.0 (CH), 130.6 (CH), 129.5 (CH, 2C), 128.6 (CH), 128.1 (C), 127.5 (CH, 2C), 124.6 (CH), 118.7 (C), 118.3 (C), 113.0 (CH), 112.4 (CH), 55.2 (CH). MS (EI⁺): calcd for C₁₈H₁₂OBr: [M-NO₂]⁺, 325.0150, found 325.0072. Enantiomeric excess was determinated by HPLC using a Chiralcell IC column [hexane/iPrOH (90:10)]; flow rate 0.5 ml/min; $\tau_{major} = 14.3$ min, $\tau_{minor} = 12.0$ min (ee = 91 %).

(1*S*,2*S*)-8-Bromo-1,2-dihydro-2-nitro-1-phenylnaphtho[2,1-b]furan (3j)

The product was obtained following the standard procedure, and the crude was charged in FC (8/1 Hexane: AcOEt), affording the pure product as red solid (83% yield). M.p = 132 °C. $[\alpha]^{20}_{D}$ = +3.5 (*c* = 1.8, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, *J* = 8.9 Hz, 1H), 7.74 (d, *J* = 8.9 Hz, 1H), 7.71 (d, *J* = 1.6 Hz, 1H), 7.49-7.51

(m, 2H), 7.41-7.32 (m, 3H), 7.23-7.14 (m, 2H), 6.09 (d, J = 1.7 Hz, 1H), 5.27 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 157.3 (C), 137.7 (C), 131.8 (CH), 131.1 (C), 131.0 (CH), 129.9 (CH, 2C), 129.6 (C), 129.0 (CH), 128.4 (CH), 127.7 (CH, 2C), 125.5 (CH), 122.6 (C), 118.0 (C), 112.7 (CH), 112.6 (CH), 55.4 (CH). MS (EI⁺): calcd for C₁₈H₁₃BrO: [M-NO₂]⁺, 324.0150, found 323.9949. Enantiomeric excess was determinate by HPLC using a IC Chiralcell column [hexane/iPrOH (90:10)]; flow rate 1 ml/min; $\tau_{major} = 11.4$ min, $\tau_{minor} = 6.5$ min (ee= 93%).

(1*S*,2*S*)-1,2-Dihydro-8-methoxy-2-nitro-1-phenylnaphtho[2,1-b]furan (3k).

The product was obtained following the standard procedure, and the crude was charged in FC (Hexane), affording the pure product as yellow solid (68% yield). M.p. = 123 °C. $[\alpha]^{20}_{D}$ = 13.7 (*c* = 1.9 CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.72 (dd, *J* = 18.8, 8.9 Hz, 2H), 7.31-7.14 (m, 5H), 6.94 (dd, *J* = 9.0, 2.4

Hz, 1H), 6.52 (d, J = 2.2 Hz, 1H), 6.04 (d, J = 1.7 Hz, 1H), 5.19 (s, 1H), 3.69 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 157.9 (C), 155.7 (C), 136.8 (C), 130.0 (CH), 129.9 (C), 129.5 (CH), 128.3 (CH, 2C), 127.4 (CH), 126.5 (CH, 2C), 125.2 (C), 116.3 (C), 115.9 (CH), 111.5 (CH), 108.1 (CH), 100.5 (CH), 54.3 (CH), 54.1 (CH₃). MS (FB⁺): calcd for C₁₉H₁₅O₂:[M-HNO₂]⁺, 275.1072, found 275.1077. Enantiomeric excess was determinated by HPLC using a IC Chiralcell column [hexane/iPrOH (90:10)]; flow rate 1 ml/min; $\tau_{major} = 9.7$ min, $\tau_{minor} = 6.4$ min (ee= 93%).

(2S,3S)-2-Nitro-3-phenyl-2,3-dihydronaphtho[1,2-b]furan (3l)

The product was obtained following the standard procedure, and the crude was charged in FC (12/1 Hexane: AcOEt), affording the pure product as white oil (50% yield). $[\alpha]^{20}_{D} = +3.0$ (c = 0.5, CH₂Cl₂). ¹H-NMR (300 MHz, CDCl₃) δ 8.09 (d, J = 7.8 Hz, 1H), 7.82 (d, J =

7.6 Hz, 1H), 7.5 5-7.48 (m, 4H), 7.30-7.25 (m, 2H), 7.16 (d, J = 8.3 Hz, 1H), 7.11-7.05 (m, 2H), 6.12 (d, J = 1.8 Hz, 1H), 5.04 (s, 1H).¹³C-NMR (75 MHz, CDCl₃) δ 153.8 (C), 138.7 (C), 134.7 (C), 129.3 (CH, 2C), 128.4 (CH), 128.1 (CH), 127.5 (CH, 2C), 127.0 (CH), 126.7 (CH), 123.9 (CH), 121.7 (CH), 121.4 (CH), 120.4 (C), 119.9 (C), 112.3 (CH), 56.5 (CH). MS (EI+): calcd for C₁₈H₁₄O: [M-NO₂]⁺, 246.1045, found 245.0852.

Enantiomeric excess was determinated by HPLC using a Chiralcell IA column [hexane/iPrOH (90:10)]; flow rate 1 ml/min; $\tau_{major} = 5.7 \text{ min}$, $\tau_{minor} = 7.4 \text{ min}$ (ee = 98 %).

(2S,3S)-4,6-Dimethoxy-2-nitro-3-phenyl-2,3-dihydrobenzofuran (3m)

The product was obtained following the standard procedure and the crude was charged in FC (55/1 Hexane: AcOEt, after tube 40, 20/1 Hexane: AcOEt), affording the pure product as white solid (57% yield). M.p. = 105 °C. $[\alpha]^{20}_{D}$ = +26.0 (*c* = 0.2, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.32-7.21 (m, 3H), 7.15-7.05 (m, 2H), 6.33 (d,

J = 1.5 Hz, 1H), 6.09 (d, J = 1.8 Hz, 1H), 5.88 (d, J = 1.2 Hz, 1H), 4.83 (s, 1H), 3.77 (s, 3H), 3.59 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.1 (C), 160.2 (C), 156.9 (C), 138.3 (C), 129.0 (2C), 128.0 (C), 127.2 (2C), 112.6 (CH), 105.2 (C), 94.1 (C), 89.0 (C), 55.8 (CH3), 55.5 (CH3), 53.5 (CH). MS (ESI⁺): calcd for C₁₆H₁₆NO₅: [M]⁺, 302,1022, found 302,1047. Enantiomeric excess was determinated by HPLC using a IC Chiralcell column [hexane/iPrOH (90:10)]; flow rate 1 ml/min; $\tau_{major} = 6.1$ min, $\tau_{minor} = 6.6$ min (ee= 66%).

(2R, 3R)-5,6-dimethoxy-2-nitro-3-phenyl-2,3-dihydrobenzofuran (3n)

The product was obtained following the standard procedure and the crude was charged in FC (3/1 Hexane: AcOEt), affording the pure product as white solid (50% yield). M.p. = 90-95 °C. $[\alpha]^{20}_{D}$ = +40.7 (*c* = 1.2, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.31 (m, 3H), 7.19–7.12 (m, 2H), 6.80 (s, 1H), 6.67 (s, 1H), 5.95 (s, 1H), 4.89 (s,

1H), 3.93 (s, 3H), 3.78 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 152.7 (C), 151.1 (C), 146.3 (C), 139.3 (C), 129.6 (CH, 2C), 128.7 (CH), 127.7 (CH, 2C), 116.2 (C), 112.9 (CH), 108.4 (CH), 96.0 (CH), 57.0 (CH), 56.6 (CH₃) 56.3 (CH₃). Enantiomeric excess was determinate by SFC-HPLC using an IB Chiralcell column [CO₂/MeOH (95:5)]; flow rate 3 ml/min; $\tau_{major} = 3.8 \text{ min}$, $\tau_{minor} = 3.5 \text{ min}$ (ee= 97%).

(2S,3S)-7-methyl-2-nitro-3-phenyl-2,3-dihydrobenzofuran-6-ol (30)

The product was obtained following the standard procedure and the crude was charged in FC (5/1 Hexane: AcOEt), affording the pure product as yellow oil (29% yield). $[\alpha]^{20}{}_{D} = +7.5$ (c = 1.4, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.39-7.30 (m, 3H), 7.18–7.13 (m, 2H), 6.83 (d, J = 8.1 Hz, 1H), 6.51 (d, J = 8.1 Hz, 1H), 6.01 (d, J = 1.6 Hz, 1H), 4.87 (s, 1H), 2.31 (d, J = 9.1 Hz, 3H). ¹³C NMR (75 MHz,

CDCl₃) δ 158.5 (C), 155.6 (C), 139.7 (C), 129.6 (CH, 2C), 128.5 (CH), 127.7 (CH, 2C), 122.7 (CH), 117.9 (C) 112.8 (CH), 110.7 (CH), 108.5 (C), 55.9 (CH), 8.82 (CH₃). Enantiomeric excess was determinate by SFC-HPLC using an IB Chiralcell column [CO₂/MeOH (95:5)]; flow rate 3 ml/min; $\tau_{major} = 13.5 \text{ min}$, $\tau_{minor} = 9.2 \text{ min}$ (ee= 95%).

Spectra of compounds 3a-o

HPLC chromatograms of compound 3a-o

